blob: c0728feadc83a9839b69e4fbc379ad681b604556 [file] [log] [blame]
/*
* Copyright (c) 2018 - present. Boling Consulting Solutions (bcsw.net)
* Copyright 2020-present Open Networking Foundation
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* NOTE: This file was generated, manual edits will be overwritten!
*
* Generated by 'goCodeGenerator.py':
* https://github.com/cboling/OMCI-parser/README.md
*/
package generated
import "github.com/deckarep/golang-set"
// PhysicalPathTerminationPointVideoAniClassID is the 16-bit ID for the OMCI
// Managed entity Physical path termination point video ANI
const PhysicalPathTerminationPointVideoAniClassID = ClassID(90) // 0x005a
var physicalpathterminationpointvideoaniBME *ManagedEntityDefinition
// PhysicalPathTerminationPointVideoAni (Class ID: #90 / 0x005a)
// This ME represents an RF video ANI in the ONU, where physical paths terminate and physical path
// level functions are performed.
//
// The ONU automatically creates an instance of this ME per port as follows.
//
// o When the ONU has video ANI ports built into its factory configuration.
//
// o When a cardholder is provisioned to expect a circuit pack of the video ANI type.
//
// o When a cardholder provisioned for plug-and-play is equipped with a circuit pack of the video
// ANI type. Note that the installation of a plug-and-play card may indicate the presence of video
// ANI ports via equipment ID as well as its type, and indeed may cause the ONU to instantiate a
// port-mapping package that specifies video ANI ports.
//
// The ONU automatically deletes instances of this ME when a cardholder is neither provisioned to
// expect a video ANI circuit pack, nor is it equipped with a video ANI circuit pack.
//
// Relationships
// An instance of this ME is associated with each instance of a real or pre-provisioned video ANI
// port.
//
// Attributes
// Managed Entity Id
// This attribute uniquely identifies each instance of this ME. This 2-byte number indicates the
// physical position of the ANI. The first byte is the slot ID (defined in clause 9.1.5). The
// second byte is the port ID, with the range 1..255. (R) (mandatory) (2-bytes)
//
// Administrative State
// This attribute locks (1) and unlocks (0) the functions performed by this ME. Administrative
// state is further described in clause-A.1.6. (R,-W) (mandatory) (1-byte)
//
// Operational State
// This attribute indicates whether the ME is capable of performing its function. Valid values are
// enabled (0) and disabled (1). (R) (optional) (1-byte)
//
// Arc
// See clause A.1.4.3. (R,-W) (optional) (1-byte)
//
// Arc Interval
// See clause A.1.4.3. (R,-W) (optional) (1-byte)
//
// Frequency Range Low
// This attribute indicates the lower of the two possible frequency ranges supported. Different
// frequency ranges are indicated by code points:
//
// 0 No low band
//
// 1 50..550 MHz
//
// 2 50..750 MHz
//
// 3 50..870 MHz
//
// 4..255 Reserved
//
// (R) (mandatory) (1-byte)
//
// Frequency Range High
// This attribute indicates the higher of the two frequency ranges supported. Different frequency
// ranges are indicated by code points:
//
// 0 No high band
//
// 1 550..750 MHz
//
// 2 550..870 MHz
//
// 3 950..2050 MHz
//
// 4 2150..3250 MHz
//
// 5 950..3250 MHz
//
// 6..255 Reserved
//
// (R) (mandatory) (1-byte)
//
// Signal Capability
// 0 No signal level measurement capability
//
// 1 Total optical power level
//
// 2 Fixed frequency pilot tone power level
//
// 3 Total optical power level and fixed frequency pilot tone power level
//
// 4 Variable frequency pilot tone power level
//
// 5 Total optical power level and variable frequency pilot tone power level
//
// 6 Broadband RF power level
//
// 7 Total optical power level and broadband RF power level
//
// 8..255 Reserved
//
// (R) (mandatory) (1-byte)
//
// This attribute indicates the capability of the ONU to measure the video signal level.
// Capabilities are indicated by code points, as follows.
//
// Optical Signal Level
// This attribute is an unsigned integer that returns the current measurement of the total optical
// signal level. The unit of this attribute is decibel-microwatt optical.
//
// o If signal capability-= 0, 2, 4 or 6, this attribute is undefined.
//
// o If signal capability-=1, 3, 5 or 7, this attribute describes the total optical power that is
// generating photocurrent on the receiver.
//
// (R) (optional) (1-byte)
//
// Pilot Signal Level
// This attribute indicates the current measurement of the pilot signal level or broadband RF
// level. The unit of this attribute is decibel-microvolt at the RF video service port.
//
// o If signal capability-= 0 or 1, then this attribute is undefined.
//
// o If signal capability-= 2, 3, 4 or 5, this attribute reports the pilot signal level at the
// output of the video UNI.
//
// o If signal capability-= 6 or 7, this attribute reports the total RF power level at the output
// of the video UNI.
//
// (R) (optional) (1-byte)
//
// Signal Level Min
// This attribute indicates the minimum optical RF power per channel that results in a CNR of
// 47-dBc for a channel of 4.5 MHz bandwidth at a receive optical power of -5-dBm. The unit of this
// attribute is decibel-microwatt optical. (R) (mandatory) (1-byte)
//
// Signal Level Max
// This attribute indicates the maximum optical RF power per channel that results in a CTB of
// -57-dBc for an 80-channel ensemble of carriers at a perchannel optical modulation index (OMI) of
// 3.5%. The unit of this attribute is decibel-microwatt optical. (R) (mandatory) (1-byte)
//
// Pilot Frequency
// This attribute specifies the frequency of the pilot channel receiver. The unit of this attribute
// is hertz.
//
// o If signal capability-= 0, 1, 6 or 7, this attribute is undefined.
//
// o If signal capability-= 2 or 3, this attribute is functionally RO.
//
// o If signal capability-= 4 or 5, this attribute is RW.
//
// (R,-W) (optional) (4-bytes)
//
// Agc Mode
// This attribute allows the discovery and configuration of the ONU's AGC capabilities. The
// attribute contains a code point for several AGC types. The ONU displays the currently used AGC
// mode. The OLT can discover new modes via the set command; the ONU denies attempts to set an
// unsupported mode. The code points are as follows.
//
// 0 No AGC
//
// 1 Broadband RF AGC
//
// 2 Optical AGC
//
// 3..255 Reserved
//
// (R,-W) (optional) (1-byte)
//
// Agc Setting
// This attribute indicates the measurement offset that the ONU should use in AGC. The attribute
// has a step size of 0.1-dB, represented as a signed integer.
//
// The theoretical nominal RF signal is 80 channels of NTSC video, each with a per-channel OMI of
// 3.5%. An ONU presented with such a signal should produce its specified output when this
// attribute is set to zero.
//
// If total optical power is used for AGC, this attribute provides the OMI offset for any NTSC
// carriers present from the theoretical 3.5% value. For example, if the actual signal uses an OMI
// of 7.0% per channel (3-dB higher), then the ONU should be given an AGC setting of 30 (coded
// 0x1E).
//
// If broadband RF power is used for AGC, this attribute provides the total power offset for any
// NTSC carriers present from the theoretical 80-channel value. For example, if an actual signal
// contains 40 NTSC channels (3-dB lower), then the ONU should be given an AGC setting of -30
// (coded 0xE2).
//
// (R,-W) (optional) (1-byte)
//
// Video Lower Optical Threshold
// This attribute specifies the optical level used to declare the video OOR low alarm. Valid values
// are -12 to +6-dBm in 0.1-dB increments, represented as a 2s complement integer. (Coding -120 to
// +60, where 0x00-= 0-dBm, 0x88-= -12.0 dBm, etc.) Upon ME instantiation, the ONU sets this
// attribute to 0xA1 (-9.5-dBm). (R,-W) (optional) (1-byte)
//
// NOTE - Because the power measurement returned in the optical signal level attribute has a
// resolution of 1-dB, it is possible that the measured value could appear to be in-range, even
// though an out-of-range alarm has been declared against a threshold with 0.1-dB resolution.
//
// Video Upper Optical Threshold
// This attribute specifies the optical level used to declare the video OOR high alarm. Valid
// values are -12 to +6-dBm in 0.1-dB increments, represented as a 2s complement integer. (Coding
// -120 to +60, 0x00-= 0-dBm, 0x88-= -12.0-dBm, etc.) Upon ME instantiation, the ONU sets this
// attribute to 0x19 (+2.5-dBm). (R,-W) (optional) (1-byte)
//
type PhysicalPathTerminationPointVideoAni struct {
ManagedEntityDefinition
Attributes AttributeValueMap
}
func init() {
physicalpathterminationpointvideoaniBME = &ManagedEntityDefinition{
Name: "PhysicalPathTerminationPointVideoAni",
ClassID: 90,
MessageTypes: mapset.NewSetWith(
Get,
Set,
),
AllowedAttributeMask: 0xffff,
AttributeDefinitions: AttributeDefinitionMap{
0: Uint16Field("ManagedEntityId", PointerAttributeType, 0x0000, 0, mapset.NewSetWith(Read), false, false, false, 0),
1: ByteField("AdministrativeState", UnsignedIntegerAttributeType, 0x8000, 0, mapset.NewSetWith(Read, Write), false, false, false, 1),
2: ByteField("OperationalState", UnsignedIntegerAttributeType, 0x4000, 0, mapset.NewSetWith(Read), true, true, false, 2),
3: ByteField("Arc", UnsignedIntegerAttributeType, 0x2000, 0, mapset.NewSetWith(Read, Write), true, true, false, 3),
4: ByteField("ArcInterval", UnsignedIntegerAttributeType, 0x1000, 0, mapset.NewSetWith(Read, Write), false, true, false, 4),
5: ByteField("FrequencyRangeLow", UnsignedIntegerAttributeType, 0x0800, 0, mapset.NewSetWith(Read), false, false, false, 5),
6: ByteField("FrequencyRangeHigh", UnsignedIntegerAttributeType, 0x0400, 0, mapset.NewSetWith(Read), false, false, false, 6),
7: ByteField("SignalCapability", UnsignedIntegerAttributeType, 0x0200, 0, mapset.NewSetWith(Read), false, false, false, 7),
8: ByteField("OpticalSignalLevel", UnsignedIntegerAttributeType, 0x0100, 0, mapset.NewSetWith(Read), false, true, false, 8),
9: ByteField("PilotSignalLevel", UnsignedIntegerAttributeType, 0x0080, 0, mapset.NewSetWith(Read), false, true, false, 9),
10: ByteField("SignalLevelMin", UnsignedIntegerAttributeType, 0x0040, 0, mapset.NewSetWith(Read), false, false, false, 10),
11: ByteField("SignalLevelMax", UnsignedIntegerAttributeType, 0x0020, 0, mapset.NewSetWith(Read), false, false, false, 11),
12: Uint32Field("PilotFrequency", UnsignedIntegerAttributeType, 0x0010, 0, mapset.NewSetWith(Read, Write), false, true, false, 12),
13: ByteField("AgcMode", UnsignedIntegerAttributeType, 0x0008, 0, mapset.NewSetWith(Read, Write), false, true, false, 13),
14: ByteField("AgcSetting", UnsignedIntegerAttributeType, 0x0004, 0, mapset.NewSetWith(Read, Write), false, true, false, 14),
15: ByteField("VideoLowerOpticalThreshold", UnsignedIntegerAttributeType, 0x0002, 0, mapset.NewSetWith(Read, Write), false, true, false, 15),
16: ByteField("VideoUpperOpticalThreshold", UnsignedIntegerAttributeType, 0x0001, 0, mapset.NewSetWith(Read, Write), false, true, false, 16),
},
Access: CreatedByOnu,
Support: UnknownSupport,
Alarms: AlarmMap{
0: "Video LOS",
1: "Video OOR low",
2: "Video OOR high",
},
}
}
// NewPhysicalPathTerminationPointVideoAni (class ID 90) creates the basic
// Managed Entity definition that is used to validate an ME of this type that
// is received from or transmitted to the OMCC.
func NewPhysicalPathTerminationPointVideoAni(params ...ParamData) (*ManagedEntity, OmciErrors) {
return NewManagedEntity(*physicalpathterminationpointvideoaniBME, params...)
}