blob: 554e88d488927e58d6a756d1c4fc67f4478ad174 [file] [log] [blame]
/*
* Copyright 2018-present Open Networking Foundation
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "core_utils.h"
std::string serial_number_to_str(bcmolt_serial_number* serial_number) {
#define SERIAL_NUMBER_SIZE 12
char buff[SERIAL_NUMBER_SIZE+1];
sprintf(buff, "%c%c%c%c%1X%1X%1X%1X%1X%1X%1X%1X",
serial_number->vendor_id.arr[0],
serial_number->vendor_id.arr[1],
serial_number->vendor_id.arr[2],
serial_number->vendor_id.arr[3],
serial_number->vendor_specific.arr[0]>>4 & 0x0f,
serial_number->vendor_specific.arr[0] & 0x0f,
serial_number->vendor_specific.arr[1]>>4 & 0x0f,
serial_number->vendor_specific.arr[1] & 0x0f,
serial_number->vendor_specific.arr[2]>>4 & 0x0f,
serial_number->vendor_specific.arr[2] & 0x0f,
serial_number->vendor_specific.arr[3]>>4 & 0x0f,
serial_number->vendor_specific.arr[3] & 0x0f);
return buff;
}
std::string vendor_specific_to_str(char const * const vendor_specific) {
char buff[SERIAL_NUMBER_SIZE+1];
sprintf(buff, "%1X%1X%1X%1X%1X%1X%1X%1X",
vendor_specific[0]>>4 & 0x0f,
vendor_specific[0] & 0x0f,
vendor_specific[1]>>4 & 0x0f,
vendor_specific[1] & 0x0f,
vendor_specific[2]>>4 & 0x0f,
vendor_specific[2] & 0x0f,
vendor_specific[3]>>4 & 0x0f,
vendor_specific[3] & 0x0f);
return buff;
}
/**
* Returns the default NNI (Upstream direction) or PON (Downstream direction) scheduler
* Every NNI port and PON port have default scheduler.
* The NNI0 default scheduler ID is 18432, and NNI1 is 18433 and so on.
* Similarly, PON0 default scheduler ID is 16384. PON1 is 16385 and so on.
*
* @param intf_id NNI or PON interface ID
* @param direction "upstream" or "downstream"
*
* @return default scheduler ID for the given interface.
*/
uint16_t get_dev_id(void) {
return dev_id;
}
int get_default_tm_sched_id(int intf_id, std::string direction) {
if (direction.compare(upstream) == 0) {
return tm_upstream_sched_id_start + intf_id;
} else if (direction.compare(downstream) == 0) {
return tm_downstream_sched_id_start + intf_id;
}
else {
OPENOLT_LOG(ERROR, openolt_log_id, "invalid direction - %s\n", direction.c_str());
return 0;
}
}
/**
* Gets a unique tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction
* The tm_sched_id is locally cached in a map, so that it can rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem.
* Note that tech_profile_id is used to differentiate service schedulers in downstream direction.
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
* @param tech_profile_id Technology Profile ID
*
* @return tm_sched_id
*/
uint32_t get_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction, int tech_profile_id) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction, tech_profile_id);
int sched_id = -1;
bcmos_fastlock_lock(&tm_sched_bitset_lock);
std::map<sched_map_key_tuple, int>::const_iterator it = sched_map.find(key);
if (it != sched_map.end()) {
sched_id = it->second;
}
if (sched_id != -1) {
bcmos_fastlock_unlock(&tm_sched_bitset_lock, 0);
return sched_id;
}
// Complexity of O(n). Is there better way that can avoid linear search?
for (sched_id = 0; sched_id < MAX_TM_SCHED_ID; sched_id++) {
if (tm_sched_bitset[sched_id] == 0) {
tm_sched_bitset[sched_id] = 1;
break;
}
}
if (sched_id < MAX_TM_SCHED_ID) {
sched_map[key] = sched_id;
bcmos_fastlock_unlock(&tm_sched_bitset_lock, 0);
return sched_id;
} else {
bcmos_fastlock_unlock(&tm_sched_bitset_lock, 0);
return -1;
}
}
/**
* Free tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction, tech_profile_id
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
* @param tech_profile_id Technology Profile ID
*/
void free_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction, int tech_profile_id) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction, tech_profile_id);
std::map<sched_map_key_tuple, int>::const_iterator it;
bcmos_fastlock_lock(&tm_sched_bitset_lock);
it = sched_map.find(key);
if (it != sched_map.end()) {
tm_sched_bitset[it->second] = 0;
sched_map.erase(it);
}
bcmos_fastlock_unlock(&tm_sched_bitset_lock, 0);
}
bool is_tm_sched_id_present(int pon_intf_id, int onu_id, int uni_id, std::string direction, int tech_profile_id) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction, tech_profile_id);
std::map<sched_map_key_tuple, int>::const_iterator it = sched_map.find(key);
if (it != sched_map.end()) {
return true;
}
return false;
}
/**
* Check whether given two tm qmp profiles are equal or not
*
* @param tmq_map_profileA <vector> TM QUEUE MAPPING PROFILE
* @param tmq_map_profileB <vector> TM QUEUE MAPPING PROFILE
*
* @return boolean, true if given tmq_map_profiles are equal else false
*/
bool check_tm_qmp_equality(std::vector<uint32_t> tmq_map_profileA, std::vector<uint32_t> tmq_map_profileB) {
for (uint32_t i = 0; i < TMQ_MAP_PROFILE_SIZE; i++) {
if (tmq_map_profileA[i] != tmq_map_profileB[i]) {
return false;
}
}
return true;
}
/**
* Modifies given queues_pbit_map to parsable format
* e.g: Modifes "0b00000101" to "10100000"
*
* @param queues_pbit_map PBIT MAP configured for each GEM in TECH PROFILE
* @param size Queue count
*
* @return string queues_pbit_map
*/
std::string* get_valid_queues_pbit_map(std::string *queues_pbit_map, uint32_t size) {
for(uint32_t i=0; i < size; i++) {
/* Deletes 2 characters from index number 0 */
queues_pbit_map[i].erase(0, 2);
std::reverse(queues_pbit_map[i].begin(), queues_pbit_map[i].end());
}
return queues_pbit_map;
}
/**
* Creates TM QUEUE MAPPING PROFILE for given queues_pbit_map and queues_priority_q
*
* @param queues_pbit_map PBIT MAP configured for each GEM in TECH PROFILE
* @param queues_priority_q PRIORITY_Q configured for each GEM in TECH PROFILE
* @param size Queue count
*
* @return <vector> TM QUEUE MAPPING PROFILE
*/
std::vector<uint32_t> get_tmq_map_profile(std::string *queues_pbit_map, uint32_t *queues_priority_q, uint32_t size) {
std::vector<uint32_t> tmq_map_profile(8,0);
for(uint32_t i=0; i < size; i++) {
for (uint32_t j = 0; j < queues_pbit_map[i].size(); j++) {
if (queues_pbit_map[i][j]=='1') {
tmq_map_profile.at(j) = queue_id_list[queues_priority_q[i]];
}
}
}
return tmq_map_profile;
}
/**
* Gets corresponding tm_qmp_id for a given tmq_map_profile
*
* @param <vector> TM QUEUE MAPPING PROFILE
*
* @return tm_qmp_id
*/
int get_tm_qmp_id(std::vector<uint32_t> tmq_map_profile) {
int tm_qmp_id = -1;
std::map<int, std::vector < uint32_t > >::const_iterator it = qmp_id_to_qmp_map.begin();
while(it != qmp_id_to_qmp_map.end()) {
if(check_tm_qmp_equality(tmq_map_profile, it->second)) {
tm_qmp_id = it->first;
break;
}
it++;
}
return tm_qmp_id;
}
/**
* Updates sched_qmp_id_map with given sched_id, pon_intf_id, onu_id, uni_id, tm_qmp_id
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param tm_qmp_id TM QUEUE MAPPING PROFILE ID
*/
void update_sched_qmp_id_map(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, \
uint32_t uni_id, int tm_qmp_id) {
bcmos_fastlock_lock(&tm_qmp_bitset_lock);
sched_qmp_id_map_key_tuple key(sched_id, pon_intf_id, onu_id, uni_id);
sched_qmp_id_map.insert(make_pair(key, tm_qmp_id));
bcmos_fastlock_unlock(&tm_qmp_bitset_lock, 0);
}
/**
* Gets corresponding tm_qmp_id for a given sched_id, pon_intf_id, onu_id, uni_id
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
*
* @return tm_qmp_id
*/
int get_tm_qmp_id(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, uint32_t uni_id) {
sched_qmp_id_map_key_tuple key(sched_id, pon_intf_id, onu_id, uni_id);
int tm_qmp_id = -1;
std::map<sched_qmp_id_map_key_tuple, int>::const_iterator it = sched_qmp_id_map.find(key);
if (it != sched_qmp_id_map.end()) {
tm_qmp_id = it->second;
}
return tm_qmp_id;
}
/**
* Gets a unique tm_qmp_id for a given tmq_map_profile
* The tm_qmp_id is locally cached in a map, so that it can be rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param <vector> TM QUEUE MAPPING PROFILE
*
* @return tm_qmp_id
*/
int get_tm_qmp_id(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, uint32_t uni_id, \
std::vector<uint32_t> tmq_map_profile) {
int tm_qmp_id;
bcmos_fastlock_lock(&tm_qmp_bitset_lock);
/* Complexity of O(n). Is there better way that can avoid linear search? */
for (tm_qmp_id = 0; tm_qmp_id < MAX_TM_QMP_ID; tm_qmp_id++) {
if (tm_qmp_bitset[tm_qmp_id] == 0) {
tm_qmp_bitset[tm_qmp_id] = 1;
break;
}
}
if (tm_qmp_id < MAX_TM_QMP_ID) {
qmp_id_to_qmp_map.insert(make_pair(tm_qmp_id, tmq_map_profile));
bcmos_fastlock_unlock(&tm_qmp_bitset_lock, 0);
update_sched_qmp_id_map(sched_id, pon_intf_id, onu_id, uni_id, tm_qmp_id);
return tm_qmp_id;
} else {
bcmos_fastlock_unlock(&tm_qmp_bitset_lock, 0);
return -1;
}
}
/**
* Free tm_qmp_id for a given sched_id, pon_intf_id, onu_id, uni_id
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param tm_qmp_id TM QUEUE MAPPING PROFILE ID
*
* @return boolean, true if no more reference for TM QMP else false
*/
bool free_tm_qmp_id(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, \
uint32_t uni_id, int tm_qmp_id) {
bool result;
sched_qmp_id_map_key_tuple key(sched_id, pon_intf_id, onu_id, uni_id);
std::map<sched_qmp_id_map_key_tuple, int>::const_iterator it = sched_qmp_id_map.find(key);
bcmos_fastlock_lock(&tm_qmp_bitset_lock);
if (it != sched_qmp_id_map.end()) {
sched_qmp_id_map.erase(it);
}
uint32_t tm_qmp_ref_count = 0;
std::map<sched_qmp_id_map_key_tuple, int>::const_iterator it2 = sched_qmp_id_map.begin();
while(it2 != sched_qmp_id_map.end()) {
if(it2->second == tm_qmp_id) {
tm_qmp_ref_count++;
}
it2++;
}
if (tm_qmp_ref_count == 0) {
std::map<int, std::vector < uint32_t > >::const_iterator it3 = qmp_id_to_qmp_map.find(tm_qmp_id);
if (it3 != qmp_id_to_qmp_map.end()) {
tm_qmp_bitset[tm_qmp_id] = 0;
qmp_id_to_qmp_map.erase(it3);
OPENOLT_LOG(INFO, openolt_log_id, "Reference count for tm qmp profile id %d is : %d. So clearing it\n", \
tm_qmp_id, tm_qmp_ref_count);
result = true;
}
} else {
OPENOLT_LOG(INFO, openolt_log_id, "Reference count for tm qmp profile id %d is : %d. So not clearing it\n", \
tm_qmp_id, tm_qmp_ref_count);
result = false;
}
bcmos_fastlock_unlock(&tm_qmp_bitset_lock, 0);
return result;
}
/* ACL ID is a shared resource, caller of this function has to ensure atomicity using locks
Gets free ACL ID if available, else -1. */
int get_acl_id() {
int acl_id;
bcmos_fastlock_lock(&acl_id_bitset_lock);
/* Complexity of O(n). Is there better way that can avoid linear search? */
for (acl_id = 0; acl_id < MAX_ACL_ID; acl_id++) {
if (acl_id_bitset[acl_id] == 0) {
acl_id_bitset[acl_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&acl_id_bitset_lock, 0);
if (acl_id < MAX_ACL_ID) {
return acl_id ;
} else {
return -1;
}
}
/* ACL ID is a shared resource, caller of this function has to ensure atomicity using locks
Frees up the ACL ID. */
void free_acl_id (int acl_id) {
bcmos_fastlock_lock(&acl_id_bitset_lock);
if (acl_id < MAX_ACL_ID) {
acl_id_bitset[acl_id] = 0;
}
bcmos_fastlock_unlock(&acl_id_bitset_lock, 0);
}
/* Gets a free Flow ID if available, else INVALID_FLOW_ID */
uint16_t get_flow_id() {
uint16_t flow_id;
bcmos_fastlock_lock(&flow_id_bitset_lock);
/* Complexity of O(n). Is there better way that can avoid linear search? */
// start flow_id from 1 as 0 is invalid
for (flow_id = FLOW_ID_START; flow_id <= FLOW_ID_END; flow_id++) {
if (flow_id_bitset[flow_id] == 0) {
flow_id_bitset[flow_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&flow_id_bitset_lock, 0);
if (flow_id <= MAX_FLOW_ID) {
return flow_id ;
} else {
return INVALID_FLOW_ID;
}
}
/* Gets requested number of Flow IDs.
'num_of_flow_ids' is number of flow_ids requested. This cannot be more than NUMBER_OF_PBITS
'flow_ids' is pointer to array of size NUMBER_OF_PBITS
If the operation is successful, returns true else false
The operation is successful if we can allocate fully the number of flow_ids requested.
*/
bool get_flow_ids(int num_of_flow_ids, uint16_t *flow_ids) {
if (num_of_flow_ids > NUMBER_OF_PBITS) {
OPENOLT_LOG(ERROR, openolt_log_id, "requested number of flow_ids is more than 8\n");
return false;
}
int cnt = 0;
bcmos_fastlock_lock(&flow_id_bitset_lock);
/* Complexity of O(n). Is there better way that can avoid linear search? */
// start flow_id from 1 as 0 is invalid
for (uint16_t flow_id = FLOW_ID_START; flow_id <= FLOW_ID_END && cnt < num_of_flow_ids; flow_id++) {
if (flow_id_bitset[flow_id] == 0) {
flow_id_bitset[flow_id] = 1;
flow_ids[cnt] = flow_id;
cnt++;
}
}
bcmos_fastlock_unlock(&flow_id_bitset_lock, 0);
// If we could not allocate the requested number of flow_ids free the allocated flow_ids
// and return false
if (cnt != num_of_flow_ids) {
OPENOLT_LOG(ERROR, openolt_log_id, "could not allocated the rquested number of flows ids. requested=%d, allocated=%d", num_of_flow_ids, cnt);
if (cnt > 0) {
for(int i=0; i < cnt; i++) {
free_flow_id(flow_ids[i]);
}
}
return false;
}
return true;
}
/* Frees up the FLOW ID. */
void free_flow_id (uint16_t flow_id) {
bcmos_fastlock_lock(&flow_id_bitset_lock);
if (flow_id <= MAX_FLOW_ID) {
flow_id_bitset[flow_id] = 0;
}
bcmos_fastlock_unlock(&flow_id_bitset_lock, 0);
}
void free_flow_ids(uint8_t num_flows, uint16_t *flow_ids) {
for (uint8_t i = 0; i < num_flows; i++) {
bcmos_fastlock_lock(&flow_id_bitset_lock);
if (flow_ids[i] <= MAX_FLOW_ID) {
flow_id_bitset[flow_ids[i]] = 0;
}
bcmos_fastlock_unlock(&flow_id_bitset_lock, 0);
}
}
/**
* Returns qos type as string
*
* @param qos_type bcmolt_egress_qos_type enum
*/
std::string get_qos_type_as_string(bcmolt_egress_qos_type qos_type) {
switch (qos_type)
{
case BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE: return "FIXED_QUEUE";
case BCMOLT_EGRESS_QOS_TYPE_TC_TO_QUEUE: return "TC_TO_QUEUE";
case BCMOLT_EGRESS_QOS_TYPE_PBIT_TO_TC: return "PBIT_TO_TC";
case BCMOLT_EGRESS_QOS_TYPE_NONE: return "NONE";
case BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE: return "PRIORITY_TO_QUEUE";
default: OPENOLT_LOG(ERROR, openolt_log_id, "qos-type-not-supported %d\n", qos_type);
return "qos-type-not-supported";
}
}
/**
* Gets/Updates qos type for given pon_intf_id, onu_id, uni_id
*
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param queue_size TrafficQueues Size
*
* @return qos_type
*/
bcmolt_egress_qos_type get_qos_type(uint32_t pon_intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t queue_size) {
qos_type_map_key_tuple key(pon_intf_id, onu_id, uni_id);
bcmolt_egress_qos_type egress_qos_type = BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE;
std::string qos_string;
std::map<qos_type_map_key_tuple, bcmolt_egress_qos_type>::const_iterator it = qos_type_map.find(key);
if (it != qos_type_map.end()) {
egress_qos_type = it->second;
qos_string = get_qos_type_as_string(egress_qos_type);
OPENOLT_LOG(INFO, openolt_log_id, "Qos-type for subscriber connected to pon_intf_id %d, onu_id %d and uni_id %d is %s\n", \
pon_intf_id, onu_id, uni_id, qos_string.c_str());
}
else {
/* QOS Type has been pre-defined as Fixed Queue but it will be updated based on number of GEMPORTS
associated for a given subscriber. If GEM count = 1 for a given subscriber, qos_type will be Fixed Queue
else Priority to Queue */
egress_qos_type = (queue_size > 1) ? \
BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE : BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE;
bcmos_fastlock_lock(&data_lock);
qos_type_map.insert(make_pair(key, egress_qos_type));
bcmos_fastlock_unlock(&data_lock, 0);
qos_string = get_qos_type_as_string(egress_qos_type);
OPENOLT_LOG(INFO, openolt_log_id, "Qos-type for subscriber connected to pon_intf_id %d, onu_id %d and uni_id %d is %s\n", \
pon_intf_id, onu_id, uni_id, qos_string.c_str());
}
return egress_qos_type;
}
/**
* Clears qos type for given pon_intf_id, onu_id, uni_id
*
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
*/
void clear_qos_type(uint32_t pon_intf_id, uint32_t onu_id, uint32_t uni_id) {
qos_type_map_key_tuple key(pon_intf_id, onu_id, uni_id);
std::map<qos_type_map_key_tuple, bcmolt_egress_qos_type>::const_iterator it = qos_type_map.find(key);
bcmos_fastlock_lock(&data_lock);
if (it != qos_type_map.end()) {
qos_type_map.erase(it);
OPENOLT_LOG(INFO, openolt_log_id, "Cleared Qos-type for subscriber connected to pon_intf_id %d, onu_id %d and uni_id %d\n", \
pon_intf_id, onu_id, uni_id);
}
bcmos_fastlock_unlock(&data_lock, 0);
}
/**
* Returns Scheduler/Queue direction as string
*
* @param direction as specified in tech_profile.proto
*/
std::string GetDirection(int direction) {
switch (direction)
{
case tech_profile::Direction::UPSTREAM: return upstream;
case tech_profile::Direction::DOWNSTREAM: return downstream;
default: OPENOLT_LOG(ERROR, openolt_log_id, "direction-not-supported %d\n", direction);
return "direction-not-supported";
}
}
// This method handles waiting for AllocObject configuration.
// Returns error if the AllocObject is not in the appropriate state based on action requested.
bcmos_errno wait_for_alloc_action(uint32_t intf_id, uint32_t alloc_id, AllocCfgAction action) {
Queue<alloc_cfg_complete_result> cfg_result;
alloc_cfg_compltd_key k(intf_id, alloc_id);
alloc_cfg_compltd_map[k] = &cfg_result;
bcmos_errno err = BCM_ERR_OK;
// Try to pop the result from BAL with a timeout of ALLOC_CFG_COMPLETE_WAIT_TIMEOUT ms
std::pair<alloc_cfg_complete_result, bool> result = cfg_result.pop(ALLOC_CFG_COMPLETE_WAIT_TIMEOUT);
if (result.second == false) {
OPENOLT_LOG(ERROR, openolt_log_id, "timeout waiting for alloc cfg complete indication intf_id %d, alloc_id %d\n",
intf_id, alloc_id);
// Invalidate the queue pointer.
bcmos_fastlock_lock(&alloc_cfg_wait_lock);
alloc_cfg_compltd_map[k] = NULL;
bcmos_fastlock_unlock(&alloc_cfg_wait_lock, 0);
err = BCM_ERR_INTERNAL;
}
else if (result.first.status == ALLOC_CFG_STATUS_FAIL) {
OPENOLT_LOG(ERROR, openolt_log_id, "error processing alloc cfg request intf_id %d, alloc_id %d\n",
intf_id, alloc_id);
err = BCM_ERR_INTERNAL;
}
if (err == BCM_ERR_OK) {
if (action == ALLOC_OBJECT_CREATE) {
if (result.first.state != ALLOC_OBJECT_STATE_ACTIVE) {
OPENOLT_LOG(ERROR, openolt_log_id, "alloc object not in active state intf_id %d, alloc_id %d alloc_obj_state %d\n",
intf_id, alloc_id, result.first.state);
err = BCM_ERR_INTERNAL;
} else {
OPENOLT_LOG(INFO, openolt_log_id, "Create upstream bandwidth allocation success, intf_id %d, alloc_id %d\n",
intf_id, alloc_id);
}
} else { // ALLOC_OBJECT_DELETE
if (result.first.state != ALLOC_OBJECT_STATE_NOT_CONFIGURED) {
OPENOLT_LOG(ERROR, openolt_log_id, "alloc object is not reset intf_id %d, alloc_id %d alloc_obj_state %d\n",
intf_id, alloc_id, result.first.state);
err = BCM_ERR_INTERNAL;
} else {
OPENOLT_LOG(INFO, openolt_log_id, "Remove alloc object success, intf_id %d, alloc_id %d\n",
intf_id, alloc_id);
}
}
}
// Remove entry from map
bcmos_fastlock_lock(&alloc_cfg_wait_lock);
alloc_cfg_compltd_map.erase(k);
bcmos_fastlock_unlock(&alloc_cfg_wait_lock, 0);
return err;
}
// This method handles waiting for OnuDeactivate Completed Indication
bcmos_errno wait_for_onu_deactivate_complete(uint32_t intf_id, uint32_t onu_id) {
Queue<onu_deactivate_complete_result> deact_result;
onu_deact_compltd_key k(intf_id, onu_id);
onu_deact_compltd_map[k] = &deact_result;
bcmos_errno err = BCM_ERR_OK;
// Try to pop the result from BAL with a timeout of ONU_DEACTIVATE_COMPLETE_WAIT_TIMEOUT ms
std::pair<onu_deactivate_complete_result, bool> result = deact_result.pop(ONU_DEACTIVATE_COMPLETE_WAIT_TIMEOUT);
if (result.second == false) {
OPENOLT_LOG(ERROR, openolt_log_id, "timeout waiting for onu deactivate complete indication intf_id %d, onu_id %d\n",
intf_id, onu_id);
// Invalidate the queue pointer.
bcmos_fastlock_lock(&onu_deactivate_wait_lock);
onu_deact_compltd_map[k] = NULL;
bcmos_fastlock_unlock(&onu_deactivate_wait_lock, 0);
err = BCM_ERR_INTERNAL;
}
else if (result.first.result == BCMOLT_RESULT_FAIL) {
OPENOLT_LOG(ERROR, openolt_log_id, "error processing onu deactivate request intf_id %d, onu_id %d, fail_reason %d\n",
intf_id, onu_id, result.first.reason);
err = BCM_ERR_INTERNAL;
} else if (result.first.result == BCMOLT_RESULT_SUCCESS) {
OPENOLT_LOG(INFO, openolt_log_id, "success processing onu deactivate request intf_id %d, onu_id %d\n",
intf_id, onu_id);
}
// Remove entry from map
bcmos_fastlock_lock(&onu_deactivate_wait_lock);
onu_deact_compltd_map.erase(k);
bcmos_fastlock_unlock(&onu_deactivate_wait_lock, 0);
return err;
}
char* openolt_read_sysinfo(const char* field_name, char* field_val)
{
FILE *fp;
/* Prepare the command*/
char command[150];
snprintf(command, sizeof command, "bash -l -c \"onlpdump -s\" | perl -ne 'print $1 if /%s: (\\S+)/'", field_name);
/* Open the command for reading. */
fp = popen(command, "r");
if (fp == NULL) {
/*The client has to check for a Null field value in this case*/
OPENOLT_LOG(INFO, openolt_log_id, "Failed to query the %s\n", field_name);
return field_val;
}
/*Read the field value*/
if (fp) {
uint8_t ret;
ret = fread(field_val, OPENOLT_FIELD_LEN, 1, fp);
if (ret >= OPENOLT_FIELD_LEN)
OPENOLT_LOG(INFO, openolt_log_id, "Read data length %u\n", ret);
pclose(fp);
}
return field_val;
}
Status pushOltOperInd(uint32_t intf_id, const char *type, const char *state)
{
::openolt::Indication ind;
::openolt::IntfOperIndication* intf_oper_ind = new ::openolt::IntfOperIndication;
intf_oper_ind->set_type(type);
intf_oper_ind->set_intf_id(intf_id);
intf_oper_ind->set_oper_state(state);
ind.set_allocated_intf_oper_ind(intf_oper_ind);
oltIndQ.push(ind);
return Status::OK;
}
#define CLI_HOST_PROMPT_FORMAT "BCM.%u> "
/* Build CLI prompt */
void openolt_cli_get_prompt_cb(bcmcli_session *session, char *buf, uint32_t max_len)
{
snprintf(buf, max_len, CLI_HOST_PROMPT_FORMAT, dev_id);
}
int _bal_apiend_cli_thread_handler(long data)
{
char init_string[]="\n";
bcmcli_session *sess = current_session;
bcmos_task_parm bal_cli_task_p_dummy;
/* Switch to interactive mode if not stopped in the init script */
if (!bcmcli_is_stopped(sess)) {
/* Force a CLI command prompt
* The string passed into the parse function
* must be modifiable, so a string constant like
* bcmcli_parse(current_session, "\n") will not
* work.
*/
bcmcli_parse(sess, init_string);
/* Process user input until EOF or quit command */
bcmcli_driver(sess);
}
OPENOLT_LOG(INFO, openolt_log_id, "BAL API End CLI terminated\n");
/* Cleanup */
bcmcli_session_close(current_session);
bcmcli_token_destroy(NULL);
return 0;
}
/* Init API CLI commands for the current device */
bcmos_errno bcm_openolt_api_cli_init(bcmcli_entry *parent_dir, bcmcli_session *session)
{
bcmos_errno rc;
api_parent_dir = parent_dir;
rc = bcm_api_cli_set_commands(session);
#ifdef BCM_SUBSYSTEM_HOST
/* Subscribe for device change indication */
rc = rc ? rc : bcmolt_olt_sel_ind_register(_api_cli_olt_change_ind);
#endif
return rc;
}
bcmos_errno bcm_cli_quit(bcmcli_session *session, const bcmcli_cmd_parm parm[], uint16_t n_parms)
{
bcmcli_stop(session);
bcmcli_session_print(session, "CLI terminated by 'Quit' command\n");
status_bcm_cli_quit = BCMOS_TRUE;
return BCM_ERR_OK;
}
int get_status_bcm_cli_quit(void) {
return status_bcm_cli_quit;
}
bcmos_errno bcmolt_apiend_cli_init() {
bcmos_errno ret;
bcmos_task_parm bal_cli_task_p = {};
bcmos_task_parm bal_cli_task_p_dummy;
/** before creating the task, check if it is already created by the other half of BAL i.e. Core side */
if (BCM_ERR_OK != bcmos_task_query(&bal_cli_thread, &bal_cli_task_p_dummy)) {
/* Create BAL CLI thread */
bal_cli_task_p.name = bal_cli_thread_name;
bal_cli_task_p.handler = _bal_apiend_cli_thread_handler;
bal_cli_task_p.priority = TASK_PRIORITY_CLI;
ret = bcmos_task_create(&bal_cli_thread, &bal_cli_task_p);
if (BCM_ERR_OK != ret) {
bcmos_printf("Couldn't create BAL API end CLI thread\n");
return ret;
}
}
}
bcmos_errno get_onu_status(bcmolt_interface pon_ni, int onu_id, bcmolt_onu_state *onu_state) {
bcmos_errno err;
bcmolt_onu_cfg onu_cfg;
bcmolt_onu_key onu_key;
onu_key.pon_ni = pon_ni;
onu_key.onu_id = onu_id;
BCMOLT_CFG_INIT(&onu_cfg, onu, onu_key);
BCMOLT_FIELD_SET_PRESENT(&onu_cfg.data, onu_cfg_data, onu_state);
BCMOLT_FIELD_SET_PRESENT(&onu_cfg.data, onu_cfg_data, itu);
#ifdef TEST_MODE
// It is impossible to mock the setting of onu_cfg.data.onu_state because
// the actual bcmolt_cfg_get passes the address of onu_cfg.hdr and we cannot
// set the onu_cfg.data.onu_state. So a new stub function is created and address
// of onu_cfg is passed. This is one-of case where we need to add test specific
// code in production code.
err = bcmolt_cfg_get__onu_state_stub(dev_id, &onu_cfg);
#else
err = bcmolt_cfg_get(dev_id, &onu_cfg.hdr);
#endif
*onu_state = onu_cfg.data.onu_state;
return err;
}
bcmos_errno get_pon_interface_status(bcmolt_interface pon_ni, bcmolt_interface_state *state, bcmolt_status *los_status) {
bcmos_errno err;
bcmolt_pon_interface_key pon_key;
bcmolt_pon_interface_cfg pon_cfg;
pon_key.pon_ni = pon_ni;
BCMOLT_CFG_INIT(&pon_cfg, pon_interface, pon_key);
BCMOLT_FIELD_SET_PRESENT(&pon_cfg.data, pon_interface_cfg_data, state);
BCMOLT_FIELD_SET_PRESENT(&pon_cfg.data, pon_interface_cfg_data, los_status);
BCMOLT_FIELD_SET_PRESENT(&pon_cfg.data, pon_interface_cfg_data, itu);
#ifdef TEST_MODE
// It is impossible to mock the setting of pon_cfg.data.state because
// the actual bcmolt_cfg_get passes the address of pon_cfg.hdr and we cannot
// set the pon_cfg.data.state. So a new stub function is created and address
// of pon_cfg is passed. This is one-of case where we need to add test specific
// code in production code.
err = bcmolt_cfg_get__pon_intf_stub(dev_id, &pon_cfg);
#else
err = bcmolt_cfg_get(dev_id, &pon_cfg.hdr);
#endif
*state = pon_cfg.data.state;
*los_status = pon_cfg.data.los_status;
return err;
}
/* Same as bcmolt_cfg_get but with added logic of retrying the API
in case of some specific failures like timeout or object not yet ready
*/
bcmos_errno bcmolt_cfg_get_mult_retry(bcmolt_oltid olt, bcmolt_cfg *cfg) {
bcmos_errno err;
uint32_t current_try = 0;
while (current_try < MAX_BAL_API_RETRY_COUNT) {
err = bcmolt_cfg_get(olt, cfg);
current_try++;
if (err == BCM_ERR_STATE || err == BCM_ERR_TIMEOUT) {
OPENOLT_LOG(WARNING, openolt_log_id, "bcmolt_cfg_get: err = %s\n", bcmos_strerror(err));
bcmos_usleep(BAL_API_RETRY_TIME_IN_USECS);
continue;
}
else {
break;
}
}
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "bcmolt_cfg_get tried (%d) times with retry time(%d usecs) err = %s\n",
current_try,
BAL_API_RETRY_TIME_IN_USECS,
bcmos_strerror(err));
}
return err;
}
unsigned NumNniIf_() {return num_of_nni_ports;}
unsigned NumPonIf_() {return num_of_pon_ports;}
bcmos_errno get_nni_interface_status(bcmolt_interface id, bcmolt_interface_state *state) {
bcmos_errno err;
bcmolt_nni_interface_key nni_key;
bcmolt_nni_interface_cfg nni_cfg;
nni_key.id = id;
BCMOLT_CFG_INIT(&nni_cfg, nni_interface, nni_key);
BCMOLT_FIELD_SET_PRESENT(&nni_cfg.data, nni_interface_cfg_data, state);
#ifdef TEST_MODE
// It is impossible to mock the setting of nni_cfg.data.state because
// the actual bcmolt_cfg_get passes the address of nni_cfg.hdr and we cannot
// set the nni_cfg.data.state. So a new stub function is created and address
// of nni_cfg is passed. This is one-of case where we need to add test specific
// code in production code.
err = bcmolt_cfg_get__nni_intf_stub(dev_id, &nni_cfg);
#else
err = bcmolt_cfg_get(dev_id, &nni_cfg.hdr);
#endif
*state = nni_cfg.data.state;
return err;
}
Status install_gem_port(int32_t intf_id, int32_t onu_id, int32_t gemport_id) {
bcmos_errno err;
bcmolt_itupon_gem_cfg cfg; /* declare main API struct */
bcmolt_itupon_gem_key key = {}; /* declare key */
bcmolt_gem_port_configuration configuration = {};
key.pon_ni = intf_id;
key.gem_port_id = gemport_id;
BCMOLT_CFG_INIT(&cfg, itupon_gem, key);
bcmolt_gem_port_direction configuration_direction;
configuration_direction = BCMOLT_GEM_PORT_DIRECTION_BIDIRECTIONAL;
BCMOLT_FIELD_SET(&configuration, gem_port_configuration, direction, configuration_direction);
bcmolt_gem_port_type configuration_type;
configuration_type = BCMOLT_GEM_PORT_TYPE_UNICAST;
BCMOLT_FIELD_SET(&configuration, gem_port_configuration, type, configuration_type);
BCMOLT_FIELD_SET(&cfg.data, itupon_gem_cfg_data, configuration, configuration);
BCMOLT_FIELD_SET(&cfg.data, itupon_gem_cfg_data, onu_id, onu_id);
bcmolt_control_state encryption_mode;
encryption_mode = BCMOLT_CONTROL_STATE_DISABLE;
BCMOLT_FIELD_SET(&cfg.data, itupon_gem_cfg_data, encryption_mode, encryption_mode);
bcmolt_us_gem_port_destination upstream_destination_queue;
upstream_destination_queue = BCMOLT_US_GEM_PORT_DESTINATION_DATA;
BCMOLT_FIELD_SET(&cfg.data, itupon_gem_cfg_data, upstream_destination_queue, upstream_destination_queue);
bcmolt_control_state control;
control = BCMOLT_CONTROL_STATE_ENABLE;
BCMOLT_FIELD_SET(&cfg.data, itupon_gem_cfg_data, control, control);
err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if(err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "failed to install gem_port = %d err_text=%s\n", gemport_id, cfg.hdr.hdr.err_text);
return bcm_to_grpc_err(err, "Access_Control set ITU PON Gem port failed");
}
OPENOLT_LOG(INFO, openolt_log_id, "gem port installed successfully = %d\n", gemport_id);
return Status::OK;
}
Status remove_gem_port(int32_t intf_id, int32_t gemport_id) {
bcmolt_itupon_gem_cfg gem_cfg;
bcmolt_itupon_gem_key key = {
.pon_ni = (bcmolt_interface)intf_id,
.gem_port_id = (bcmolt_gem_port_id)gemport_id
};
bcmos_errno err;
BCMOLT_CFG_INIT(&gem_cfg, itupon_gem, key);
err = bcmolt_cfg_clear(dev_id, &gem_cfg.hdr);
if (err != BCM_ERR_OK)
{
OPENOLT_LOG(ERROR, openolt_log_id, "failed to remove gem_port = %d err=%s\n", gemport_id, gem_cfg.hdr.hdr.err_text);
return bcm_to_grpc_err(err, "Access_Control clear ITU PON Gem port failed");
}
OPENOLT_LOG(INFO, openolt_log_id, "gem port removed successfully = %d\n", gemport_id);
return Status::OK;
}
Status update_acl_interface(int32_t intf_id, bcmolt_interface_type intf_type, uint32_t access_control_id,
bcmolt_members_update_command acl_cmd) {
bcmos_errno err;
bcmolt_access_control_interfaces_update oper; /* declare main API struct */
bcmolt_access_control_key acl_key = {}; /* declare key */
bcmolt_intf_ref interface_ref_list_elem = {};
bcmolt_interface_type interface_ref_list_elem_intf_type;
bcmolt_interface_id interface_ref_list_elem_intf_id;
bcmolt_intf_ref_list_u8 interface_ref_list = {};
if (acl_cmd != BCMOLT_MEMBERS_UPDATE_COMMAND_ADD && acl_cmd != BCMOLT_MEMBERS_UPDATE_COMMAND_REMOVE) {
OPENOLT_LOG(ERROR, openolt_log_id, "acl cmd = %d not supported currently\n", acl_cmd);
return bcm_to_grpc_err(BCM_ERR_PARM, "unsupported acl cmd");
}
interface_ref_list.arr = (bcmolt_intf_ref*)bcmos_calloc(sizeof(bcmolt_intf_ref)*1);
if (interface_ref_list.arr == NULL)
return bcm_to_grpc_err(BCM_ERR_PARM, "allocate interface_ref_list failed");
OPENOLT_LOG(INFO, openolt_log_id, "update acl interface received for intf_id = %d, intf_type = %s, acl_id = %d, acl_cmd = %s\n",
intf_id, intf_type == BCMOLT_INTERFACE_TYPE_PON? "pon": "nni", access_control_id,
acl_cmd == BCMOLT_MEMBERS_UPDATE_COMMAND_ADD? "add": "remove");
acl_key.id = access_control_id;
/* Initialize the API struct. */
BCMOLT_OPER_INIT(&oper, access_control, interfaces_update, acl_key);
bcmolt_members_update_command command;
command = acl_cmd;
BCMOLT_FIELD_SET(&oper.data, access_control_interfaces_update_data, command, command);
interface_ref_list_elem_intf_type = intf_type;
BCMOLT_FIELD_SET(&interface_ref_list_elem, intf_ref, intf_type, interface_ref_list_elem_intf_type);
interface_ref_list_elem_intf_id = intf_id;
BCMOLT_FIELD_SET(&interface_ref_list_elem, intf_ref, intf_id, interface_ref_list_elem_intf_id);
interface_ref_list.len = 1;
BCMOLT_ARRAY_ELEM_SET(&interface_ref_list, 0, interface_ref_list_elem);
BCMOLT_FIELD_SET(&oper.data, access_control_interfaces_update_data, interface_ref_list, interface_ref_list);
err = bcmolt_oper_submit(dev_id, &oper.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "update acl interface fail for intf_id = %d, intf_type = %s, acl_id = %d, acl_cmd = %s\n",
intf_id, intf_type == BCMOLT_INTERFACE_TYPE_PON? "pon": "nni", access_control_id,
acl_cmd == BCMOLT_MEMBERS_UPDATE_COMMAND_ADD? "add": "remove");
return bcm_to_grpc_err(err, "Access_Control submit interface failed");
}
bcmos_free(interface_ref_list.arr);
OPENOLT_LOG(INFO, openolt_log_id, "update acl interface success for intf_id = %d, intf_type = %s, acl_id = %d, acl_cmd = %s\n",
intf_id, intf_type == BCMOLT_INTERFACE_TYPE_PON? "pon": "nni", access_control_id,
acl_cmd == BCMOLT_MEMBERS_UPDATE_COMMAND_ADD? "add": "remove");
return Status::OK;
}
Status install_acl(const acl_classifier_key acl_key) {
bcmos_errno err;
bcmolt_access_control_cfg cfg;
bcmolt_access_control_key key = { };
bcmolt_classifier c_val = { };
// hardcode the action for now.
bcmolt_access_control_fwd_action_type action_type = BCMOLT_ACCESS_CONTROL_FWD_ACTION_TYPE_TRAP_TO_HOST;
int acl_id = get_acl_id();
if (acl_id < 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "exhausted acl_id for eth_type = %d, ip_proto = %d, src_port = %d, dst_port = %d o_vid = %d, max_acl_hit=%d\n",
acl_key.ether_type, acl_key.ip_proto, acl_key.src_port, acl_key.dst_port, acl_key.o_vid, max_acls_with_vlan_classifiers_hit);
return bcm_to_grpc_err(BCM_ERR_INTERNAL, "exhausted acl id");
}
key.id = acl_id;
/* config access control instance */
BCMOLT_CFG_INIT(&cfg, access_control, key);
if (acl_key.ether_type > 0) {
OPENOLT_LOG(DEBUG, openolt_log_id, "Access_Control classify ether_type 0x%04x\n", acl_key.ether_type);
BCMOLT_FIELD_SET(&c_val, classifier, ether_type, acl_key.ether_type);
}
if (acl_key.ip_proto > 0) {
OPENOLT_LOG(DEBUG, openolt_log_id, "Access_Control classify ip_proto %d\n", acl_key.ip_proto);
BCMOLT_FIELD_SET(&c_val, classifier, ip_proto, acl_key.ip_proto);
}
if (acl_key.dst_port > 0) {
OPENOLT_LOG(DEBUG, openolt_log_id, "Access_Control classify dst_port %d\n", acl_key.dst_port);
BCMOLT_FIELD_SET(&c_val, classifier, dst_port, acl_key.dst_port);
}
if (acl_key.src_port > 0) {
OPENOLT_LOG(DEBUG, openolt_log_id, "Access_Control classify src_port %d\n", acl_key.src_port);
BCMOLT_FIELD_SET(&c_val, classifier, src_port, acl_key.src_port);
}
// Make sure that max_acls_with_vlan_classifiers_hit is not true to consider o_vid for ACL classification.
if (acl_key.o_vid > 0 && acl_key.o_vid != ANY_VLAN && !max_acls_with_vlan_classifiers_hit) {
OPENOLT_LOG(DEBUG, openolt_log_id, "Access_Control classify o_vid %d\n", acl_key.o_vid);
BCMOLT_FIELD_SET(&c_val, classifier, o_vid, acl_key.o_vid);
}
BCMOLT_MSG_FIELD_SET(&cfg, classifier, c_val);
BCMOLT_MSG_FIELD_SET(&cfg, priority, 10000);
BCMOLT_MSG_FIELD_SET(&cfg, statistics_control, BCMOLT_CONTROL_STATE_ENABLE);
BCMOLT_MSG_FIELD_SET(&cfg, forwarding_action.action, action_type);
err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Access_Control set configuration failed, Error %d\n", err);
// Free the acl_id
free_acl_id(acl_id);
return bcm_to_grpc_err(err, "Access_Control set configuration failed");
}
ACL_LOG(INFO, "ACL add ok", err);
// Update the map that we have installed an acl for the given classfier.
acl_classifier_to_acl_id_map[acl_key] = acl_id;
// If there was a valid vlan classifier in the ACL and the ACL ID hit the ceiling, set max_acls_with_vlan_classifiers_hit to true
// After max_acls_with_vlan_classifiers_hit is set to true no more ACLs can have vlan as an ACL classifier.
if (acl_key.o_vid > 0 && acl_key.o_vid != ANY_VLAN && acl_id >= MAX_ACL_WITH_VLAN_CLASSIFIER) {
max_acls_with_vlan_classifiers_hit = true;
}
return Status::OK;
}
Status remove_acl(int acl_id) {
bcmos_errno err;
bcmolt_access_control_cfg cfg; /* declare main API struct */
bcmolt_access_control_key key = {}; /* declare key */
key.id = acl_id;
/* Initialize the API struct. */
BCMOLT_CFG_INIT(&cfg, access_control, key);
BCMOLT_FIELD_SET_PRESENT(&cfg.data, access_control_cfg_data, state);
err = bcmolt_cfg_get(dev_id, &cfg.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Access_Control get state failed\n");
return bcm_to_grpc_err(err, "Access_Control get state failed");
}
if (cfg.data.state == BCMOLT_CONFIG_STATE_CONFIGURED) {
key.id = acl_id;
/* Initialize the API struct. */
BCMOLT_CFG_INIT(&cfg, access_control, key);
err = bcmolt_cfg_clear(dev_id, &cfg.hdr);
if (err != BCM_ERR_OK) {
// Should we free acl_id here ? We should ideally never land here..
OPENOLT_LOG(ERROR, openolt_log_id, "Error %d while removing Access_Control rule ID %d\n",
err, acl_id);
return Status(grpc::StatusCode::INTERNAL, "Failed to remove Access_Control");
}
}
// Free up acl_id
free_acl_id(acl_id);
OPENOLT_LOG(INFO, openolt_log_id, "acl removed successfully %d\n", acl_id);
return Status::OK;
}
// Formulates ACL Classifier Key based on the following fields
// a. ether_type b. ip_proto c. src_port d. dst_port
// If any of the field is not available it is populated as -1.
void formulate_acl_classifier_key(acl_classifier_key *key, const ::openolt::Classifier& classifier) {
// TODO: Is 0 a valid value for any of the following classifiers?
// because in the that case, the 'if' check would fail and -1 would be filled as value.
//
if (classifier.eth_type()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify ether_type 0x%04x\n", classifier.eth_type());
key->ether_type = classifier.eth_type();
} else key->ether_type = -1;
if (classifier.ip_proto()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify ip_proto %d\n", classifier.ip_proto());
key->ip_proto = classifier.ip_proto();
} else key->ip_proto = -1;
if (classifier.src_port()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify src_port %d\n", classifier.src_port());
key->src_port = classifier.src_port();
} else key->src_port = -1;
if (classifier.dst_port()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify dst_port %d\n", classifier.dst_port());
key->dst_port = classifier.dst_port();
} else key->dst_port = -1;
// We should also check the max_acls_with_vlan_classifiers_hit flag is not false to consider the vlan for flow classifier key
if (classifier.o_vid() && !max_acls_with_vlan_classifiers_hit) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_vid %d\n", classifier.o_vid());
key->o_vid = classifier.o_vid();
} else key->o_vid = ANY_VLAN;
}
Status handle_acl_rule_install(int32_t onu_id, uint64_t flow_id, int32_t gemport_id,
const std::string flow_type, int32_t access_intf_id,
int32_t network_intf_id,
const ::openolt::Classifier& classifier) {
int acl_id;
uint32_t intf_id = flow_type.compare(upstream) == 0? access_intf_id: network_intf_id;
const std::string intf_type = flow_type.compare(upstream) == 0? "pon": "nni";
bcmolt_interface_type olt_if_type = intf_type == "pon"? BCMOLT_INTERFACE_TYPE_PON: BCMOLT_INTERFACE_TYPE_NNI;
Status resp;
trap_to_host_packet_type pkt_type = get_trap_to_host_packet_type(classifier);
if (pkt_type == unsupported_trap_to_host_pkt_type) {
OPENOLT_LOG(ERROR, openolt_log_id, "unsupported pkt trap type");
return Status(grpc::StatusCode::UNIMPLEMENTED, "unsupported pkt trap type");
}
// few map keys we are going to use later.
flow_id_flow_direction fl_id_fl_dir(flow_id, flow_type);
acl_classifier_key acl_key;
formulate_acl_classifier_key(&acl_key, classifier);
const acl_classifier_key acl_key_const = {.ether_type=acl_key.ether_type, .ip_proto=acl_key.ip_proto,
.src_port=acl_key.src_port, .dst_port=acl_key.dst_port, .o_vid=acl_key.o_vid};
bcmos_fastlock_lock(&acl_packet_trap_handler_lock);
// Check if the acl is already installed
if (acl_classifier_to_acl_id_map.count(acl_key_const) > 0) {
// retreive the acl_id
acl_id = acl_classifier_to_acl_id_map[acl_key_const];
if (flow_to_acl_map.count(fl_id_fl_dir)) {
// could happen if same trap flow is received again
OPENOLT_LOG(INFO, openolt_log_id, "flow and related acl already handled, nothing more to do\n");
bcmos_fastlock_unlock(&acl_packet_trap_handler_lock, 0);
return Status::OK;
}
OPENOLT_LOG(INFO, openolt_log_id, "Acl for flow_id=%lu with eth_type = %d, ip_proto = %d, src_port = %d, dst_port = %d o_vid = %d already installed with acl id = %u\n",
flow_id, acl_key.ether_type, acl_key.ip_proto, acl_key.src_port, acl_key.dst_port, acl_key.o_vid, acl_id);
// The acl_ref_cnt is needed to know how many flows refer an ACL.
// When the flow is removed, we decrement the reference count.
// When the reference count becomes 0, we remove the ACL.
if (acl_ref_cnt.count(acl_id) > 0) {
acl_ref_cnt[acl_id] ++;
} else {
// We should ideally not land here. The acl_ref_cnt should have been
// initialized the first time acl was installed.
acl_ref_cnt[acl_id] = 1;
}
} else {
resp = install_acl(acl_key_const);
if (!resp.ok()) {
OPENOLT_LOG(ERROR, openolt_log_id, "Acl for flow_id=%lu with eth_type = %d, ip_proto = %d, src_port = %d, dst_port = %d o_vid = %d failed\n",
flow_id, acl_key_const.ether_type, acl_key_const.ip_proto, acl_key_const.src_port, acl_key_const.dst_port, acl_key_const.o_vid);
bcmos_fastlock_unlock(&acl_packet_trap_handler_lock, 0);
return resp;
}
acl_id = acl_classifier_to_acl_id_map[acl_key_const];
// Initialize the acl reference count
acl_ref_cnt[acl_id] = 1;
OPENOLT_LOG(INFO, openolt_log_id, "acl add success for flow_id=%lu with acl_id=%d\n", flow_id, acl_id);
}
// Register the interface for the given acl
acl_id_intf_id_intf_type ac_id_inf_id_inf_type(acl_id, intf_id, intf_type);
// This is needed to keep a track of which interface (pon/nni) has registered for an ACL.
// If it is registered, how many flows refer to it.
if (intf_acl_registration_ref_cnt.count(ac_id_inf_id_inf_type) > 0) {
intf_acl_registration_ref_cnt[ac_id_inf_id_inf_type]++;
} else {
// The given interface is not registered for the ACL. We need to do it now.
resp = update_acl_interface(intf_id, olt_if_type, acl_id, BCMOLT_MEMBERS_UPDATE_COMMAND_ADD);
if (!resp.ok()){
OPENOLT_LOG(ERROR, openolt_log_id, "failed to update acl interfaces intf_id=%d, intf_type=%s, acl_id=%d", intf_id, intf_type.c_str(), acl_id);
// TODO: Ideally we should return error from hear and clean up other other stateful
// counters we creaed earlier. Will leave it out for now.
}
intf_acl_registration_ref_cnt[ac_id_inf_id_inf_type] = 1;
}
acl_id_intf_id ac_id_if_id(acl_id, intf_id);
flow_to_acl_map[fl_id_fl_dir] = ac_id_if_id;
// Populate the trap_to_host_pkt_info_with_vlan corresponding to the trap-to-host voltha flow_id key.
// When the trap-to-host voltha flow-id is being removed, this entry is cleared too from the map.
trap_to_host_pkt_info_with_vlan pkt_info_with_vlan((int32_t)olt_if_type, intf_id, (int32_t)pkt_type, gemport_id, (short unsigned int)classifier.o_vid());
trap_to_host_pkt_info_with_vlan_for_flow_id[flow_id] = pkt_info_with_vlan;
trap_to_host_pkt_info pkt_info((int32_t)olt_if_type, intf_id, (int32_t)pkt_type, gemport_id);
bool duplicate = false;
// Check if the vlan_id corresponding to the trap_to_host_pkt_info key is found. Set the 'duplicate' flag accordingly.
if (trap_to_host_vlan_ids_for_trap_to_host_pkt_info.count(pkt_info) > 0) {
auto& vlan_id_list = trap_to_host_vlan_ids_for_trap_to_host_pkt_info[pkt_info];
auto it = std::find(vlan_id_list.begin(), vlan_id_list.end(), acl_key.o_vid);
if (it != vlan_id_list.end()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "cvid = %d exists already in list", acl_key.o_vid);
duplicate = true;
}
}
// If the vlan_id is not found corresponding to the trap_to_host_pkt_info key, update it.
// This will be used to validate the vlan_id in the trapped packet. If vlan_id in the
// trapped packet is not match with the stored value, packet is dropped.
if (!duplicate) {
trap_to_host_vlan_ids_for_trap_to_host_pkt_info[pkt_info].push_back(acl_key.o_vid);
}
bcmos_fastlock_unlock(&acl_packet_trap_handler_lock, 0);
return Status::OK;
}
Status handle_acl_rule_cleanup(int16_t acl_id, int32_t intf_id, const std::string flow_type) {
const std::string intf_type= flow_type.compare(upstream) == 0 ? "pon": "nni";
acl_id_intf_id_intf_type ac_id_inf_id_inf_type(acl_id, intf_id, intf_type);
intf_acl_registration_ref_cnt[ac_id_inf_id_inf_type]--;
if (intf_acl_registration_ref_cnt[ac_id_inf_id_inf_type] == 0) {
bcmolt_interface_type olt_if_type = intf_type == "pon"? BCMOLT_INTERFACE_TYPE_PON: BCMOLT_INTERFACE_TYPE_NNI;
Status resp = update_acl_interface(intf_id, olt_if_type, acl_id, BCMOLT_MEMBERS_UPDATE_COMMAND_REMOVE);
if (!resp.ok()){
OPENOLT_LOG(ERROR, openolt_log_id, "failed to update acl interfaces intf_id=%d, intf_type=%s, acl_id=%d", intf_id, intf_type.c_str(), acl_id);
}
intf_acl_registration_ref_cnt.erase(ac_id_inf_id_inf_type);
}
acl_ref_cnt[acl_id]--;
if (acl_ref_cnt[acl_id] == 0) {
remove_acl(acl_id);
acl_ref_cnt.erase(acl_id);
// Iterate acl_classifier_to_acl_id_map and delete classifier the key corresponding to acl_id
std::map<acl_classifier_key, uint16_t>::iterator it;
for (it=acl_classifier_to_acl_id_map.begin(); it!=acl_classifier_to_acl_id_map.end(); ++it) {
if (it->second == acl_id) {
OPENOLT_LOG(INFO, openolt_log_id, "cleared classifier key corresponding to acl_id = %d\n", acl_id);
acl_classifier_to_acl_id_map.erase(it->first);
break;
}
}
}
return Status::OK;
}
Status check_bal_ready() {
bcmos_errno err;
int maxTrials = 30;
bcmolt_olt_cfg olt_cfg = { };
bcmolt_olt_key olt_key = { };
BCMOLT_CFG_INIT(&olt_cfg, olt, olt_key);
BCMOLT_MSG_FIELD_GET(&olt_cfg, bal_state);
while (olt_cfg.data.bal_state != BCMOLT_BAL_STATE_BAL_AND_SWITCH_READY) {
if (--maxTrials == 0)
return grpc::Status(grpc::StatusCode::UNAVAILABLE, "check bal ready failed");
sleep(5);
#ifdef TEST_MODE
// It is impossible to mock the setting of olt_cfg.data.bal_state because
// the actual bcmolt_cfg_get passes the address of olt_cfg.hdr and we cannot
// set the olt_cfg.data.bal_state. So a new stub function is created and address
// of olt_cfg is passed. This is one-of case where we need to add test specific
// code in production code.
if (bcmolt_cfg_get__bal_state_stub(dev_id, &olt_cfg)) {
#else
if (bcmolt_cfg_get(dev_id, &olt_cfg.hdr)) {
#endif
continue;
}
else
OPENOLT_LOG(INFO, openolt_log_id, "waiting for BAL ready ...\n");
}
OPENOLT_LOG(INFO, openolt_log_id, "BAL is ready\n");
return Status::OK;
}
Status check_connection() {
int maxTrials = 60;
while (!bcmolt_api_conn_mgr_is_connected(dev_id)) {
sleep(1);
if (--maxTrials == 0)
return grpc::Status(grpc::StatusCode::UNAVAILABLE, "check connection failed");
else
OPENOLT_LOG(INFO, openolt_log_id, "waiting for daemon connection ...\n");
}
OPENOLT_LOG(INFO, openolt_log_id, "daemon is connected\n");
return Status::OK;
}
std::string get_ip_address(const char* nw_intf){
std::string ipAddress = "0.0.0.0";
struct ifaddrs *interfaces = NULL;
struct ifaddrs *temp_addr = NULL;
int success = 0;
/* retrieve the current interfaces - returns 0 on success */
success = getifaddrs(&interfaces);
if (success == 0) {
/* Loop through linked list of interfaces */
temp_addr = interfaces;
while(temp_addr != NULL) {
if(temp_addr->ifa_addr->sa_family == AF_INET) {
/* Check if interface given present in OLT, if yes return its IP Address */
if(strcmp(temp_addr->ifa_name, nw_intf) == 0){
ipAddress=inet_ntoa(((struct sockaddr_in*)temp_addr->ifa_addr)->sin_addr);
break;
}
}
temp_addr = temp_addr->ifa_next;
}
}
/* Free memory */
freeifaddrs(interfaces);
return ipAddress;
}
bcmos_errno getOnuMaxLogicalDistance(uint32_t intf_id, uint32_t *mld) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_pon_distance pon_distance = {};
bcmolt_pon_interface_cfg pon_cfg; /* declare main API struct */
bcmolt_pon_interface_key key = {}; /* declare key */
key.pon_ni = intf_id;
if (!state.is_activated()) {
OPENOLT_LOG(ERROR, openolt_log_id, "ONU maximum logical distance is not available since OLT is not activated yet\n");
return BCM_ERR_STATE;
}
/* Initialize the API struct. */
BCMOLT_CFG_INIT(&pon_cfg, pon_interface, key);
BCMOLT_FIELD_SET_PRESENT(&pon_distance, pon_distance, max_log_distance);
BCMOLT_FIELD_SET(&pon_cfg.data, pon_interface_cfg_data, pon_distance, pon_distance);
#ifdef TEST_MODE
// It is impossible to mock the setting of pon_cfg.data.state because
// the actual bcmolt_cfg_get passes the address of pon_cfg.hdr and we cannot
// set the pon_cfg.data.state. So a new stub function is created and address
// of pon_cfg is passed. This is one-of case where we need to add test specific
// code in production code.
err = bcmolt_cfg_get__pon_intf_stub(dev_id, &pon_cfg);
#else
err = bcmolt_cfg_get(dev_id, &pon_cfg.hdr);
#endif
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to retrieve ONU maximum logical distance for PON %d, err = %s (%d)\n", intf_id, bcmos_strerror(err), err);
return err;
}
*mld = pon_distance.max_log_distance;
return BCM_ERR_OK;
}
/**
* Gets mac address based on interface name.
*
* @param intf_name interface name
* @param mac_address mac address field
* @param max_size_of_mac_address max sixe of the mac_address
* @return mac_address value in case of success or return NULL in case of failure.
*/
char* get_intf_mac(const char* intf_name, char* mac_address, unsigned int max_size_of_mac_address){
int fd;
struct ifreq ifr;
char *mac;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if ( fd == -1) {
OPENOLT_LOG(ERROR, openolt_log_id, "failed to get mac, could not create file descriptor");
return NULL;
}
ifr.ifr_addr.sa_family = AF_INET;
strncpy((char *)ifr.ifr_name , (const char *)intf_name , IFNAMSIZ-1);
if( ioctl(fd, SIOCGIFHWADDR, &ifr) == -1)
{
OPENOLT_LOG(ERROR, openolt_log_id, "failed to get mac, ioctl failed and returned err");
close(fd);
return NULL;
}
close(fd);
mac = (char *)ifr.ifr_hwaddr.sa_data;
// formatted mac address
snprintf(mac_address, max_size_of_mac_address, (const char *)"%.2x:%.2x:%.2x:%.2x:%.2x:%.2x", (unsigned char)mac[0], (unsigned char)mac[1], (unsigned char)mac[2], (unsigned char)mac[3], (unsigned char)mac[4], (unsigned char)mac[5]);
return mac_address;
}
void update_voltha_flow_to_cache(uint64_t voltha_flow_id, device_flow dev_flow) {
OPENOLT_LOG(DEBUG, openolt_log_id, "updating voltha flow=%lu to cache\n", voltha_flow_id)
bcmos_fastlock_lock(&voltha_flow_to_device_flow_lock);
voltha_flow_to_device_flow[voltha_flow_id] = dev_flow;
bcmos_fastlock_unlock(&voltha_flow_to_device_flow_lock, 0);
}
void remove_voltha_flow_from_cache(uint64_t voltha_flow_id) {
bcmos_fastlock_lock(&voltha_flow_to_device_flow_lock);
std::map<uint64_t, device_flow>::const_iterator it = voltha_flow_to_device_flow.find(voltha_flow_id);
if (it != voltha_flow_to_device_flow.end()) {
voltha_flow_to_device_flow.erase(it);
}
bcmos_fastlock_unlock(&voltha_flow_to_device_flow_lock, 0);
}
bool is_voltha_flow_installed(uint64_t voltha_flow_id ) {
int count;
bcmos_fastlock_lock(&voltha_flow_to_device_flow_lock);
count = voltha_flow_to_device_flow.count(voltha_flow_id);
bcmos_fastlock_unlock(&voltha_flow_to_device_flow_lock, 0);
return count > 0 ? true : false;
}
const device_flow_params* get_device_flow_params(uint64_t voltha_flow_id) {
bcmos_fastlock_lock(&voltha_flow_to_device_flow_lock);
std::map<uint64_t, device_flow>::const_iterator it = voltha_flow_to_device_flow.find(voltha_flow_id);
if (it != voltha_flow_to_device_flow.end()) {
bcmos_fastlock_unlock(&voltha_flow_to_device_flow_lock, 0);
return it->second.params;
}
bcmos_fastlock_unlock(&voltha_flow_to_device_flow_lock, 0);
return NULL;
}
const device_flow* get_device_flow(uint64_t voltha_flow_id) {
bcmos_fastlock_lock(&voltha_flow_to_device_flow_lock);
std::map<uint64_t, device_flow>::const_iterator it = voltha_flow_to_device_flow.find(voltha_flow_id);
if (it != voltha_flow_to_device_flow.end()) {
bcmos_fastlock_unlock(&voltha_flow_to_device_flow_lock, 0);
return &it->second;
}
bcmos_fastlock_unlock(&voltha_flow_to_device_flow_lock, 0);
return NULL;
}
trap_to_host_packet_type get_trap_to_host_packet_type(const ::openolt::Classifier& classifier) {
trap_to_host_packet_type type = unsupported_trap_to_host_pkt_type;
if (classifier.eth_type() == EAP_ETH_TYPE) {
type = eap;
} else if (classifier.src_port() == DHCP_SERVER_SRC_PORT || classifier.src_port() == DHCP_CLIENT_SRC_PORT) {
type = dhcpv4;
} else if (classifier.eth_type() == LLDP_ETH_TYPE) {
type = lldp;
} else if (classifier.ip_proto() == IGMPv4_PROTOCOL) {
type = igmpv4;
}
return type;
}
// is_packet_allowed extracts the VLAN, packet-type, interface-type, interface-id from incoming trap-to-host packet.
// Then it verifies if this packet can be allowed upstream to host. It does this by checking if the vlan in the incoming packet
//exists in trap_to_host_vlan_ids_for_trap_to_host_pkt_info map for (interface-type, interface-id, packet-type) key.
bool is_packet_allowed(bcmolt_access_control_receive_eth_packet_data *data, int32_t gemport_id) {
bcmolt_interface_type intf_type = data->interface_ref.intf_type;
uint32_t intf_id = data->interface_ref.intf_id;
trap_to_host_packet_type pkt_type = unsupported_trap_to_host_pkt_type;
uint16_t vlan_id = 0;
int ethType;
struct timeval dummy_tv = {0, 0};
bool free_memory_of_raw_packet = false; // This indicates the pcap library to not free the message buffer. It will freed by the caller.
pcpp::RawPacket rawPacket(data->buffer.arr, data->buffer.len, dummy_tv, free_memory_of_raw_packet, pcpp::LINKTYPE_ETHERNET);
pcpp::Packet parsedPacket(&rawPacket);
pcpp::EthLayer* ethernetLayer = parsedPacket.getLayerOfType<pcpp::EthLayer>();
if (ethernetLayer == NULL)
{
OPENOLT_LOG(ERROR, openolt_log_id, "Something went wrong, couldn't find Ethernet layer\n");
return false;
}
// Getting Vlan layer
pcpp::VlanLayer* vlanLayer = parsedPacket.getLayerOfType<pcpp::VlanLayer>();
if (vlanLayer == NULL)
{
// Allow Untagged LLDP Ether type packet to trap from NNI
if (ntohs(ethernetLayer->getEthHeader()->etherType) == LLDP_ETH_TYPE && intf_type == BCMOLT_INTERFACE_TYPE_NNI) {
return true;
} else {
OPENOLT_LOG(WARNING, openolt_log_id, "untagged packets other than lldp packets are dropped. ethertype=%d, intftype=%d, intf_id=%d\n",
ntohs(ethernetLayer->getEthHeader()->etherType), intf_type, intf_id);
return false;
}
} else {
ethType = ntohs(vlanLayer->getVlanHeader()->etherType);
if (ethType == EAP_ETH_TYPE) { // single tagged packet with EAPoL payload
vlan_id = vlanLayer->getVlanID();
pkt_type = eap;
} else if (ethType == IPV4_ETH_TYPE) { // single tagged packet with IPv4 payload
vlan_id = vlanLayer->getVlanID();
vlanLayer->parseNextLayer();
pcpp::IPv4Layer *ipv4Layer = (pcpp::IPv4Layer*)vlanLayer->getNextLayer();
if(ipv4Layer->getIPv4Header()->protocol == UDP_PROTOCOL) { // UDP payload
// Check the UDP Ports to see if it is a DHCPv4 packet
ipv4Layer->parseNextLayer();
pcpp::UdpLayer *udpLayer = (pcpp::UdpLayer*)ipv4Layer->getNextLayer();
if (ntohs(udpLayer->getUdpHeader()->portSrc) == DHCP_SERVER_SRC_PORT|| ntohs(udpLayer->getUdpHeader()->portSrc) == DHCP_CLIENT_SRC_PORT) {
pkt_type = dhcpv4;
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "unsupported udp source port = %d\n", ntohs(udpLayer->getUdpHeader()->portSrc));
return false;
}
} else if (ipv4Layer->getIPv4Header()->protocol == IGMPv4_PROTOCOL) { // Igmpv4 payload
pkt_type = igmpv4;
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "unsupported ip protocol = %d\n", ipv4Layer->getIPv4Header()->protocol);
return false;
}
} else if (ethType == VLAN_ETH_TYPE) { // double tagged packet
// Trap-to-host from NNI flows do not specify the VLANs, so no vlan validation is necessary.
if (intf_type == BCMOLT_INTERFACE_TYPE_NNI) {
return true;
}
// Here we parse the inner vlan payload and currently support only IPv4 packets
// Extract the vlan_id for trap-to-host packets arriving from the PON
// trap-to-host ACLs from the NNI do not care about VLAN.
if (intf_type == BCMOLT_INTERFACE_TYPE_PON) {
vlan_id = vlanLayer->getVlanID(); // This is the outer vlan id
}
vlanLayer->parseNextLayer();
vlanLayer = (pcpp::VlanLayer*)vlanLayer->getNextLayer(); // Here we extract the inner vlan layer
ethType = ntohs(vlanLayer->getVlanHeader()->etherType);
if (ethType == IPV4_ETH_TYPE) { // IPv4
uint16_t _inner_vlan_id = vlanLayer->getVlanID();
vlanLayer->parseNextLayer();
pcpp::IPv4Layer *ipv4Layer = (pcpp::IPv4Layer*)vlanLayer->getNextLayer(); // here we extract the inner vlan IPv4 payload
if(ipv4Layer->getIPv4Header()->protocol == UDP_PROTOCOL) { // UDP payload
// Check the UDP Ports to see if it is a DHCPv4 packet
ipv4Layer->parseNextLayer();
pcpp::UdpLayer *udpLayer = (pcpp::UdpLayer*)ipv4Layer->getNextLayer();
if (ntohs(udpLayer->getUdpHeader()->portSrc) == DHCP_SERVER_SRC_PORT || ntohs(udpLayer->getUdpHeader()->portSrc) == DHCP_CLIENT_SRC_PORT) {
pkt_type = dhcpv4;
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "unsupported udp source port = %d\n", ntohs(udpLayer->getUdpHeader()->portSrc));
return false;
}
} else if (ipv4Layer->getIPv4Header()->protocol == IGMPv4_PROTOCOL) { // Igmpv4 payload
pkt_type = igmpv4;
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "unsupported ip protocol = %d\n", ipv4Layer->getIPv4Header()->protocol)
return false;
}
}
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "unsupported ether type = 0x%x\n", ntohs((vlanLayer->getVlanHeader()->etherType)));
return false;
}
}
#if 0 // Debug logs for test purpose only
std::cout << "vlan of received packet " << vlan_id << " intf_type " << intf_type << " intf_id " <<intf_id << " pkt_type " <<pkt_type << " gem_port_id" << gemport_id << "\n";
for(std::map<trap_to_host_pkt_info, std::list<uint16_t> >::const_iterator it = trap_to_host_vlan_ids_for_trap_to_host_pkt_info.begin();
it != trap_to_host_vlan_ids_for_trap_to_host_pkt_info.end(); ++it)
{
std::cout << "value entries" << " " << std::get<0>(it->first) << " "<< std::get<1>(it->first) << " "<< std::get<2>(it->first) << " "<< std::get<3>(it->first) << "\n\n";
std::cout << "vlans for the above key are => ";
for (std::list<uint16_t>::const_iterator _it=it->second.begin();
_it != it->second.end();
++_it) {
std::cout << *_it << " ";
}
std::cout << "\n\n";
}
#endif
trap_to_host_pkt_info pkt_info(intf_type, intf_id, pkt_type, gemport_id);
// Check for matching vlan only if the trap_to_host_pkt_info exists in the trap_to_host_vlan_ids_for_trap_to_host_pkt_info map
if (trap_to_host_vlan_ids_for_trap_to_host_pkt_info.count(pkt_info) > 0) {
// Iterate throught the vlan list to find matching vlan
auto& vlan_id_list = trap_to_host_vlan_ids_for_trap_to_host_pkt_info[pkt_info];
for (auto allowed_vlan_id : vlan_id_list) {
// Found exact matching vlan in the allowed list of vlans for the trap_to_host_pkt_info key or
// there is generic match ANY_VLAN in the list in the allowed vlan list.
if (allowed_vlan_id == vlan_id || allowed_vlan_id == ANY_VLAN) {
return true;
}
}
}
return false;
}