blob: 9f30bde9917dcaaefb154349d86283bf4a63f9c4 [file] [log] [blame]
/*
Copyright (C) 2018 Open Networking Foundation
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <memory>
#include <string>
#include "Queue.h"
#include <sstream>
#include <chrono>
#include <thread>
#include <bitset>
#include <inttypes.h>
#include "device.h"
#include "core.h"
#include "indications.h"
#include "stats_collection.h"
#include "error_format.h"
#include "state.h"
#include "utils.h"
extern "C"
{
#include <bcmolt_api.h>
#include <bcmolt_host_api.h>
#include <bcmolt_api_model_supporting_enums.h>
#include <bal_version.h>
#include <bcmolt_api_conn_mgr.h>
//CLI header files
#include <bcmcli_session.h>
#include <bcmcli.h>
#include <bcm_api_cli.h>
#include <bcmos_common.h>
#include <bcm_config.h>
// FIXME : dependency problem
// #include <bcm_common_gpon.h>
// #include <bcm_dev_log_task.h>
}
dev_log_id openolt_log_id = bcm_dev_log_id_register("OPENOLT", DEV_LOG_LEVEL_INFO, DEV_LOG_ID_TYPE_BOTH);
dev_log_id omci_log_id = bcm_dev_log_id_register("OMCI", DEV_LOG_LEVEL_INFO, DEV_LOG_ID_TYPE_BOTH);
#define BAL_RSC_MANAGER_BASE_TM_SCHED_ID 16384
#define MAX_TM_QUEUE_ID 8192
#define MAX_TM_QMP_ID 16
#define TMQ_MAP_PROFILE_SIZE 8
#define MAX_TM_SCHED_ID 1023
#define MAX_SUBS_TM_SCHED_ID (MAX_SUPPORTED_PON == 16 ? MAX_TM_SCHED_ID-4-16 : MAX_TM_SCHED_ID-10-64)
#define EAP_ETHER_TYPE 34958
#define XGS_BANDWIDTH_GRANULARITY 16000
#define GPON_BANDWIDTH_GRANULARITY 32000
#define FILL_ARRAY(ARRAY,START,END,VALUE) for(int i=START;i<END;ARRAY[i++]=VALUE);
#define COUNT_OF(array) (sizeof(array) / sizeof(array[0]))
#define GET_FLOW_INTERFACE_TYPE(type) \
(type == BCMOLT_FLOW_INTERFACE_TYPE_PON) ? "PON" : \
(type == BCMOLT_FLOW_INTERFACE_TYPE_NNI) ? "NNI" : \
(type == BCMOLT_FLOW_INTERFACE_TYPE_HOST) ? "HOST" : "unknown"
#define GET_PKT_TAG_TYPE(type) \
(type == BCMOLT_PKT_TAG_TYPE_UNTAGGED) ? "UNTAG" : \
(type == BCMOLT_PKT_TAG_TYPE_SINGLE_TAG) ? "SINGLE_TAG" : \
(type == BCMOLT_PKT_TAG_TYPE_DOUBLE_TAG) ? "DOUBLE_TAG" : "unknown"
static unsigned int num_of_nni_ports = 0;
static unsigned int num_of_pon_ports = 0;
static std::string intf_technologies[MAX_SUPPORTED_PON];
static const std::string UNKNOWN_TECH("unknown");
static const std::string MIXED_TECH("mixed");
static std::string board_technology(UNKNOWN_TECH);
static std::string chip_family(UNKNOWN_TECH);
static unsigned int OPENOLT_FIELD_LEN = 200;
static std::string firmware_version = "Openolt.2019.07.01";
const uint32_t tm_upstream_sched_id_start = (MAX_SUPPORTED_PON == 16 ? \
MAX_TM_SCHED_ID-3 : MAX_TM_SCHED_ID-9);
const uint32_t tm_downstream_sched_id_start = (MAX_SUPPORTED_PON == 16 ? \
tm_upstream_sched_id_start-16 : tm_upstream_sched_id_start-64);
/* Max Queue ID supported is 7 so based on priority_q configured for GEMPORTS
in TECH PROFILE respective Queue ID from this list will be used for both
US and DS Queues*/
const uint32_t queue_id_list[8] = {0, 1, 2, 3, 4, 5, 6, 7};
const std::string upstream = "upstream";
const std::string downstream = "downstream";
bcmolt_oltid dev_id = 0;
/* Current session */
static bcmcli_session *current_session;
static bcmcli_entry *api_parent_dir;
bcmos_bool status_bcm_cli_quit = BCMOS_FALSE;
bcmos_task bal_cli_thread;
const char *bal_cli_thread_name = "bal_cli_thread";
uint16_t flow_id_counters = 0;
int flow_id_data[16384][2];
/* QOS Type has been pre-defined as Fixed Queue but it will be updated based on number of GEMPORTS
associated for a given subscriber. If GEM count = 1 for a given subscriber, qos_type will be Fixed Queue
else Priority to Queue */
bcmolt_egress_qos_type qos_type = BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE;
State state;
static std::map<uint32_t, uint32_t> flowid_to_port; // For mapping upstream flows to logical ports
static std::map<uint32_t, uint32_t> flowid_to_gemport; // For mapping downstream flows into gemports
static std::map<uint32_t, std::set<uint32_t> > port_to_flows; // For mapping logical ports to downstream flows
/* This represents the Key to 'sched_map' map.
Represents (pon_intf_id, onu_id, uni_id, direction) */
typedef std::tuple<uint32_t, uint32_t, uint32_t, std::string> sched_map_key_tuple;
/* 'sched_map' maps sched_map_key_tuple to DBA (Upstream) or
Subscriber (Downstream) Scheduler ID */
static std::map<sched_map_key_tuple, int> sched_map;
/* This represents the Key to 'sched_qmp_id_map' map.
Represents (sched_id, pon_intf_id, onu_id, uni_id) */
typedef std::tuple<uint32_t, uint32_t, uint32_t, uint32_t> sched_qmp_id_map_key_tuple;
/* 'sched_qmp_id_map' maps sched_qmp_id_map_key_tuple to TM Queue Mapping Profile ID */
static std::map<sched_qmp_id_map_key_tuple, int> sched_qmp_id_map;
/* 'qmp_id_to_qmp_map' maps TM Queue Mapping Profile ID to TM Queue Mapping Profile */
static std::map<int, std::vector < uint32_t > > qmp_id_to_qmp_map;
std::bitset<MAX_TM_SCHED_ID> tm_sched_bitset;
std::bitset<MAX_TM_QMP_ID> tm_qmp_bitset;
static bcmos_fastlock data_lock;
#define MIN_ALLOC_ID_GPON 256
#define MIN_ALLOC_ID_XGSPON 1024
static bcmos_errno CreateSched(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, \
uint32_t port_no, uint32_t alloc_id, tech_profile::AdditionalBW additional_bw, uint32_t weight, \
uint32_t priority, tech_profile::SchedulingPolicy sched_policy,
tech_profile::TrafficShapingInfo traffic_shaping_info);
static bcmos_errno RemoveSched(int intf_id, int onu_id, int uni_id, int alloc_id, std::string direction);
static bcmos_errno CreateQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, \
uint32_t priority, uint32_t gemport_id);
static bcmos_errno RemoveQueue(std::string direction, int intf_id, int onu_id, int uni_id, uint32_t port_no, int alloc_id);
static bcmos_errno CreateDefaultSched(uint32_t intf_id, const std::string direction);
static bcmos_errno CreateDefaultQueue(uint32_t intf_id, const std::string direction);
uint16_t get_dev_id(void) {
return dev_id;
}
/**
* Returns the default NNI (Upstream direction) or PON (Downstream direction) scheduler
* Every NNI port and PON port have default scheduler.
* The NNI0 default scheduler ID is 18432, and NNI1 is 18433 and so on.
* Similarly, PON0 default scheduler ID is 16384. PON1 is 16385 and so on.
*
* @param intf_id NNI or PON interface ID
* @param direction "upstream" or "downstream"
*
* @return default scheduler ID for the given interface.
*/
static inline int get_default_tm_sched_id(int intf_id, std::string direction) {
if (direction.compare(upstream) == 0) {
return tm_upstream_sched_id_start + intf_id;
} else if (direction.compare(downstream) == 0) {
return tm_downstream_sched_id_start + intf_id;
}
else {
OPENOLT_LOG(ERROR, openolt_log_id, "invalid direction - %s\n", direction.c_str());
return 0;
}
}
/**
* Gets a unique tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction
* The tm_sched_id is locally cached in a map, so that it can rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*
* @return tm_sched_id
*/
uint32_t get_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
int sched_id = -1;
std::map<sched_map_key_tuple, int>::const_iterator it = sched_map.find(key);
if (it != sched_map.end()) {
sched_id = it->second;
}
if (sched_id != -1) {
return sched_id;
}
bcmos_fastlock_lock(&data_lock);
// Complexity of O(n). Is there better way that can avoid linear search?
for (sched_id = 0; sched_id < MAX_TM_SCHED_ID; sched_id++) {
if (tm_sched_bitset[sched_id] == 0) {
tm_sched_bitset[sched_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (sched_id < MAX_TM_SCHED_ID) {
bcmos_fastlock_lock(&data_lock);
sched_map[key] = sched_id;
bcmos_fastlock_unlock(&data_lock, 0);
return sched_id;
} else {
return -1;
}
}
/**
* Free tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*/
void free_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
std::map<sched_map_key_tuple, int>::const_iterator it;
bcmos_fastlock_lock(&data_lock);
it = sched_map.find(key);
if (it != sched_map.end()) {
tm_sched_bitset[it->second] = 0;
sched_map.erase(it);
}
bcmos_fastlock_unlock(&data_lock, 0);
}
bool is_tm_sched_id_present(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
std::map<sched_map_key_tuple, int>::const_iterator it = sched_map.find(key);
if (it != sched_map.end()) {
return true;
}
return false;
}
/**
* Check whether given two tm qmp profiles are equal or not
*
* @param tmq_map_profileA <vector> TM QUEUE MAPPING PROFILE
* @param tmq_map_profileB <vector> TM QUEUE MAPPING PROFILE
*
* @return boolean, true if given tmq_map_profiles are equal else false
*/
bool check_tm_qmp_equality(std::vector<uint32_t> tmq_map_profileA, std::vector<uint32_t> tmq_map_profileB) {
for (uint32_t i = 0; i < TMQ_MAP_PROFILE_SIZE; i++) {
if (tmq_map_profileA[i] != tmq_map_profileB[i]) {
return false;
}
}
return true;
}
/**
* Modifies given queues_pbit_map to parsable format
* e.g: Modifes "0b00000101" to "10100000"
*
* @param queues_pbit_map PBIT MAP configured for each GEM in TECH PROFILE
* @param size Queue count
*
* @return string queues_pbit_map
*/
std::string* get_valid_queues_pbit_map(std::string *queues_pbit_map, uint32_t size) {
for(uint32_t i=0; i < size; i++) {
/* Deletes 2 characters from index number 0 */
queues_pbit_map[i].erase(0, 2);
std::reverse(queues_pbit_map[i].begin(), queues_pbit_map[i].end());
}
return queues_pbit_map;
}
/**
* Creates TM QUEUE MAPPING PROFILE for given queues_pbit_map and queues_priority_q
*
* @param queues_pbit_map PBIT MAP configured for each GEM in TECH PROFILE
* @param queues_priority_q PRIORITY_Q configured for each GEM in TECH PROFILE
* @param size Queue count
*
* @return <vector> TM QUEUE MAPPING PROFILE
*/
std::vector<uint32_t> get_tmq_map_profile(std::string *queues_pbit_map, uint32_t *queues_priority_q, uint32_t size) {
std::vector<uint32_t> tmq_map_profile(8,0);
for(uint32_t i=0; i < size; i++) {
for (uint32_t j = 0; j < queues_pbit_map[i].size(); j++) {
if (queues_pbit_map[i][j]=='1') {
tmq_map_profile.at(j) = queue_id_list[queues_priority_q[i]];
}
}
}
return tmq_map_profile;
}
/**
* Gets corresponding tm_qmp_id for a given tmq_map_profile
*
* @param <vector> TM QUEUE MAPPING PROFILE
*
* @return tm_qmp_id
*/
int get_tm_qmp_id(std::vector<uint32_t> tmq_map_profile) {
int tm_qmp_id = -1;
std::map<int, std::vector < uint32_t > >::const_iterator it = qmp_id_to_qmp_map.begin();
while(it != qmp_id_to_qmp_map.end()) {
if(check_tm_qmp_equality(tmq_map_profile, it->second)) {
tm_qmp_id = it->first;
break;
}
it++;
}
return tm_qmp_id;
}
/**
* Updates sched_qmp_id_map with given sched_id, pon_intf_id, onu_id, uni_id, tm_qmp_id
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param tm_qmp_id TM QUEUE MAPPING PROFILE ID
*/
void update_sched_qmp_id_map(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, \
uint32_t uni_id, int tm_qmp_id) {
bcmos_fastlock_lock(&data_lock);
sched_qmp_id_map_key_tuple key(sched_id, pon_intf_id, onu_id, uni_id);
sched_qmp_id_map.insert(make_pair(key, tm_qmp_id));
bcmos_fastlock_unlock(&data_lock, 0);
}
/**
* Gets corresponding tm_qmp_id for a given sched_id, pon_intf_id, onu_id, uni_id
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
*
* @return tm_qmp_id
*/
int get_tm_qmp_id(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, uint32_t uni_id) {
sched_qmp_id_map_key_tuple key(sched_id, pon_intf_id, onu_id, uni_id);
int tm_qmp_id = -1;
std::map<sched_qmp_id_map_key_tuple, int>::const_iterator it = sched_qmp_id_map.find(key);
if (it != sched_qmp_id_map.end()) {
tm_qmp_id = it->second;
}
return tm_qmp_id;
}
/**
* Gets a unique tm_qmp_id for a given tmq_map_profile
* The tm_qmp_id is locally cached in a map, so that it can be rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param <vector> TM QUEUE MAPPING PROFILE
*
* @return tm_qmp_id
*/
int get_tm_qmp_id(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, uint32_t uni_id, \
std::vector<uint32_t> tmq_map_profile) {
int tm_qmp_id;
bcmos_fastlock_lock(&data_lock);
/* Complexity of O(n). Is there better way that can avoid linear search? */
for (tm_qmp_id = 0; tm_qmp_id < MAX_TM_QMP_ID; tm_qmp_id++) {
if (tm_qmp_bitset[tm_qmp_id] == 0) {
tm_qmp_bitset[tm_qmp_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (tm_qmp_id < MAX_TM_QMP_ID) {
bcmos_fastlock_lock(&data_lock);
qmp_id_to_qmp_map.insert(make_pair(tm_qmp_id, tmq_map_profile));
bcmos_fastlock_unlock(&data_lock, 0);
update_sched_qmp_id_map(sched_id, pon_intf_id, onu_id, uni_id, tm_qmp_id);
return tm_qmp_id;
} else {
return -1;
}
}
/**
* Free tm_qmp_id for a given sched_id, pon_intf_id, onu_id, uni_id
*
* @param upstream/downstream sched_id
* @param PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param tm_qmp_id TM QUEUE MAPPING PROFILE ID
*
* @return boolean, true if no more reference for TM QMP else false
*/
bool free_tm_qmp_id(uint32_t sched_id,uint32_t pon_intf_id, uint32_t onu_id, \
uint32_t uni_id, int tm_qmp_id) {
bool result;
sched_qmp_id_map_key_tuple key(sched_id, pon_intf_id, onu_id, uni_id);
std::map<sched_qmp_id_map_key_tuple, int>::const_iterator it = sched_qmp_id_map.find(key);
bcmos_fastlock_lock(&data_lock);
if (it != sched_qmp_id_map.end()) {
sched_qmp_id_map.erase(it);
}
bcmos_fastlock_unlock(&data_lock, 0);
uint32_t tm_qmp_ref_count = 0;
std::map<sched_qmp_id_map_key_tuple, int>::const_iterator it2 = sched_qmp_id_map.begin();
while(it2 != sched_qmp_id_map.end()) {
if(it2->second == tm_qmp_id) {
tm_qmp_ref_count++;
}
it2++;
}
if (tm_qmp_ref_count == 0) {
std::map<int, std::vector < uint32_t > >::const_iterator it3 = qmp_id_to_qmp_map.find(tm_qmp_id);
if (it3 != qmp_id_to_qmp_map.end()) {
bcmos_fastlock_lock(&data_lock);
tm_qmp_bitset[tm_qmp_id] = 0;
qmp_id_to_qmp_map.erase(it3);
bcmos_fastlock_unlock(&data_lock, 0);
OPENOLT_LOG(INFO, openolt_log_id, "Reference count for tm qmp profile id %d is : %d. So clearing it\n", \
tm_qmp_id, tm_qmp_ref_count);
result = true;
}
} else {
OPENOLT_LOG(INFO, openolt_log_id, "Reference count for tm qmp profile id %d is : %d. So not clearing it\n", \
tm_qmp_id, tm_qmp_ref_count);
result = false;
}
return result;
}
/**
* Returns Scheduler/Queue direction as string
*
* @param direction as specified in tech_profile.proto
*/
std::string GetDirection(int direction) {
switch (direction)
{
case tech_profile::Direction::UPSTREAM: return upstream;
case tech_profile::Direction::DOWNSTREAM: return downstream;
default: OPENOLT_LOG(ERROR, openolt_log_id, "direction-not-supported %d\n", direction);
return "direction-not-supported";
}
}
inline const char *get_flow_acton_command(uint32_t command) {
char actions[200] = { };
char *s_actions_ptr = actions;
if (command & BCMOLT_ACTION_CMD_ID_ADD_OUTER_TAG) strcat(s_actions_ptr, "ADD_OUTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_REMOVE_OUTER_TAG) strcat(s_actions_ptr, "REMOVE_OUTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_XLATE_OUTER_TAG) strcat(s_actions_ptr, "TRANSLATE_OUTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_ADD_INNER_TAG) strcat(s_actions_ptr, "ADD_INNTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_REMOVE_INNER_TAG) strcat(s_actions_ptr, "REMOVE_INNER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_XLATE_INNER_TAG) strcat(s_actions_ptr, "TRANSLATE_INNER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_REMARK_OUTER_PBITS) strcat(s_actions_ptr, "REMOVE_OUTER_PBITS|");
if (command & BCMOLT_ACTION_CMD_ID_REMARK_INNER_PBITS) strcat(s_actions_ptr, "REMAKE_INNER_PBITS|");
return s_actions_ptr;
}
char* openolt_read_sysinfo(const char* field_name, char* field_val)
{
FILE *fp;
/* Prepare the command*/
char command[150];
snprintf(command, sizeof command, "bash -l -c \"onlpdump -s\" | perl -ne 'print $1 if /%s: (\\S+)/'", field_name);
/* Open the command for reading. */
fp = popen(command, "r");
if (fp == NULL) {
/*The client has to check for a Null field value in this case*/
OPENOLT_LOG(INFO, openolt_log_id, "Failed to query the %s\n", field_name);
return field_val;
}
/*Read the field value*/
if (fp) {
uint8_t ret;
ret = fread(field_val, OPENOLT_FIELD_LEN, 1, fp);
if (ret >= OPENOLT_FIELD_LEN)
OPENOLT_LOG(INFO, openolt_log_id, "Read data length %u\n", ret);
pclose(fp);
}
return field_val;
}
Status GetDeviceInfo_(openolt::DeviceInfo* device_info) {
device_info->set_vendor(VENDOR_ID);
device_info->set_model(MODEL_ID);
device_info->set_hardware_version("");
device_info->set_firmware_version(firmware_version);
device_info->set_technology(board_technology);
device_info->set_pon_ports(num_of_pon_ports);
char serial_number[OPENOLT_FIELD_LEN];
memset(serial_number, '\0', OPENOLT_FIELD_LEN);
openolt_read_sysinfo("Serial Number", serial_number);
OPENOLT_LOG(INFO, openolt_log_id, "Fetched device serial number %s\n", serial_number);
device_info->set_device_serial_number(serial_number);
// Legacy, device-wide ranges. To be deprecated when adapter
// is upgraded to support per-interface ranges
if (board_technology == "XGS-PON") {
device_info->set_onu_id_start(1);
device_info->set_onu_id_end(255);
device_info->set_alloc_id_start(MIN_ALLOC_ID_XGSPON);
device_info->set_alloc_id_end(16383);
device_info->set_gemport_id_start(1024);
device_info->set_gemport_id_end(65535);
device_info->set_flow_id_start(1);
device_info->set_flow_id_end(16383);
}
else if (board_technology == "GPON") {
device_info->set_onu_id_start(1);
device_info->set_onu_id_end(127);
device_info->set_alloc_id_start(MIN_ALLOC_ID_GPON);
device_info->set_alloc_id_end(767);
device_info->set_gemport_id_start(256);
device_info->set_gemport_id_end(4095);
device_info->set_flow_id_start(1);
device_info->set_flow_id_end(16383);
}
std::map<std::string, openolt::DeviceInfo::DeviceResourceRanges*> ranges;
for (uint32_t intf_id = 0; intf_id < num_of_pon_ports; ++intf_id) {
std::string intf_technology = intf_technologies[intf_id];
openolt::DeviceInfo::DeviceResourceRanges *range = ranges[intf_technology];
if(range == nullptr) {
range = device_info->add_ranges();
ranges[intf_technology] = range;
range->set_technology(intf_technology);
if (intf_technology == "XGS-PON") {
openolt::DeviceInfo::DeviceResourceRanges::Pool* pool;
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ONU_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::DEDICATED_PER_INTF);
pool->set_start(1);
pool->set_end(255);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ALLOC_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_SAME_TECH);
pool->set_start(1024);
pool->set_end(16383);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::GEMPORT_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1024);
pool->set_end(65535);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::FLOW_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1);
pool->set_end(16383);
}
else if (intf_technology == "GPON") {
openolt::DeviceInfo::DeviceResourceRanges::Pool* pool;
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ONU_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::DEDICATED_PER_INTF);
pool->set_start(1);
pool->set_end(127);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ALLOC_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_SAME_TECH);
pool->set_start(256);
pool->set_end(757);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::GEMPORT_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(256);
pool->set_end(4095);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::FLOW_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1);
pool->set_end(16383);
}
}
range->add_intf_ids(intf_id);
}
// FIXME: Once dependency problem is fixed
// device_info->set_pon_ports(num_of_pon_ports);
// device_info->set_onu_id_end(XGPON_NUM_OF_ONUS - 1);
// device_info->set_alloc_id_start(1024);
// device_info->set_alloc_id_end(XGPON_NUM_OF_ALLOC_IDS * num_of_pon_ports ? - 1);
// device_info->set_gemport_id_start(XGPON_MIN_BASE_SERVICE_PORT_ID);
// device_info->set_gemport_id_end(XGPON_NUM_OF_GEM_PORT_IDS_PER_PON * num_of_pon_ports ? - 1);
// device_info->set_pon_ports(num_of_pon_ports);
return Status::OK;
}
Status pushOltOperInd(uint32_t intf_id, const char *type, const char *state)
{
openolt::Indication ind;
openolt::IntfOperIndication* intf_oper_ind = new openolt::IntfOperIndication;
intf_oper_ind->set_type(type);
intf_oper_ind->set_intf_id(intf_id);
intf_oper_ind->set_oper_state(state);
ind.set_allocated_intf_oper_ind(intf_oper_ind);
oltIndQ.push(ind);
return Status::OK;
}
#define CLI_HOST_PROMPT_FORMAT "BCM.%u> "
/* Build CLI prompt */
static void openolt_cli_get_prompt_cb(bcmcli_session *session, char *buf, uint32_t max_len)
{
snprintf(buf, max_len, CLI_HOST_PROMPT_FORMAT, dev_id);
}
static int _bal_apiend_cli_thread_handler(long data)
{
char init_string[]="\n";
bcmcli_session *sess = current_session;
bcmos_task_parm bal_cli_task_p_dummy;
/* Switch to interactive mode if not stopped in the init script */
if (!bcmcli_is_stopped(sess))
{
/* Force a CLI command prompt
* The string passed into the parse function
* must be modifiable, so a string constant like
* bcmcli_parse(current_session, "\n") will not
* work.
*/
bcmcli_parse(sess, init_string);
/* Process user input until EOF or quit command */
bcmcli_driver(sess);
};
OPENOLT_LOG(INFO, openolt_log_id, "BAL API End CLI terminated\n");
/* Cleanup */
bcmcli_session_close(current_session);
bcmcli_token_destroy(NULL);
return 0;
}
/* Init API CLI commands for the current device */
bcmos_errno bcm_openolt_api_cli_init(bcmcli_entry *parent_dir, bcmcli_session *session)
{
bcmos_errno rc;
api_parent_dir = parent_dir;
rc = bcm_api_cli_set_commands(session);
#ifdef BCM_SUBSYSTEM_HOST
/* Subscribe for device change indication */
rc = rc ? rc : bcmolt_olt_sel_ind_register(_api_cli_olt_change_ind);
#endif
return rc;
}
static bcmos_errno bcm_cli_quit(bcmcli_session *session, const bcmcli_cmd_parm parm[], uint16_t n_parms)
{
bcmcli_stop(session);
bcmcli_session_print(session, "CLI terminated by 'Quit' command\n");
status_bcm_cli_quit = BCMOS_TRUE;
return BCM_ERR_OK;
}
int get_status_bcm_cli_quit(void) {
return status_bcm_cli_quit;
}
bcmos_errno bcmolt_apiend_cli_init() {
bcmos_errno ret;
bcmos_task_parm bal_cli_task_p = {};
bcmos_task_parm bal_cli_task_p_dummy;
/** before creating the task, check if it is already created by the other half of BAL i.e. Core side */
if (BCM_ERR_OK != bcmos_task_query(&bal_cli_thread, &bal_cli_task_p_dummy))
{
/* Create BAL CLI thread */
bal_cli_task_p.name = bal_cli_thread_name;
bal_cli_task_p.handler = _bal_apiend_cli_thread_handler;
bal_cli_task_p.priority = TASK_PRIORITY_CLI;
ret = bcmos_task_create(&bal_cli_thread, &bal_cli_task_p);
if (BCM_ERR_OK != ret)
{
bcmos_printf("Couldn't create BAL API end CLI thread\n");
return ret;
}
}
}
Status Enable_(int argc, char *argv[]) {
bcmos_errno err;
bcmolt_host_init_parms init_parms = {};
init_parms.transport.type = BCM_HOST_API_CONN_LOCAL;
if (!state.is_activated()) {
vendor_init();
/* Initialize host subsystem */
err = bcmolt_host_init(&init_parms);
if (BCM_ERR_OK != err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to init OLT\n");
return bcm_to_grpc_err(err, "Failed to init OLT");
}
bcmcli_session_parm mon_session_parm;
/* Create CLI session */
memset(&mon_session_parm, 0, sizeof(mon_session_parm));
mon_session_parm.get_prompt = openolt_cli_get_prompt_cb;
mon_session_parm.access_right = BCMCLI_ACCESS_ADMIN;
bcmos_errno rc = bcmcli_session_open(&mon_session_parm, &current_session);
BUG_ON(rc != BCM_ERR_OK);
/* API CLI */
bcm_openolt_api_cli_init(NULL, current_session);
/* Add quit command */
BCMCLI_MAKE_CMD_NOPARM(NULL, "quit", "Quit", bcm_cli_quit);
err = bcmolt_apiend_cli_init();
if (BCM_ERR_OK != err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to add apiend init\n");
return bcm_to_grpc_err(err, "Failed to add apiend init");
}
bcmos_fastlock_init(&data_lock, 0);
OPENOLT_LOG(INFO, openolt_log_id, "Enable OLT - %s-%s\n", VENDOR_ID, MODEL_ID);
if (bcmolt_api_conn_mgr_is_connected(dev_id))
{
Status status = SubscribeIndication();
if (!status.ok()) {
OPENOLT_LOG(ERROR, openolt_log_id, "SubscribeIndication failed - %s : %s\n",
grpc_status_code_to_string(status.error_code()).c_str(),
status.error_message().c_str());
return status;
}
bcmos_errno err;
bcmolt_odid dev;
OPENOLT_LOG(INFO, openolt_log_id, "Enabling PON %d Devices ... \n", BCM_MAX_DEVS_PER_LINE_CARD);
for (dev = 0; dev < BCM_MAX_DEVS_PER_LINE_CARD; dev++) {
bcmolt_device_cfg dev_cfg = { };
bcmolt_device_key dev_key = { };
dev_key.device_id = dev;
BCMOLT_CFG_INIT(&dev_cfg, device, dev_key);
BCMOLT_MSG_FIELD_GET(&dev_cfg, system_mode);
err = bcmolt_cfg_get(dev_id, &dev_cfg.hdr);
if (err == BCM_ERR_NOT_CONNECTED) {
bcmolt_device_key key = {.device_id = dev};
bcmolt_device_connect oper;
BCMOLT_OPER_INIT(&oper, device, connect, key);
if (MODEL_ID == "asfvolt16") {
BCMOLT_MSG_FIELD_SET(&oper, inni_config.mode, BCMOLT_INNI_MODE_ALL_10_G_XFI);
BCMOLT_MSG_FIELD_SET (&oper, system_mode, BCMOLT_SYSTEM_MODE_XGS__2_X);
} else if (MODEL_ID == "asgvolt64") {
BCMOLT_MSG_FIELD_SET(&oper, inni_config.mode, BCMOLT_INNI_MODE_ALL_10_G_XFI);
BCMOLT_MSG_FIELD_SET(&oper, inni_config.mux, BCMOLT_INNI_MUX_FOUR_TO_ONE);
BCMOLT_MSG_FIELD_SET (&oper, system_mode, BCMOLT_SYSTEM_MODE_GPON__16_X);
}
err = bcmolt_oper_submit(dev_id, &oper.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Enable PON device %d failed, err %d\n", dev, err);
}
bcmos_usleep(200000);
}
else {
OPENOLT_LOG(WARNING, openolt_log_id, "PON deivce %d already connected\n", dev);
state.activate();
}
}
init_stats();
}
}
/* Start CLI */
OPENOLT_LOG(INFO, def_log_id, "Starting CLI\n");
//If already enabled, generate an extra indication ????
return Status::OK;
}
Status Disable_() {
// bcmbal_access_terminal_cfg acc_term_obj;
// bcmbal_access_terminal_key key = { };
//
// if (state::is_activated) {
// std::cout << "Disable OLT" << std::endl;
// key.access_term_id = DEFAULT_ATERM_ID;
// BCMBAL_CFG_INIT(&acc_term_obj, access_terminal, key);
// BCMBAL_CFG_PROP_SET(&acc_term_obj, access_terminal, admin_state, BCMBAL_STATE_DOWN);
// bcmos_errno err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(acc_term_obj.hdr));
// if (err) {
// std::cout << "ERROR: Failed to disable OLT" << std::endl;
// return bcm_to_grpc_err(err, "Failed to disable OLT");
// }
// }
// //If already disabled, generate an extra indication ????
// return Status::OK;
//This fails with Operation Not Supported, bug ???
//TEMPORARY WORK AROUND
Status status = SetStateUplinkIf_(nni_intf_id, false);
if (status.ok()) {
state.deactivate();
OPENOLT_LOG(INFO, openolt_log_id, "Disable OLT, add an extra indication\n");
pushOltOperInd(nni_intf_id, "nni", "up");
}
return status;
}
Status Reenable_() {
Status status = SetStateUplinkIf_(0, true);
if (status.ok()) {
state.activate();
OPENOLT_LOG(INFO, openolt_log_id, "Reenable OLT, add an extra indication\n");
pushOltOperInd(0, "nni", "up");
}
return status;
}
bcmos_errno get_pon_interface_status(bcmolt_interface pon_ni, bcmolt_interface_state *state) {
bcmos_errno err;
bcmolt_pon_interface_key pon_key;
bcmolt_pon_interface_cfg pon_cfg;
pon_key.pon_ni = pon_ni;
BCMOLT_CFG_INIT(&pon_cfg, pon_interface, pon_key);
BCMOLT_FIELD_SET_PRESENT(&pon_cfg.data, pon_interface_cfg_data, state);
BCMOLT_FIELD_SET_PRESENT(&pon_cfg.data, pon_interface_cfg_data, itu);
err = bcmolt_cfg_get(dev_id, &pon_cfg.hdr);
*state = pon_cfg.data.state;
return err;
}
inline uint64_t get_flow_status(uint16_t flow_id, uint16_t flow_type, uint16_t data_id) {
bcmos_errno err;
bcmolt_flow_key flow_key;
bcmolt_flow_cfg flow_cfg;
flow_key.flow_id = flow_id;
flow_key.flow_type = (bcmolt_flow_type)flow_type;
BCMOLT_CFG_INIT(&flow_cfg, flow, flow_key);
switch (data_id) {
case ONU_ID: //onu_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, onu_id);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get onu_id\n");
return err;
}
return flow_cfg.data.onu_id;
case FLOW_TYPE:
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get flow_type\n");
return err;
}
return flow_cfg.key.flow_type;
case SVC_PORT_ID: //svc_port_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, svc_port_id);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get svc_port_id\n");
return err;
}
return flow_cfg.data.svc_port_id;
case PRIORITY:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, priority);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get priority\n");
return err;
}
return flow_cfg.data.priority;
case COOKIE: //cookie
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, cookie);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get cookie\n");
return err;
}
return flow_cfg.data.cookie;
case INGRESS_INTF_TYPE: //ingress intf_type
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, ingress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get ingress intf_type\n");
return err;
}
return flow_cfg.data.ingress_intf.intf_type;
case EGRESS_INTF_TYPE: //egress intf_type
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress intf_type\n");
return err;
}
return flow_cfg.data.egress_intf.intf_type;
case INGRESS_INTF_ID: //ingress intf_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, ingress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get ingress intf_id\n");
return err;
}
return flow_cfg.data.ingress_intf.intf_id;
case EGRESS_INTF_ID: //egress intf_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress intf_id\n");
return err;
}
return flow_cfg.data.egress_intf.intf_id;
case CLASSIFIER_O_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier o_vid\n");
return err;
}
return flow_cfg.data.classifier.o_vid;
case CLASSIFIER_O_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier o_pbits\n");
return err;
}
return flow_cfg.data.classifier.o_pbits;
case CLASSIFIER_I_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier i_vid\n");
return err;
}
return flow_cfg.data.classifier.i_vid;
case CLASSIFIER_I_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier i_pbits\n");
return err;
}
return flow_cfg.data.classifier.i_pbits;
case CLASSIFIER_ETHER_TYPE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier ether_type\n");
return err;
}
return flow_cfg.data.classifier.ether_type;
case CLASSIFIER_IP_PROTO:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier ip_proto\n");
return err;
}
return flow_cfg.data.classifier.ip_proto;
case CLASSIFIER_SRC_PORT:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier src_port\n");
return err;
}
return flow_cfg.data.classifier.src_port;
case CLASSIFIER_DST_PORT:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier dst_port\n");
return err;
}
return flow_cfg.data.classifier.dst_port;
case CLASSIFIER_PKT_TAG_TYPE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier pkt_tag_type\n");
return err;
}
return flow_cfg.data.classifier.pkt_tag_type;
case EGRESS_QOS_TYPE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_qos);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress_qos type\n");
return err;
}
return flow_cfg.data.egress_qos.type;
case EGRESS_QOS_QUEUE_ID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_qos);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress_qos queue_id\n");
return err;
}
switch (flow_cfg.data.egress_qos.type) {
case BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE:
return flow_cfg.data.egress_qos.u.fixed_queue.queue_id;
case BCMOLT_EGRESS_QOS_TYPE_TC_TO_QUEUE:
return flow_cfg.data.egress_qos.u.tc_to_queue.tc_to_queue_id;
case BCMOLT_EGRESS_QOS_TYPE_PBIT_TO_TC:
return flow_cfg.data.egress_qos.u.pbit_to_tc.tc_to_queue_id;
case BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE:
return flow_cfg.data.egress_qos.u.priority_to_queue.tm_q_set_id;
case BCMOLT_EGRESS_QOS_TYPE_NONE:
default:
return -1;
}
case EGRESS_QOS_TM_SCHED_ID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_qos);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress_qos tm_sched_id\n");
return err;
}
return flow_cfg.data.egress_qos.tm_sched.id;
case ACTION_CMDS_BITMASK:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action cmds_bitmask\n");
return err;
}
return flow_cfg.data.action.cmds_bitmask;
case ACTION_O_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action o_vid\n");
return err;
}
return flow_cfg.data.action.o_vid;
case ACTION_O_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action o_pbits\n");
return err;
}
return flow_cfg.data.action.o_pbits;
case ACTION_I_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action i_vid\n");
return err;
}
return flow_cfg.data.action.i_vid;
case ACTION_I_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action i_pbits\n");
return err;
}
return flow_cfg.data.action.i_pbits;
case STATE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, state);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get state\n");
return err;
}
return flow_cfg.data.state;
default:
return BCM_ERR_INTERNAL;
}
return err;
}
Status EnablePonIf_(uint32_t intf_id) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_pon_interface_cfg interface_obj;
bcmolt_pon_interface_key intf_key = {.pon_ni = (bcmolt_interface)intf_id};
bcmolt_pon_interface_set_pon_interface_state pon_interface_set_state;
bcmolt_interface_state state;
err = get_pon_interface_status((bcmolt_interface)intf_id, &state);
if (err == BCM_ERR_OK) {
if (state == BCMOLT_INTERFACE_STATE_ACTIVE_WORKING) {
OPENOLT_LOG(INFO, openolt_log_id, "PON interface: %d already enabled\n", intf_id);
return Status::OK;
}
}
BCMOLT_CFG_INIT(&interface_obj, pon_interface, intf_key);
BCMOLT_OPER_INIT(&pon_interface_set_state, pon_interface, set_pon_interface_state, intf_key);
BCMOLT_MSG_FIELD_SET(&interface_obj, discovery.control, BCMOLT_CONTROL_STATE_ENABLE);
BCMOLT_MSG_FIELD_SET(&interface_obj, discovery.interval, 5000);
BCMOLT_MSG_FIELD_SET(&interface_obj, discovery.onu_post_discovery_mode,
BCMOLT_ONU_POST_DISCOVERY_MODE_ACTIVATE);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.los, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.onu_alarms, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.tiwi, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.ack_timeout, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.sfi, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.loki, true);
BCMOLT_FIELD_SET(&pon_interface_set_state.data, pon_interface_set_pon_interface_state_data,
operation, BCMOLT_INTERFACE_OPERATION_ACTIVE_WORKING);
err = bcmolt_cfg_set(dev_id, &interface_obj.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to enable discovery onu, PON interface %d, err %d\n", intf_id, err);
return bcm_to_grpc_err(err, "Failed to enable discovery onu");
}
err = bcmolt_oper_submit(dev_id, &pon_interface_set_state.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to enable PON interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to enable PON interface");
}
else {
OPENOLT_LOG(INFO, openolt_log_id, "Successfully enabled PON interface: %d\n", intf_id);
OPENOLT_LOG(INFO, openolt_log_id, "Initializing tm sched creation for PON interface: %d\n", intf_id);
CreateDefaultSched(intf_id, downstream);
CreateDefaultQueue(intf_id, downstream);
}
return Status::OK;
}
Status ProbeDeviceCapabilities_() {
bcmos_errno err;
bcmolt_device_cfg dev_cfg = { };
bcmolt_device_key dev_key = { };
bcmolt_olt_cfg olt_cfg = { };
bcmolt_olt_key olt_key = { };
bcmolt_topology_map topo_map[BCM_MAX_PONS_PER_OLT] = { };
bcmolt_topology topo = { };
topo.topology_maps.len = BCM_MAX_PONS_PER_OLT;
topo.topology_maps.arr = &topo_map[0];
BCMOLT_CFG_INIT(&olt_cfg, olt, olt_key);
BCMOLT_MSG_FIELD_GET(&olt_cfg, bal_state);
BCMOLT_FIELD_SET_PRESENT(&olt_cfg.data, olt_cfg_data, topology);
BCMOLT_CFG_LIST_BUF_SET(&olt_cfg, olt, topo.topology_maps.arr,
sizeof(bcmolt_topology_map) * topo.topology_maps.len);
err = bcmolt_cfg_get(dev_id, &olt_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "cfg: Failed to query OLT\n");
return bcm_to_grpc_err(err, "cfg: Failed to query OLT");
}
num_of_nni_ports = olt_cfg.data.topology.num_switch_ports;
num_of_pon_ports = olt_cfg.data.topology.topology_maps.len;
OPENOLT_LOG(INFO, openolt_log_id, "OLT capabilitites, oper_state: %s\n",
olt_cfg.data.bal_state == BCMOLT_BAL_STATE_BAL_AND_SWITCH_READY
? "up" : "down");
OPENOLT_LOG(INFO, openolt_log_id, "topology nni: %d pon: %d dev: %d\n",
num_of_nni_ports,
num_of_pon_ports,
BCM_MAX_DEVS_PER_LINE_CARD);
for (int devid = 0; devid < BCM_MAX_DEVS_PER_LINE_CARD; devid++) {
dev_key.device_id = devid;
BCMOLT_CFG_INIT(&dev_cfg, device, dev_key);
BCMOLT_MSG_FIELD_GET(&dev_cfg, firmware_sw_version);
BCMOLT_MSG_FIELD_GET(&dev_cfg, chip_family);
BCMOLT_MSG_FIELD_GET(&dev_cfg, system_mode);
err = bcmolt_cfg_get(dev_id, &dev_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "device: Failed to query OLT\n");
return bcm_to_grpc_err(err, "device: Failed to query OLT");
}
std::string bal_version;
bal_version += std::to_string(dev_cfg.data.firmware_sw_version.major)
+ "." + std::to_string(dev_cfg.data.firmware_sw_version.minor)
+ "." + std::to_string(dev_cfg.data.firmware_sw_version.revision);
firmware_version = "BAL." + bal_version + "__" + firmware_version;
switch(dev_cfg.data.system_mode) {
case 10: board_technology = "GPON"; FILL_ARRAY(intf_technologies,devid*4,(devid+1)*4,"GPON"); break;
case 11: board_technology = "GPON"; FILL_ARRAY(intf_technologies,devid*8,(devid+1)*8,"GPON"); break;
case 12: board_technology = "GPON"; FILL_ARRAY(intf_technologies,devid*16,(devid+1)*16,"GPON"); break;
case 13: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*2,(devid+1)*2,"XGPON"); break;
case 14: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*4,(devid+1)*4,"XGPON"); break;
case 15: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*8,(devid+1)*8,"XGPON"); break;
case 16: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*16,(devid+1)*16,"XGPON"); break;
case 18: board_technology = "XGS-PON"; FILL_ARRAY(intf_technologies,devid*2,(devid+1)*2,"XGS-PON"); break;
case 19: board_technology = "XGS-PON"; FILL_ARRAY(intf_technologies,devid*16,(devid+1)*16,"XGS-PON"); break;
case 20: board_technology = MIXED_TECH; FILL_ARRAY(intf_technologies,devid*2,(devid+1)*2,MIXED_TECH); break;
}
switch(dev_cfg.data.chip_family) {
case BCMOLT_CHIP_FAMILY_CHIP_FAMILY_6862_X_: chip_family = "Maple"; break;
case BCMOLT_CHIP_FAMILY_CHIP_FAMILY_6865_X_: chip_family = "Aspen"; break;
}
OPENOLT_LOG(INFO, openolt_log_id, "device %d, pon: %d, version %s object model: %d, family: %s, board_technology: %s\n",
devid, BCM_MAX_PONS_PER_DEV, bal_version.c_str(), BAL_API_VERSION, chip_family.c_str(), board_technology.c_str());
bcmos_usleep(500000);
}
return Status::OK;
}
#if 0
Status ProbePonIfTechnology_() {
// Probe maximum extent possible as configured into BAL driver to determine
// which are active in the current BAL topology. And for those
// that are active, determine each port's access technology, i.e. "gpon" or "xgspon".
for (uint32_t intf_id = 0; intf_id < num_of_pon_ports; ++intf_id) {
bcmolt_pon_interface_cfg interface_obj;
bcmolt_pon_interface_key interface_key;
interface_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&interface_obj, pon_interface, interface_key);
if (board_technology == "XGS-PON")
BCMOLT_MSG_FIELD_GET(&interface_obj, xgs_ngpon2_trx);
else if (board_technology == "GPON")
BCMOLT_MSG_FIELD_GET(&interface_obj, gpon_trx);
bcmos_errno err = bcmolt_cfg_get(dev_id, &interface_obj.hdr);
if (err != BCM_ERR_OK) {
intf_technologies[intf_id] = UNKNOWN_TECH;
if(err != BCM_ERR_RANGE) OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get PON config: %d err %d\n", intf_id, err);
}
else {
if (board_technology == "XGS-PON") {
switch(interface_obj.data.xgpon_trx.transceiver_type) {
case BCMOLT_XGPON_TRX_TYPE_LTH_7222_PC:
case BCMOLT_XGPON_TRX_TYPE_WTD_RTXM266_702:
case BCMOLT_XGPON_TRX_TYPE_LTH_7222_BC_PLUS:
case BCMOLT_XGPON_TRX_TYPE_LTH_7226_PC:
case BCMOLT_XGPON_TRX_TYPE_LTH_5302_PC:
case BCMOLT_XGPON_TRX_TYPE_LTH_7226_A_PC_PLUS:
case BCMOLT_XGPON_TRX_TYPE_D272RR_SSCB_DM:
intf_technologies[intf_id] = "XGS-PON";
break;
}
} else if (board_technology == "GPON") {
switch(interface_obj.data.gpon_trx.transceiver_type) {
case BCMOLT_TRX_TYPE_SPS_43_48_H_HP_CDE_SD_2013:
case BCMOLT_TRX_TYPE_LTE_3680_M:
case BCMOLT_TRX_TYPE_SOURCE_PHOTONICS:
case BCMOLT_TRX_TYPE_LTE_3680_P_TYPE_C_PLUS:
case BCMOLT_TRX_TYPE_LTE_3680_P_BC:
intf_technologies[intf_id] = "GPON";
break;
}
}
if (board_technology != UNKNOWN_TECH) {
board_technology = intf_technologies[intf_id];
} else if (board_technology != MIXED_TECH && board_technology != intf_technologies[intf_id]) {
intf_technologies[intf_id] = MIXED_TECH;
}
}
}
return Status::OK;
}
#endif
unsigned NumNniIf_() {return num_of_nni_ports;}
unsigned NumPonIf_() {return num_of_pon_ports;}
bcmos_errno get_nni_interface_status(bcmolt_interface id, bcmolt_interface_state *state) {
bcmos_errno err;
bcmolt_nni_interface_key nni_key;
bcmolt_nni_interface_cfg nni_cfg;
nni_key.id = id;
BCMOLT_CFG_INIT(&nni_cfg, nni_interface, nni_key);
BCMOLT_FIELD_SET_PRESENT(&nni_cfg.data, nni_interface_cfg_data, state);
err = bcmolt_cfg_get(dev_id, &nni_cfg.hdr);
*state = nni_cfg.data.state;
return err;
}
Status SetStateUplinkIf_(uint32_t intf_id, bool set_state) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_nni_interface_key intf_key = {.id = (bcmolt_interface)intf_id};
bcmolt_nni_interface_set_nni_state nni_interface_set_state;
bcmolt_interface_state state;
err = get_nni_interface_status((bcmolt_interface)intf_id, &state);
if (err == BCM_ERR_OK) {
if (set_state && state == BCMOLT_INTERFACE_STATE_ACTIVE_WORKING) {
OPENOLT_LOG(INFO, openolt_log_id, "NNI interface: %d already enabled\n", intf_id);
OPENOLT_LOG(INFO, openolt_log_id, "Initializing tm sched creation for NNI interface: %d\n", intf_id);
CreateDefaultSched(intf_id, upstream);
CreateDefaultQueue(intf_id, upstream);
return Status::OK;
} else if (!set_state && state == BCMOLT_INTERFACE_STATE_INACTIVE) {
OPENOLT_LOG(INFO, openolt_log_id, "NNI interface: %d already disabled\n", intf_id);
return Status::OK;
}
}
BCMOLT_OPER_INIT(&nni_interface_set_state, nni_interface, set_nni_state, intf_key);
if (set_state) {
BCMOLT_FIELD_SET(&nni_interface_set_state.data, nni_interface_set_nni_state_data,
nni_state, BCMOLT_INTERFACE_OPERATION_ACTIVE_WORKING);
} else {
BCMOLT_FIELD_SET(&nni_interface_set_state.data, nni_interface_set_nni_state_data,
nni_state, BCMOLT_INTERFACE_OPERATION_INACTIVE);
}
err = bcmolt_oper_submit(dev_id, &nni_interface_set_state.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to %s NNI interface: %d, err %d\n",
(set_state)?"enable":"disable", intf_id, err);
return bcm_to_grpc_err(err, "Failed to enable NNI interface");
}
else {
OPENOLT_LOG(INFO, openolt_log_id, "Successfully %s NNI interface: %d\n", (set_state)?"enable":"disable", intf_id);
if (set_state) {
OPENOLT_LOG(INFO, openolt_log_id, "Initializing tm sched creation for NNI interface: %d\n", intf_id);
CreateDefaultSched(intf_id, upstream);
CreateDefaultQueue(intf_id, upstream);
}
}
return Status::OK;
}
Status DisablePonIf_(uint32_t intf_id) {
bcmolt_pon_interface_cfg interface_obj;
bcmolt_pon_interface_key interface_key;
interface_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&interface_obj, pon_interface, interface_key);
BCMOLT_MSG_FIELD_GET(&interface_obj, state);
bcmos_errno err = bcmolt_cfg_get(dev_id, &interface_obj.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to disable PON interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to disable PON interface");
}
return Status::OK;
}
Status ActivateOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific, uint32_t pir) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_onu_cfg onu_cfg;
bcmolt_onu_key onu_key;
bcmolt_serial_number serial_number; /**< ONU serial number */
bcmolt_bin_str_36 registration_id; /**< ONU registration ID */
onu_key.onu_id = onu_id;
onu_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&onu_cfg, onu, onu_key);
BCMOLT_FIELD_SET_PRESENT(&onu_cfg.data, onu_cfg_data, onu_state);
err = bcmolt_cfg_get(dev_id, &onu_cfg.hdr);
if (err == BCM_ERR_OK) {
if ((onu_cfg.data.onu_state == BCMOLT_ONU_STATE_PROCESSING ||
onu_cfg.data.onu_state == BCMOLT_ONU_STATE_ACTIVE) ||
(onu_cfg.data.onu_state == BCMOLT_ONU_STATE_INACTIVE &&
onu_cfg.data.onu_old_state == BCMOLT_ONU_STATE_NOT_CONFIGURED))
return Status::OK;
}
OPENOLT_LOG(INFO, openolt_log_id, "Enabling ONU %d on PON %d : vendor id %s, \
vendor specific %s, pir %d\n", onu_id, intf_id, vendor_id,
vendor_specific_to_str(vendor_specific).c_str(), pir);
memcpy(serial_number.vendor_id.arr, vendor_id, 4);
memcpy(serial_number.vendor_specific.arr, vendor_specific, 4);
BCMOLT_CFG_INIT(&onu_cfg, onu, onu_key);
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.serial_number, serial_number);
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.auto_learning, BCMOS_TRUE);
/*set burst and data profiles to fec disabled*/
if (board_technology == "XGS-PON") {
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.xgpon.ranging_burst_profile, 2);
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.xgpon.data_burst_profile, 1);
} else if (board_technology == "GPON") {
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.gpon.ds_ber_reporting_interval, 1000000);
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.gpon.omci_port_id, onu_id);
}
err = bcmolt_cfg_set(dev_id, &onu_cfg.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to set activate ONU %d on PON %d, err %d\n", onu_id, intf_id, err);
return bcm_to_grpc_err(err, "Failed to activate ONU");
}
return Status::OK;
}
Status DeactivateOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_onu_set_onu_state onu_oper; /* declare main API struct */
bcmolt_onu_cfg onu_cfg;
bcmolt_onu_key onu_key; /**< Object key. */
bcmolt_onu_state onu_state;
onu_key.onu_id = onu_id;
onu_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&onu_cfg, onu, onu_key);
BCMOLT_FIELD_SET_PRESENT(&onu_cfg.data, onu_cfg_data, onu_state);
err = bcmolt_cfg_get(dev_id, &onu_cfg.hdr);
if (err == BCM_ERR_OK) {
switch (onu_state) {
case BCMOLT_ONU_OPERATION_ACTIVE:
BCMOLT_OPER_INIT(&onu_oper, onu, set_onu_state, onu_key);
BCMOLT_FIELD_SET(&onu_oper.data, onu_set_onu_state_data,
onu_state, BCMOLT_ONU_OPERATION_INACTIVE);
err = bcmolt_oper_submit(dev_id, &onu_oper.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to \
deactivate ONU %d on PON %d, err %d\n", onu_id, intf_id, err);
return bcm_to_grpc_err(err, "Failed to deactivate ONU");
}
break;
}
}
return Status::OK;
}
Status DeleteOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific) {
OPENOLT_LOG(INFO, openolt_log_id, "DeleteOnu ONU %d on PON %d : vendor id %s, vendor specific %s\n",
onu_id, intf_id, vendor_id, vendor_specific_to_str(vendor_specific).c_str());
// Need to deactivate before removing it (BAL rules)
DeactivateOnu_(intf_id, onu_id, vendor_id, vendor_specific);
// Sleep to allow the state to propagate
// We need the subscriber terminal object to be admin down before removal
// Without sleep the race condition is lost by ~ 20 ms
std::this_thread::sleep_for(std::chrono::milliseconds(100));
// TODO: Delete the schedulers and queues.
bcmolt_onu_cfg cfg_obj;
bcmolt_onu_key key;
OPENOLT_LOG(INFO, openolt_log_id, "Processing subscriber terminal cfg clear for sub_term_id %d and intf_id %d\n",
onu_id, intf_id);
key.onu_id = onu_id;
key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&cfg_obj, onu, key);
bcmos_errno err = bcmolt_cfg_clear(dev_id, &cfg_obj.hdr);
if (err != BCM_ERR_OK)
{
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to clear information for BAL subscriber_terminal_id %d, Interface ID %d\n",
onu_id, intf_id);
return Status(grpc::StatusCode::INTERNAL, "Failed to delete ONU");
}
return Status::OK;
}
#define MAX_CHAR_LENGTH 20
#define MAX_OMCI_MSG_LENGTH 44
Status OmciMsgOut_(uint32_t intf_id, uint32_t onu_id, const std::string pkt) {
bcmolt_bin_str buf = {};
bcmolt_onu_cpu_packets omci_cpu_packets;
bcmolt_onu_key key;
key.pon_ni = intf_id;
key.onu_id = onu_id;
BCMOLT_OPER_INIT(&omci_cpu_packets, onu, cpu_packets, key);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, packet_type, BCMOLT_PACKET_TYPE_OMCI);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, calc_crc, BCMOS_TRUE);
// ???
if ((pkt.size()/2) > MAX_OMCI_MSG_LENGTH) {
buf.len = MAX_OMCI_MSG_LENGTH;
} else {
buf.len = pkt.size()/2;
}
/* Send the OMCI packet using the BAL remote proxy API */
uint16_t idx1 = 0;
uint16_t idx2 = 0;
uint8_t arraySend[buf.len];
char str1[MAX_CHAR_LENGTH];
char str2[MAX_CHAR_LENGTH];
memset(&arraySend, 0, buf.len);
for (idx1=0,idx2=0; idx1<((buf.len)*2); idx1++,idx2++) {
sprintf(str1,"%c", pkt[idx1]);
sprintf(str2,"%c", pkt[++idx1]);
strcat(str1,str2);
arraySend[idx2] = strtol(str1, NULL, 16);
}
buf.arr = (uint8_t *)malloc((buf.len)*sizeof(uint8_t));
memcpy(buf.arr, (uint8_t *)arraySend, buf.len);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, number_of_packets, 1);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, packet_size, buf.len);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, buffer, buf);
bcmos_errno err = bcmolt_oper_submit(dev_id, &omci_cpu_packets.hdr);
if (err) {
OPENOLT_LOG(ERROR, omci_log_id, "Error sending OMCI message to ONU %d on PON %d\n", onu_id, intf_id);
return bcm_to_grpc_err(err, "send OMCI failed");
} else {
OPENOLT_LOG(DEBUG, omci_log_id, "OMCI request msg of length %d sent to ONU %d on PON %d : %s\n",
buf.len, onu_id, intf_id, pkt.c_str());
}
free(buf.arr);
return Status::OK;
}
Status OnuPacketOut_(uint32_t intf_id, uint32_t onu_id, uint32_t port_no, uint32_t gemport_id, const std::string pkt) {
bcmolt_pon_interface_cpu_packets pon_interface_cpu_packets; /**< declare main API struct */
bcmolt_pon_interface_key key = {.pon_ni = (bcmolt_interface)intf_id}; /**< declare key */
bcmolt_bin_str buf = {};
bcmolt_gem_port_id gem_port_id_array[1];
bcmolt_gem_port_id_list_u8_max_16 gem_port_list = {};
if (port_no > 0) {
bool found = false;
if (gemport_id == 0) {
bcmos_fastlock_lock(&data_lock);
// Map the port_no to one of the flows that owns it to find a gemport_id for that flow.
// Pick any flow that is mapped with the same port_no.
std::map<uint32_t, std::set<uint32_t> >::const_iterator it = port_to_flows.find(port_no);
if (it != port_to_flows.end() && !it->second.empty()) {
uint32_t flow_id = *(it->second.begin()); // Pick any flow_id out of the bag set
std::map<uint32_t, uint32_t>::const_iterator fit = flowid_to_gemport.find(flow_id);
if (fit != flowid_to_gemport.end()) {
found = true;
gemport_id = fit->second;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (!found) {
OPENOLT_LOG(ERROR, openolt_log_id, "Packet out failed to find destination for ONU %d port_no %u on PON %d\n",
onu_id, port_no, intf_id);
return grpc::Status(grpc::StatusCode::NOT_FOUND, "no flow for port_no");
}
OPENOLT_LOG(INFO, openolt_log_id, "Gem port %u found for ONU %d port_no %u on PON %d\n",
gemport_id, onu_id, port_no, intf_id);
}
gem_port_id_array[0] = gemport_id;
gem_port_list.len = 1;
gem_port_list.arr = gem_port_id_array;
buf.len = pkt.size();
buf.arr = (uint8_t *)malloc((buf.len)*sizeof(uint8_t));
memcpy(buf.arr, (uint8_t *)pkt.data(), buf.len);
/* init the API struct */
BCMOLT_OPER_INIT(&pon_interface_cpu_packets, pon_interface, cpu_packets, key);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, packet_type, BCMOLT_PACKET_TYPE_ETH);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, calc_crc, BCMOS_TRUE);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, gem_port_list, gem_port_list);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, buffer, buf);
OPENOLT_LOG(INFO, openolt_log_id, "Packet out of length %d sent to gemport %d on pon %d port_no %u\n",
(uint8_t)pkt.size(), gemport_id, intf_id, port_no);
/* call API */
bcmolt_oper_submit(dev_id, &pon_interface_cpu_packets.hdr);
}
else {
//TODO: Port No is 0, it is coming sender requirement.
OPENOLT_LOG(INFO, openolt_log_id, "port_no %d onu %d on pon %d\n",
port_no, onu_id, intf_id);
}
free(buf.arr);
return Status::OK;
}
Status UplinkPacketOut_(uint32_t intf_id, const std::string pkt, bcmolt_flow_id flow_id) {
bcmolt_flow_key key = {}; /* declare key */
bcmolt_bin_str buffer = {};
bcmolt_flow_send_eth_packet oper; /* declare main API struct */
//validate flow_id and find flow_id/flow type: upstream/ingress type: PON/egress type: NNI
if (get_flow_status(flow_id, BCMOLT_FLOW_TYPE_UPSTREAM, FLOW_TYPE) == BCMOLT_FLOW_TYPE_UPSTREAM && \
get_flow_status(flow_id, BCMOLT_FLOW_TYPE_UPSTREAM, INGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_PON && \
get_flow_status(flow_id, BCMOLT_FLOW_TYPE_UPSTREAM, EGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_NNI)
key.flow_id = flow_id;
else {
if (flow_id_counters != 0) {
for (int flowid=0; flowid < flow_id_counters; flowid++) {
int flow_index = flow_id_data[flowid][0];
if (get_flow_status(flow_index, BCMOLT_FLOW_TYPE_UPSTREAM, FLOW_TYPE) == BCMOLT_FLOW_TYPE_UPSTREAM && \
get_flow_status(flow_index, BCMOLT_FLOW_TYPE_UPSTREAM, INGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_PON && \
get_flow_status(flow_index, BCMOLT_FLOW_TYPE_UPSTREAM, EGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_NNI) {
key.flow_id = flow_index;
break;
}
}
}
else
return grpc::Status(grpc::StatusCode::NOT_FOUND, "no flow id found");
}
key.flow_type = BCMOLT_FLOW_TYPE_UPSTREAM; /* send from uplink direction */
/* Initialize the API struct. */
BCMOLT_OPER_INIT(&oper, flow, send_eth_packet, key);
buffer.len = pkt.size();
buffer.arr = (uint8_t *)malloc((buffer.len)*sizeof(uint8_t));
memcpy(buffer.arr, (uint8_t *)pkt.data(), buffer.len);
if (buffer.arr == NULL) {
OPENOLT_LOG(ERROR, openolt_log_id, "allocate pakcet buffer failed\n");
return bcm_to_grpc_err(BCM_ERR_PARM, "allocate pakcet buffer failed");
}
BCMOLT_FIELD_SET(&oper.data, flow_send_eth_packet_data, buffer, buffer);
bcmos_errno err = bcmolt_oper_submit(dev_id, &oper.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Error sending packets to port %d, flow_id %d, err %d\n", intf_id, key.flow_id, err);
} else {
OPENOLT_LOG(INFO, openolt_log_id, "sent packets to port %d in upstream direction (flow_id %d)\n", intf_id, key.flow_id);
}
return Status::OK;
}
uint32_t GetPortNum_(uint32_t flow_id) {
bcmos_fastlock_lock(&data_lock);
uint32_t port_no = 0;
std::map<uint32_t, uint32_t >::const_iterator it = flowid_to_port.find(flow_id);
if (it != flowid_to_port.end()) {
port_no = it->second;
}
bcmos_fastlock_unlock(&data_lock, 0);
return port_no;
}
#define FLOW_LOG(level,msg,err) \
do { \
OPENOLT_LOG(level, openolt_log_id, "--------> %s (flow_id %d) err: %d <--------\n", msg, key.flow_id, err); \
OPENOLT_LOG(level, openolt_log_id, "intf_id %d, onu_id %d, uni_id %d, port_no %u, cookie %"PRIu64"\n", \
access_intf_id, onu_id, uni_id, port_no, cookie); \
OPENOLT_LOG(level, openolt_log_id, "flow_type %s, queue_id %d, sched_id %d\n", flow_type.c_str(), \
cfg.data.egress_qos.u.fixed_queue.queue_id, cfg.data.egress_qos.tm_sched.id); \
OPENOLT_LOG(level, openolt_log_id, "Ingress(intfd_type %s, intf_id %d), Egress(intf_type %s, intf_id %d)\n", \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type), cfg.data.ingress_intf.intf_id, \
GET_FLOW_INTERFACE_TYPE(cfg.data.egress_intf.intf_type), cfg.data.egress_intf.intf_id); \
OPENOLT_LOG(level, openolt_log_id, "classifier(o_vid %d, o_pbits %d, i_vid %d, i_pbits %d, ether type 0x%x)\n", \
c_val.o_vid, c_val.o_pbits, c_val.i_vid, c_val.i_pbits, classifier.eth_type()); \
OPENOLT_LOG(level, openolt_log_id, "classifier(ip_proto 0x%x, gemport_id %d, src_port %d, dst_port %d, pkt_tag_type %s)\n", \
c_val.ip_proto, gemport_id, c_val.src_port, c_val.dst_port, GET_PKT_TAG_TYPE(c_val.pkt_tag_type)); \
OPENOLT_LOG(level, openolt_log_id, "action(cmds_bitmask %s, o_vid %d, o_pbits %d, i_vid %d, i_pbits %d)\n\n", \
get_flow_acton_command(a_val.cmds_bitmask), a_val.o_vid, a_val.o_pbits, a_val.i_vid, a_val.i_pbits); \
} while(0)
#define FLOW_PARAM_LOG() \
do { \
OPENOLT_LOG(INFO, openolt_log_id, "--------> flow comparison (now before) <--------\n"); \
OPENOLT_LOG(INFO, openolt_log_id, "flow_id (%d %d)\n", \
key.flow_id, flow_index); \
OPENOLT_LOG(INFO, openolt_log_id, "onu_id (%d %lu)\n", \
cfg.data.onu_id , get_flow_status(flow_index, flow_id_data[flowid][1], ONU_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "type (%d %lu)\n", \
key.flow_type, get_flow_status(flow_index, flow_id_data[flowid][1], FLOW_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "svc_port_id (%d %lu)\n", \
cfg.data.svc_port_id, get_flow_status(flow_index, flow_id_data[flowid][1], SVC_PORT_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "priority (%d %lu)\n", \
cfg.data.priority, get_flow_status(flow_index, flow_id_data[flowid][1], PRIORITY)); \
OPENOLT_LOG(INFO, openolt_log_id, "cookie (%lu %lu)\n", \
cfg.data.cookie, get_flow_status(flow_index, flow_id_data[flowid][1], COOKIE)); \
OPENOLT_LOG(INFO, openolt_log_id, "ingress intf_type (%s %s)\n", \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type), \
GET_FLOW_INTERFACE_TYPE(get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_TYPE))); \
OPENOLT_LOG(INFO, openolt_log_id, "ingress intf id (%d %lu)\n", \
cfg.data.ingress_intf.intf_id , get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "egress intf_type (%d %lu)\n", \
cfg.data.egress_intf.intf_type , get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "egress intf_id (%d %lu)\n", \
cfg.data.egress_intf.intf_id , get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier o_vid (%d %lu)\n", \
c_val.o_vid , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier o_pbits (%d %lu)\n", \
c_val.o_pbits , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_PBITS)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier i_vid (%d %lu)\n", \
c_val.i_vid , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier i_pbits (%d %lu)\n", \
c_val.i_pbits , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_PBITS)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier ether_type (0x%x 0x%lx)\n", \
c_val.ether_type , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_ETHER_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier ip_proto (%d %lu)\n", \
c_val.ip_proto , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_IP_PROTO)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier src_port (%d %lu)\n", \
c_val.src_port , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_SRC_PORT)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier dst_port (%d %lu)\n", \
c_val.dst_port , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_DST_PORT)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier pkt_tag_type (%s %s)\n", \
GET_PKT_TAG_TYPE(c_val.pkt_tag_type), \
GET_PKT_TAG_TYPE(get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_PKT_TAG_TYPE))); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier egress_qos type (%d %lu)\n", \
cfg.data.egress_qos.type , get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier egress_qos queue_id (%d %lu)\n", \
cfg.data.egress_qos.u.fixed_queue.queue_id, \
get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_QUEUE_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier egress_qos sched_id (%d %lu)\n", \
cfg.data.egress_qos.tm_sched.id, \
get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TM_SCHED_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier cmds_bitmask (%s %s)\n", \
get_flow_acton_command(a_val.cmds_bitmask), \
get_flow_acton_command(get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_CMDS_BITMASK))); \
OPENOLT_LOG(INFO, openolt_log_id, "action o_vid (%d %lu)\n", \
a_val.o_vid , get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "action i_vid (%d %lu)\n", \
a_val.i_vid , get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "action o_pbits (%d %lu)\n", \
a_val.o_pbits , get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_PBITS)); \
OPENOLT_LOG(INFO, openolt_log_id, "action i_pbits (%d %lu)\n\n", \
a_val.i_pbits, get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_PBITS)); \
} while(0)
#define FLOW_CHECKER
//#define SHOW_FLOW_PARAM
Status FlowAdd_(int32_t access_intf_id, int32_t onu_id, int32_t uni_id, uint32_t port_no,
uint32_t flow_id, const std::string flow_type,
int32_t alloc_id, int32_t network_intf_id,
int32_t gemport_id, const ::openolt::Classifier& classifier,
const ::openolt::Action& action, int32_t priority_value, uint64_t cookie) {
bcmolt_flow_cfg cfg;
bcmolt_flow_key key = { }; /**< Object key. */
int32_t o_vid = -1;
bool single_tag = false;
uint32_t ether_type = 0;
bcmolt_classifier c_val = { };
bcmolt_action a_val = { };
bcmolt_tm_queue_ref tm_val = { };
int tm_qmp_id, tm_q_set_id;
key.flow_id = flow_id;
if (flow_type.compare(upstream) == 0 ) {
key.flow_type = BCMOLT_FLOW_TYPE_UPSTREAM;
} else if (flow_type.compare(downstream) == 0) {
key.flow_type = BCMOLT_FLOW_TYPE_DOWNSTREAM;
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "Invalid flow type %s\n", flow_type.c_str());
return bcm_to_grpc_err(BCM_ERR_PARM, "Invalid flow type");
}
BCMOLT_CFG_INIT(&cfg, flow, key);
BCMOLT_MSG_FIELD_SET(&cfg, cookie, cookie);
if (access_intf_id >= 0 && network_intf_id >= 0) {
if (key.flow_type == BCMOLT_FLOW_TYPE_UPSTREAM) { //upstream
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_PON);
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_id, access_intf_id);
if (classifier.eth_type() == EAP_ETHER_TYPE || //EAPOL packet
(classifier.ip_proto() == 17 && classifier.src_port() == 68 && classifier.dst_port() == 67)) { //DHCP packet
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_HOST);
} else {
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_NNI);
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_id, network_intf_id);
}
} else if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) { //downstream
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_NNI);
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_id, network_intf_id);
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_PON);
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_id, access_intf_id);
}
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "flow network setting invalid\n");
return bcm_to_grpc_err(BCM_ERR_PARM, "flow network setting invalid");
}
if (onu_id >= 0) {
BCMOLT_MSG_FIELD_SET(&cfg, onu_id, onu_id);
}
if (gemport_id >= 0) {
BCMOLT_MSG_FIELD_SET(&cfg, svc_port_id, gemport_id);
}
if (gemport_id >= 0 && port_no != 0) {
bcmos_fastlock_lock(&data_lock);
if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) {
port_to_flows[port_no].insert(key.flow_id);
flowid_to_gemport[key.flow_id] = gemport_id;
}
else
{
flowid_to_port[key.flow_id] = port_no;
}
bcmos_fastlock_unlock(&data_lock, 0);
}
if (priority_value >= 0) {
BCMOLT_MSG_FIELD_SET(&cfg, priority, priority_value);
}
{
/* removed by BAL v3.0
if (classifier.o_tpid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_tpid 0x%04x\n", classifier.o_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, o_tpid, classifier.o_tpid());
}
*/
if (classifier.o_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_vid %d\n", classifier.o_vid());
BCMOLT_FIELD_SET(&c_val, classifier, o_vid, classifier.o_vid());
}
/* removed by BAL v3.0
if (classifier.i_tpid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify i_tpid 0x%04x\n", classifier.i_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, i_tpid, classifier.i_tpid());
}
*/
if (classifier.i_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify i_vid %d\n", classifier.i_vid());
BCMOLT_FIELD_SET(&c_val, classifier, i_vid, classifier.i_vid());
}
if (classifier.eth_type()) {
ether_type = classifier.eth_type();
OPENOLT_LOG(DEBUG, openolt_log_id, "classify ether_type 0x%04x\n", classifier.eth_type());
BCMOLT_FIELD_SET(&c_val, classifier, ether_type, classifier.eth_type());
}
/*
if (classifier.dst_mac()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, dst_mac, classifier.dst_mac());
}
if (classifier.src_mac()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, src_mac, classifier.src_mac());
}
*/
if (classifier.ip_proto()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify ip_proto %d\n", classifier.ip_proto());
BCMOLT_FIELD_SET(&c_val, classifier, ip_proto, classifier.ip_proto());
}
/*
if (classifier.dst_ip()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, dst_ip, classifier.dst_ip());
}
if (classifier.src_ip()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, src_ip, classifier.src_ip());
}
*/
if (classifier.src_port()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify src_port %d\n", classifier.src_port());
BCMOLT_FIELD_SET(&c_val, classifier, src_port, classifier.src_port());
}
if (classifier.dst_port()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify dst_port %d\n", classifier.dst_port());
BCMOLT_FIELD_SET(&c_val, classifier, dst_port, classifier.dst_port());
}
if (!classifier.pkt_tag_type().empty()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify tag_type %s\n", classifier.pkt_tag_type().c_str());
if (classifier.pkt_tag_type().compare("untagged") == 0) {
BCMOLT_FIELD_SET(&c_val, classifier, pkt_tag_type, BCMOLT_PKT_TAG_TYPE_UNTAGGED);
} else if (classifier.pkt_tag_type().compare("single_tag") == 0) {
BCMOLT_FIELD_SET(&c_val, classifier, pkt_tag_type, BCMOLT_PKT_TAG_TYPE_SINGLE_TAG);
single_tag = true;
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_pbits 0x%x\n", classifier.o_pbits());
BCMOLT_FIELD_SET(&c_val, classifier, o_pbits, classifier.o_pbits());
} else if (classifier.pkt_tag_type().compare("double_tag") == 0) {
BCMOLT_FIELD_SET(&c_val, classifier, pkt_tag_type, BCMOLT_PKT_TAG_TYPE_DOUBLE_TAG);
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_pbits 0x%x\n", classifier.o_pbits());
BCMOLT_FIELD_SET(&c_val, classifier, o_pbits, classifier.o_pbits());
}
}
BCMOLT_MSG_FIELD_SET(&cfg, classifier, c_val);
}
if (cfg.data.egress_intf.intf_type != BCMOLT_FLOW_INTERFACE_TYPE_HOST) {
const ::openolt::ActionCmd& cmd = action.cmd();
if (cmd.add_outer_tag()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action add o_tag\n");
BCMOLT_FIELD_SET(&a_val, action, cmds_bitmask, BCMOLT_ACTION_CMD_ID_ADD_OUTER_TAG);
}
if (cmd.remove_outer_tag()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action pop o_tag\n");
BCMOLT_FIELD_SET(&a_val, action, cmds_bitmask, BCMOLT_ACTION_CMD_ID_REMOVE_OUTER_TAG);
}
/* removed by BAL v3.0
if (cmd.trap_to_host()) {
OPENOLT_LOG(INFO, openolt_log_id, "action trap-to-host\n");
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, cmds_bitmask, BCMBAL_ACTION_CMD_ID_TRAP_TO_HOST);
}
*/
if (action.o_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action o_vid=%d\n", action.o_vid());
o_vid = action.o_vid();
BCMOLT_FIELD_SET(&a_val, action, o_vid, action.o_vid());
}
if (action.o_pbits()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action o_pbits=0x%x\n", action.o_pbits());
BCMOLT_FIELD_SET(&a_val, action, o_pbits, action.o_pbits());
}
/* removed by BAL v3.0
if (action.o_tpid()) {
OPENOLT_LOG(INFO, openolt_log_id, "action o_tpid=0x%04x\n", action.o_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, o_tpid, action.o_tpid());
}
*/
if (action.i_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action i_vid=%d\n", action.i_vid());
BCMOLT_FIELD_SET(&a_val, action, i_vid, action.i_vid());
}
if (action.i_pbits()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action i_pbits=0x%x\n", action.i_pbits());
BCMOLT_FIELD_SET(&a_val, action, i_pbits, action.i_pbits());
}
/* removed by BAL v3.0
if (action.i_tpid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action i_tpid=0x%04x\n", action.i_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, i_tpid, action.i_tpid());
}
*/
BCMOLT_MSG_FIELD_SET(&cfg, action, a_val);
}
if ((access_intf_id >= 0) && (onu_id >= 0)) {
if(single_tag && ether_type == EAP_ETHER_TYPE) {
tm_val.sched_id = (flow_type.compare(upstream) == 0) ? \
get_default_tm_sched_id(network_intf_id, upstream) : \
get_default_tm_sched_id(access_intf_id, downstream);
tm_val.queue_id = 0;
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.type, BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.tm_sched.id, tm_val.sched_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.fixed_queue.queue_id, tm_val.queue_id);
OPENOLT_LOG(DEBUG, openolt_log_id, "direction = %s, queue_id = %d, sched_id = %d, intf_type %s\n", \
flow_type.c_str(), tm_val.queue_id, tm_val.sched_id, \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type));
} else {
if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) {
tm_val.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, downstream);
if (qos_type == BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE) {
// Queue 0 on DS subscriber scheduler
tm_val.queue_id = 0;
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.type, qos_type);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.tm_sched.id, tm_val.sched_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.fixed_queue.queue_id, tm_val.queue_id);
OPENOLT_LOG(DEBUG, openolt_log_id, "direction = %s, queue_id = %d, sched_id = %d, intf_type %s\n", \
downstream.c_str(), tm_val.queue_id, tm_val.sched_id, \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type));
} else if (qos_type == BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE) {
/* Fetch TM QMP ID mapped to DS subscriber scheduler */
tm_qmp_id = tm_q_set_id = get_tm_qmp_id(tm_val.sched_id, access_intf_id, onu_id, uni_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.type, qos_type);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.tm_sched.id, tm_val.sched_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.priority_to_queue.tm_qmp_id, tm_qmp_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.priority_to_queue.tm_q_set_id, tm_q_set_id);
OPENOLT_LOG(DEBUG, openolt_log_id, "direction = %s, q_set_id = %d, sched_id = %d, intf_type %s\n", \
downstream.c_str(), tm_q_set_id, tm_val.sched_id, \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type));
}
} else if (key.flow_type == BCMOLT_FLOW_TYPE_UPSTREAM) {
// NNI Scheduler ID
tm_val.sched_id = get_default_tm_sched_id(network_intf_id, upstream);
if (qos_type == BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE) {
// Queue 0 on NNI scheduler
tm_val.queue_id = 0;
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.type, qos_type);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.tm_sched.id, tm_val.sched_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.fixed_queue.queue_id, tm_val.queue_id);
OPENOLT_LOG(DEBUG, openolt_log_id, "direction = %s, queue_id = %d, sched_id = %d, intf_type %s\n", \
upstream.c_str(), tm_val.queue_id, tm_val.sched_id, \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type));
} else if (qos_type == BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE) {
/* Fetch TM QMP ID mapped to US NNI scheduler */
tm_qmp_id = tm_q_set_id = get_tm_qmp_id(tm_val.sched_id, access_intf_id, onu_id, uni_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.type, qos_type);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.tm_sched.id, tm_val.sched_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.priority_to_queue.tm_qmp_id, tm_qmp_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.priority_to_queue.tm_q_set_id, tm_q_set_id);
OPENOLT_LOG(DEBUG, openolt_log_id, "direction = %s, q_set_id = %d, sched_id = %d, intf_type %s\n", \
upstream.c_str(), tm_q_set_id, tm_val.sched_id, \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type));
}
}
}
}
BCMOLT_MSG_FIELD_SET(&cfg, state, BCMOLT_FLOW_STATE_ENABLE);
BCMOLT_MSG_FIELD_SET(&cfg, statistics, BCMOLT_CONTROL_STATE_ENABLE);
#ifdef FLOW_CHECKER
//Flow Checker, To avoid duplicate flow.
if (flow_id_counters != 0) {
bool b_duplicate_flow = false;
for (int flowid=0; flowid < flow_id_counters; flowid++) {
int flow_index = flow_id_data[flowid][0];
b_duplicate_flow = (cfg.data.onu_id == get_flow_status(flow_index, flow_id_data[flowid][1], ONU_ID)) && \
(key.flow_type == flow_id_data[flowid][1]) && \
(cfg.data.svc_port_id == get_flow_status(flow_index, flow_id_data[flowid][1], SVC_PORT_ID)) && \
(cfg.data.priority == get_flow_status(flow_index, flow_id_data[flowid][1], PRIORITY)) && \
(cfg.data.cookie == get_flow_status(flow_index, flow_id_data[flowid][1], COOKIE)) && \
(cfg.data.ingress_intf.intf_type == get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_TYPE)) && \
(cfg.data.ingress_intf.intf_id == get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_ID)) && \
(cfg.data.egress_intf.intf_type == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_TYPE)) && \
(cfg.data.egress_intf.intf_id == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_ID)) && \
(c_val.o_vid == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_VID)) && \
(c_val.o_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_PBITS)) && \
(c_val.i_vid == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_VID)) && \
(c_val.i_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_PBITS)) && \
(c_val.ether_type == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_ETHER_TYPE)) && \
(c_val.ip_proto == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_IP_PROTO)) && \
(c_val.src_port == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_SRC_PORT)) && \
(c_val.dst_port == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_DST_PORT)) && \
(c_val.pkt_tag_type == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_PKT_TAG_TYPE)) && \
(cfg.data.egress_qos.type == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TYPE)) && \
(cfg.data.egress_qos.u.fixed_queue.queue_id == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_QUEUE_ID)) && \
(cfg.data.egress_qos.tm_sched.id == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TM_SCHED_ID)) && \
(a_val.cmds_bitmask == get_flow_status(flowid, flow_id_data[flowid][1], ACTION_CMDS_BITMASK)) && \
(a_val.o_vid == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_VID)) && \
(a_val.i_vid == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_VID)) && \
(a_val.o_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_PBITS)) && \
(a_val.i_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_PBITS)) && \
(cfg.data.state == get_flow_status(flowid, flow_id_data[flowid][1], STATE));
#ifdef SHOW_FLOW_PARAM
// Flow Parameter
FLOW_PARAM_LOG();
#endif
if (b_duplicate_flow) {
FLOW_LOG(WARNING, "Flow duplicate", 0);
return bcm_to_grpc_err(BCM_ERR_ALREADY, "flow exists");
}
}
}
#endif
bcmos_errno err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if (err) {
FLOW_LOG(ERROR, "Flow add failed", err);
return bcm_to_grpc_err(err, "flow add failed");
} else {
FLOW_LOG(INFO, "Flow add ok", err);
bcmos_fastlock_lock(&data_lock);
flow_id_data[flow_id_counters][0] = key.flow_id;
flow_id_data[flow_id_counters][1] = key.flow_type;
flow_id_counters += 1;
bcmos_fastlock_unlock(&data_lock, 0);
}
return Status::OK;
}
Status FlowRemove_(uint32_t flow_id, const std::string flow_type) {
bcmolt_flow_cfg cfg;
bcmolt_flow_key key = { };
key.flow_id = (bcmolt_flow_id) flow_id;
key.flow_id = flow_id;
if (flow_type.compare(upstream) == 0 ) {
key.flow_type = BCMOLT_FLOW_TYPE_UPSTREAM;
} else if (flow_type.compare(downstream) == 0) {
key.flow_type = BCMOLT_FLOW_TYPE_DOWNSTREAM;
} else {
OPENOLT_LOG(WARNING, openolt_log_id, "Invalid flow type %s\n", flow_type.c_str());
return bcm_to_grpc_err(BCM_ERR_PARM, "Invalid flow type");
}
bcmos_fastlock_lock(&data_lock);
uint32_t port_no = flowid_to_port[key.flow_id];
if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) {
flowid_to_gemport.erase(key.flow_id);
port_to_flows[port_no].erase(key.flow_id);
if (port_to_flows[port_no].empty()) port_to_flows.erase(port_no);
}
else
{
flowid_to_port.erase(key.flow_id);
}
bcmos_fastlock_unlock(&data_lock, 0);
BCMOLT_CFG_INIT(&cfg, flow, key);
bcmos_errno err = bcmolt_cfg_clear(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Error %d while removing flow %d, %s\n",
err, flow_id, flow_type.c_str());
return Status(grpc::StatusCode::INTERNAL, "Failed to remove flow");
}
bcmos_fastlock_lock(&data_lock);
for (int flowid=0; flowid < flow_id_counters; flowid++) {
if (flow_id_data[flowid][0] == flow_id && flow_id_data[flowid][1] == key.flow_type) {
flow_id_counters -= 1;
for (int i=flowid; i < flow_id_counters; i++) {
flow_id_data[i][0] = flow_id_data[i + 1][0];
flow_id_data[i][1] = flow_id_data[i + 1][1];
}
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
OPENOLT_LOG(INFO, openolt_log_id, "Flow %d, %s removed\n", flow_id, flow_type.c_str());
return Status::OK;
}
bcmos_errno CreateDefaultSched(uint32_t intf_id, const std::string direction) {
bcmos_errno err;
bcmolt_tm_sched_cfg tm_sched_cfg;
bcmolt_tm_sched_key tm_sched_key = {.id = 1};
tm_sched_key.id = get_default_tm_sched_id(intf_id, direction);
// bcmbal_tm_sched_owner
BCMOLT_CFG_INIT(&tm_sched_cfg, tm_sched, tm_sched_key);
/**< The output of the tm_sched object instance */
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.type, BCMOLT_TM_SCHED_OUTPUT_TYPE_INTERFACE);
if (direction.compare(upstream) == 0) {
// In upstream it is NNI scheduler
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.interface.interface_ref.intf_type, BCMOLT_INTERFACE_TYPE_NNI);
} else if (direction.compare(downstream) == 0) {
// In downstream it is PON scheduler
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.interface.interface_ref.intf_type, BCMOLT_INTERFACE_TYPE_PON);
}
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.interface.interface_ref.intf_id, intf_id);
// bcmbal_tm_sched_type
// set the deafult policy to strict priority
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, sched_type, BCMOLT_TM_SCHED_TYPE_SP);
// num_priorities: Max number of strict priority scheduling elements
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, num_priorities, 8);
// bcmbal_tm_shaping
uint32_t cir = 1000000;
uint32_t pir = 1000000;
uint32_t burst = 65536;
OPENOLT_LOG(INFO, openolt_log_id, "applying traffic shaping in %s pir=%u, burst=%u\n",
direction.c_str(), pir, burst);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, pir);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, burst);
// FIXME: Setting CIR, results in BAL throwing error 'tm_sched minimum rate is not supported yet'
// BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.cir, cir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.pir, pir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.burst, burst);
err = bcmolt_cfg_set(dev_id, &tm_sched_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create %s scheduler, id %d, intf_id %d, err %d\n", \
direction.c_str(), tm_sched_key.id, intf_id, err);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Create %s scheduler success, id %d, intf_id %d\n", \
direction.c_str(), tm_sched_key.id, intf_id);
return BCM_ERR_OK;
}
bcmos_errno CreateSched(std::string direction, uint32_t intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t port_no,
uint32_t alloc_id, tech_profile::AdditionalBW additional_bw, uint32_t weight, uint32_t priority,
tech_profile::SchedulingPolicy sched_policy, tech_profile::TrafficShapingInfo tf_sh_info) {
bcmos_errno err;
if (direction == downstream) {
bcmolt_tm_sched_cfg tm_sched_cfg;
bcmolt_tm_sched_key tm_sched_key = {.id = 1};
tm_sched_key.id = get_tm_sched_id(intf_id, onu_id, uni_id, direction);
// bcmbal_tm_sched_owner
// In downstream it is sub_term scheduler
BCMOLT_CFG_INIT(&tm_sched_cfg, tm_sched, tm_sched_key);
/**< The output of the tm_sched object instance */
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.type, BCMOLT_TM_SCHED_OUTPUT_TYPE_TM_SCHED);
// bcmbal_tm_sched_parent
// The parent for the sub_term scheduler is the PON scheduler in the downstream
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.tm_sched.tm_sched_id, get_default_tm_sched_id(intf_id, direction));
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.tm_sched.tm_sched_param.u.priority.priority, priority);
/* removed by BAL v3.0, N/A - No direct attachment point of type ONU, same functionality may
be achieved using the' virtual' type of attachment.
tm_sched_owner.u.sub_term.intf_id = intf_id;
tm_sched_owner.u.sub_term.sub_term_id = onu_id;
*/
// bcmbal_tm_sched_type
// set the deafult policy to strict priority
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, sched_type, BCMOLT_TM_SCHED_TYPE_SP);
// num_priorities: Max number of strict priority scheduling elements
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, num_priorities, 8);
// bcmbal_tm_shaping
if (tf_sh_info.cir() >= 0 && tf_sh_info.pir() > 0) {
uint32_t cir = tf_sh_info.cir();
uint32_t pir = tf_sh_info.pir();
uint32_t burst = tf_sh_info.pbs();
OPENOLT_LOG(INFO, openolt_log_id, "applying traffic shaping in DL cir=%u, pir=%u, burst=%u\n",
cir, pir, burst);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, pir);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, burst);
// FIXME: Setting CIR, results in BAL throwing error 'tm_sched minimum rate is not supported yet'
//BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.cir, cir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.pir, pir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.burst, burst);
}
err = bcmolt_cfg_set(dev_id, &tm_sched_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create downstream subscriber scheduler, id %d, \
intf_id %d, onu_id %d, uni_id %d, port_no %u\n", tm_sched_key.id, intf_id, onu_id, \
uni_id, port_no);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Create downstream subscriber sched, id %d, intf_id %d, onu_id %d, \
uni_id %d, port_no %u\n", tm_sched_key.id, intf_id, onu_id, uni_id, port_no);
} else { //upstream
bcmolt_itupon_alloc_cfg cfg;
bcmolt_itupon_alloc_key key = { };
key.pon_ni = intf_id;
key.alloc_id = alloc_id;
int bw_granularity = (board_technology == "XGS-PON")?XGS_BANDWIDTH_GRANULARITY:GPON_BANDWIDTH_GRANULARITY;
int pir_bw = tf_sh_info.pir();
int cir_bw = tf_sh_info.cir();
//offset to match bandwidth granularity
int offset_pir_bw = pir_bw%bw_granularity;
int offset_cir_bw = cir_bw%bw_granularity;
pir_bw = pir_bw - offset_pir_bw;
cir_bw = cir_bw - offset_cir_bw;
BCMOLT_CFG_INIT(&cfg, itupon_alloc, key);
switch (additional_bw) {
case 2: //AdditionalBW_BestEffort
if (pir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth was set to 0, must be at least \
%d bytes/sec\n", (board_technology == "XGS-PON")?XGS_BANDWIDTH_GRANULARITY:GPON_BANDWIDTH_GRANULARITY);
} else if (pir_bw < cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth (%d) can't be less than Guaranteed \
bandwidth (%d)\n", pir_bw, cir_bw);
return BCM_ERR_PARM;
} else if (pir_bw == cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be greater than Guaranteed \
bandwidth for additional bandwidth eligibility of type best_effort\n");
return BCM_ERR_PARM;
}
BCMOLT_MSG_FIELD_SET(&cfg, sla.additional_bw_eligibility, BCMOLT_ADDITIONAL_BW_ELIGIBILITY_BEST_EFFORT);
break;
case 1: //AdditionalBW_NA
if (pir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth was set to 0, must be at least \
%d bytes/sec\n", (board_technology == "XGS-PON")?XGS_BANDWIDTH_GRANULARITY:GPON_BANDWIDTH_GRANULARITY);
return BCM_ERR_PARM;
} else if (cir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Guaranteed bandwidth must be greater than zero for \
additional bandwidth eligibility of type Non-Assured (NA)\n");
return BCM_ERR_PARM;
} else if (pir_bw < cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth (%d) can't be less than Guaranteed \
bandwidth (%d)\n", pir_bw, cir_bw);
return BCM_ERR_PARM;
} else if (pir_bw == cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be greater than Guaranteed \
bandwidth for additional bandwidth eligibility of type non_assured\n");
return BCM_ERR_PARM;
}
BCMOLT_MSG_FIELD_SET(&cfg, sla.additional_bw_eligibility, BCMOLT_ADDITIONAL_BW_ELIGIBILITY_NON_ASSURED);
break;
case 0: //AdditionalBW_None
if (pir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth was set to 0, must be at least \
16000 bytes/sec\n");
return BCM_ERR_PARM;
} else if (cir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be equal to Guaranteed bandwidth \
for additional bandwidth eligibility of type None\n");
return BCM_ERR_PARM;
} else if (pir_bw > cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be equal to Guaranteed bandwidth \
for additional bandwidth eligibility of type None\n");
OPENOLT_LOG(ERROR, openolt_log_id, "set Maximum bandwidth (%d) to Guaranteed \
bandwidth in None eligibility\n", pir_bw);
cir_bw = pir_bw;
} else if (pir_bw < cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth (%d) can't be less than Guaranteed \
bandwidth (%d)\n", pir_bw, cir_bw);
OPENOLT_LOG(ERROR, openolt_log_id, "set Maximum bandwidth (%d) to Guaranteed \
bandwidth in None eligibility\n", pir_bw);
cir_bw = pir_bw;
}
BCMOLT_MSG_FIELD_SET(&cfg, sla.additional_bw_eligibility, BCMOLT_ADDITIONAL_BW_ELIGIBILITY_NONE);
break;
default:
return BCM_ERR_PARM;
}
/* CBR Real Time Bandwidth which require shaping of the bandwidth allocations
in a fine granularity. */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_rt_bw, 0);
/* Fixed Bandwidth with no critical requirement of shaping */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_nrt_bw, 0);
/* Dynamic bandwidth which the OLT is committed to allocate upon demand */
BCMOLT_MSG_FIELD_SET(&cfg, sla.guaranteed_bw, cir_bw);
/* Maximum allocated bandwidth allowed for this alloc ID */
BCMOLT_MSG_FIELD_SET(&cfg, sla.maximum_bw, pir_bw);
BCMOLT_MSG_FIELD_SET(&cfg, sla.alloc_type, BCMOLT_ALLOC_TYPE_NSR);
/* Set to True for AllocID with CBR RT Bandwidth that requires compensation
for skipped allocations during quiet window */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_rt_compensation, BCMOS_FALSE);
/**< Allocation Profile index for CBR non-RT Bandwidth */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_nrt_ap_index, 0);
/**< Allocation Profile index for CBR RT Bandwidth */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_rt_ap_index, 0);
/**< Alloc ID Weight used in case of Extended DBA mode */
BCMOLT_MSG_FIELD_SET(&cfg, sla.weight, 0);
/**< Alloc ID Priority used in case of Extended DBA mode */
BCMOLT_MSG_FIELD_SET(&cfg, sla.priority, 0);
BCMOLT_MSG_FIELD_SET(&cfg, onu_id, onu_id);
err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create upstream bandwidth allocation, intf_id %d, onu_id %d, uni_id %d,\
port_no %u, alloc_id %d, err %d\n", intf_id, onu_id,uni_id,port_no,alloc_id, err);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Create upstream bandwidth allocation, intf_id %d, onu_id %d, uni_id %d, port_no %u, \
alloc_id %d\n", intf_id,onu_id,uni_id,port_no,alloc_id);
}
return BCM_ERR_OK;
}
Status CreateTrafficSchedulers_(const tech_profile::TrafficSchedulers *traffic_scheds) {
uint32_t intf_id = traffic_scheds->intf_id();
uint32_t onu_id = traffic_scheds->onu_id();
uint32_t uni_id = traffic_scheds->uni_id();
uint32_t port_no = traffic_scheds->port_no();
std::string direction;
unsigned int alloc_id;
tech_profile::SchedulerConfig sched_config;
tech_profile::AdditionalBW additional_bw;
uint32_t priority;
uint32_t weight;
tech_profile::SchedulingPolicy sched_policy;
tech_profile::TrafficShapingInfo traffic_shaping_info;
bcmos_errno err;
for (int i = 0; i < traffic_scheds->traffic_scheds_size(); i++) {
tech_profile::TrafficScheduler traffic_sched = traffic_scheds->traffic_scheds(i);
direction = GetDirection(traffic_sched.direction());
if (direction.compare("direction-not-supported") == 0)
return bcm_to_grpc_err(BCM_ERR_PARM, "direction-not-supported");
alloc_id = traffic_sched.alloc_id();
sched_config = traffic_sched.scheduler();
additional_bw = sched_config.additional_bw();
priority = sched_config.priority();
weight = sched_config.weight();
sched_policy = sched_config.sched_policy();
traffic_shaping_info = traffic_sched.traffic_shaping_info();
err = CreateSched(direction, intf_id, onu_id, uni_id, port_no, alloc_id, additional_bw, weight, priority,
sched_policy, traffic_shaping_info);
if (err) {
return bcm_to_grpc_err(err, "Failed to create scheduler");
}
}
return Status::OK;
}
bcmos_errno RemoveSched(int intf_id, int onu_id, int uni_id, int alloc_id, std::string direction) {
bcmos_errno err;
if (direction == upstream) {
bcmolt_itupon_alloc_cfg cfg;
bcmolt_itupon_alloc_key key = { };
key.pon_ni = intf_id;
key.alloc_id = alloc_id;
BCMOLT_CFG_INIT(&cfg, itupon_alloc, key);
err = bcmolt_cfg_clear(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to remove scheduler sched, direction = %s, intf_id %d, alloc_id %d, err %d\n", \
direction.c_str(), intf_id, alloc_id, err);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Removed sched, direction = %s, intf_id %d, alloc_id %d\n", \
direction.c_str(), intf_id, alloc_id);
} else if (direction == downstream) {
bcmolt_tm_sched_cfg cfg;
bcmolt_tm_sched_key key = { };
if (is_tm_sched_id_present(intf_id, onu_id, uni_id, direction)) {
key.id = get_tm_sched_id(intf_id, onu_id, uni_id, direction);
} else {
OPENOLT_LOG(INFO, openolt_log_id, "schduler not present in %s, err %d\n", direction.c_str(), err);
return BCM_ERR_OK;
}
BCMOLT_CFG_INIT(&cfg, tm_sched, key);
err = bcmolt_cfg_clear(dev_id, &(cfg.hdr));
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to remove scheduler, direction = %s, id %d, intf_id %d, onu_id %d\n", \
direction.c_str(), key.id, intf_id, onu_id);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Removed sched, direction = %s, id %d, intf_id %d, onu_id %d\n", \
direction.c_str(), key.id, intf_id, onu_id);
}
free_tm_sched_id(intf_id, onu_id, uni_id, direction);
return BCM_ERR_OK;
}
Status RemoveTrafficSchedulers_(const tech_profile::TrafficSchedulers *traffic_scheds) {
uint32_t intf_id = traffic_scheds->intf_id();
uint32_t onu_id = traffic_scheds->onu_id();
uint32_t uni_id = traffic_scheds->uni_id();
std::string direction;
bcmos_errno err;
for (int i = 0; i < traffic_scheds->traffic_scheds_size(); i++) {
tech_profile::TrafficScheduler traffic_sched = traffic_scheds->traffic_scheds(i);
direction = GetDirection(traffic_sched.direction());
if (direction.compare("direction-not-supported") == 0)
return bcm_to_grpc_err(BCM_ERR_PARM, "direction-not-supported");
int alloc_id = traffic_sched.alloc_id();
err = RemoveSched(intf_id, onu_id, uni_id, alloc_id, direction);
if (err) {
return bcm_to_grpc_err(err, "error-removing-traffic-scheduler");
}
}
return Status::OK;
}
bcmos_errno CreateTrafficQueueMappingProfile(uint32_t sched_id, uint32_t intf_id, uint32_t onu_id, uint32_t uni_id, \
std::string direction, std::vector<uint32_t> tmq_map_profile) {
bcmos_errno err;
bcmolt_tm_qmp_cfg tm_qmp_cfg;
bcmolt_tm_qmp_key tm_qmp_key;
bcmolt_arr_u8_8 pbits_to_tmq_id = {0};
int tm_qmp_id = get_tm_qmp_id(sched_id, intf_id, onu_id, uni_id, tmq_map_profile);
if (tm_qmp_id == -1) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create tm queue mapping profile. Max allowed profile count is 16.\n");
}
tm_qmp_key.id = tm_qmp_id;
for (uint32_t priority=0; priority<tmq_map_profile.size(); priority++) {
pbits_to_tmq_id.arr[priority] = tmq_map_profile[priority];
}
BCMOLT_CFG_INIT(&tm_qmp_cfg, tm_qmp, tm_qmp_key);
BCMOLT_MSG_FIELD_SET(&tm_qmp_cfg, type, BCMOLT_TM_QMP_TYPE_PBITS);
BCMOLT_MSG_FIELD_SET(&tm_qmp_cfg, pbits_to_tmq_id, pbits_to_tmq_id);
BCMOLT_MSG_FIELD_SET(&tm_qmp_cfg, ref_count, 0);
BCMOLT_MSG_FIELD_SET(&tm_qmp_cfg, state, BCMOLT_CONFIG_STATE_CONFIGURED);
err = bcmolt_cfg_set(dev_id, &tm_qmp_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create tm queue mapping profile, id %d\n", \
tm_qmp_key.id);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Create tm queue mapping profile success, id %d\n", \
tm_qmp_key.id);
return BCM_ERR_OK;
}
bcmos_errno RemoveTrafficQueueMappingProfile(uint32_t tm_qmp_id) {
bcmos_errno err;
bcmolt_tm_qmp_cfg tm_qmp_cfg;
bcmolt_tm_qmp_key tm_qmp_key;
tm_qmp_key.id = tm_qmp_id;
BCMOLT_CFG_INIT(&tm_qmp_cfg, tm_qmp, tm_qmp_key);
err = bcmolt_cfg_clear(dev_id, &tm_qmp_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to remove tm queue mapping profile, id %d\n", \
tm_qmp_key.id);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Remove tm queue mapping profile success, id %d\n", \
tm_qmp_key.id);
return BCM_ERR_OK;
}
bcmos_errno CreateDefaultQueue(uint32_t intf_id, const std::string direction) {
bcmos_errno err;
/* Create 4 Queues on given PON/NNI scheduler */
for (int queue_id = 0; queue_id < 4; queue_id++) {
bcmolt_tm_queue_cfg tm_queue_cfg;
bcmolt_tm_queue_key tm_queue_key = {};
tm_queue_key.sched_id = get_default_tm_sched_id(intf_id, direction);
tm_queue_key.id = queue_id;
if (qos_type == BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE)
tm_queue_key.tm_q_set_id = BCMOLT_TM_QUEUE_SET_ID_QSET_NOT_USE;
else
tm_queue_key.tm_q_set_id = BCMOLT_TM_QUEUE_KEY_TM_Q_SET_ID_DEFAULT;
BCMOLT_CFG_INIT(&tm_queue_cfg, tm_queue, tm_queue_key);
BCMOLT_MSG_FIELD_SET(&tm_queue_cfg, tm_sched_param.type, BCMOLT_TM_SCHED_PARAM_TYPE_PRIORITY);
BCMOLT_MSG_FIELD_SET(&tm_queue_cfg, tm_sched_param.u.priority.priority, queue_id);
err = bcmolt_cfg_set(dev_id, &tm_queue_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create %s tm queue, id %d, sched_id %d, tm_q_set_id %d\n", \
direction.c_str(), tm_queue_key.id, tm_queue_key.sched_id, tm_queue_key.tm_q_set_id);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Create %s tm_queue success, id %d, sched_id %d, tm_q_set_id %d\n", \
direction.c_str(), tm_queue_key.id, tm_queue_key.sched_id, tm_queue_key.tm_q_set_id);
}
return BCM_ERR_OK;
}
bcmos_errno CreateQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t priority,
uint32_t gemport_id) {
bcmos_errno err;
bcmolt_tm_queue_cfg cfg;
bcmolt_tm_queue_key key = { };
OPENOLT_LOG(INFO, openolt_log_id, "creating %s queue. access_intf_id = %d, onu_id = %d, uni_id = %d \
gemport_id = %d\n", direction.c_str(), access_intf_id, onu_id, uni_id, gemport_id);
key.sched_id = (direction.compare(upstream) == 0) ? get_default_tm_sched_id(nni_intf_id, direction) : \
get_tm_sched_id(access_intf_id, onu_id, uni_id, direction);
if (priority > 7) {
return BCM_ERR_RANGE;
}
/* FIXME: The upstream queues have to be created once only.
The upstream queues on the NNI scheduler are shared by all subscribers.
When the first scheduler comes in, the queues get created, and are re-used by all others.
Also, these queues should be present until the last subscriber exits the system.
One solution is to have these queues always, i.e., create it as soon as OLT is enabled.
There is one queue per gem port and Queue ID is fetched based on priority_q configuration
for each GEM in TECH PROFILE */
key.id = queue_id_list[priority];
OPENOLT_LOG(INFO, openolt_log_id, "queue assigned queue_id = %d\n", key.id);
if (qos_type == BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE)
key.tm_q_set_id = BCMOLT_TM_QUEUE_SET_ID_QSET_NOT_USE;
else if (qos_type == BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE)
key.tm_q_set_id = get_tm_qmp_id(key.sched_id, access_intf_id, onu_id, uni_id);
else
key.tm_q_set_id = BCMOLT_TM_QUEUE_KEY_TM_Q_SET_ID_DEFAULT;
BCMOLT_CFG_INIT(&cfg, tm_queue, key);
BCMOLT_MSG_FIELD_SET(&cfg, tm_sched_param.u.priority.priority, priority);
err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create subscriber tm queue, direction = %s, id %d, \
sched_id %d, tm_q_set_id %d, intf_id %d, onu_id %d, uni_id %d, err %d\n", \
direction.c_str(), key.id, key.sched_id, key.tm_q_set_id, access_intf_id, onu_id, uni_id, err);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Created tm_queue, direction %s, id %d, sched_id %d, tm_q_set_id %d, \
intf_id %d, onu_id %d, uni_id %d\n", direction.c_str(), key.id, key.sched_id, key.tm_q_set_id, access_intf_id, onu_id, uni_id);
return BCM_ERR_OK;
}
Status CreateTrafficQueues_(const tech_profile::TrafficQueues *traffic_queues) {
uint32_t intf_id = traffic_queues->intf_id();
uint32_t onu_id = traffic_queues->onu_id();
uint32_t uni_id = traffic_queues->uni_id();
uint32_t sched_id;
std::string direction;
bcmos_errno err;
qos_type = (traffic_queues->traffic_queues_size() > 1) ? \
BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE : BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE;
if (qos_type == BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE) {
uint32_t queues_priority_q[traffic_queues->traffic_queues_size()] = {0};
std::string queues_pbit_map[traffic_queues->traffic_queues_size()];
for (int i = 0; i < traffic_queues->traffic_queues_size(); i++) {
tech_profile::TrafficQueue traffic_queue = traffic_queues->traffic_queues(i);
direction = GetDirection(traffic_queue.direction());
if (direction.compare("direction-not-supported") == 0)
return bcm_to_grpc_err(BCM_ERR_PARM, "direction-not-supported");
queues_priority_q[i] = traffic_queue.priority();
queues_pbit_map[i] = traffic_queue.pbit_map();
}
std::vector<uint32_t> tmq_map_profile(8, 0);
tmq_map_profile = get_tmq_map_profile(get_valid_queues_pbit_map(queues_pbit_map, COUNT_OF(queues_pbit_map)), \
queues_priority_q, COUNT_OF(queues_priority_q));
sched_id = (direction.compare(upstream) == 0) ? get_default_tm_sched_id(nni_intf_id, direction) : \
get_tm_sched_id(intf_id, onu_id, uni_id, direction);
int tm_qmp_id = get_tm_qmp_id(tmq_map_profile);
if (tm_qmp_id == -1) {
CreateTrafficQueueMappingProfile(sched_id, intf_id, onu_id, uni_id, direction, tmq_map_profile);
} else if (tm_qmp_id != -1 && get_tm_qmp_id(sched_id, intf_id, onu_id, uni_id) == -1) {
OPENOLT_LOG(INFO, openolt_log_id, "tm queue mapping profile present already with id %d\n", tm_qmp_id);
update_sched_qmp_id_map(sched_id, intf_id, onu_id, uni_id, tm_qmp_id);
}
}
for (int i = 0; i < traffic_queues->traffic_queues_size(); i++) {
tech_profile::TrafficQueue traffic_queue = traffic_queues->traffic_queues(i);
direction = GetDirection(traffic_queue.direction());
if (direction.compare("direction-not-supported") == 0)
return bcm_to_grpc_err(BCM_ERR_PARM, "direction-not-supported");
err = CreateQueue(direction, intf_id, onu_id, uni_id, traffic_queue.priority(), traffic_queue.gemport_id());
// If the queue exists already, lets not return failure and break the loop.
if (err && err != BCM_ERR_ALREADY) {
return bcm_to_grpc_err(err, "Failed to create queue");
}
}
return Status::OK;
}
bcmos_errno RemoveQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t priority,
uint32_t gemport_id) {
bcmolt_tm_queue_cfg cfg;
bcmolt_tm_queue_key key = { };
bcmos_errno err;
if (direction == downstream) {
if (is_tm_sched_id_present(access_intf_id, onu_id, uni_id, direction)) {
key.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, direction);
key.id = queue_id_list[priority];
} else {
OPENOLT_LOG(INFO, openolt_log_id, "queue not present in DS. Not clearing, access_intf_id %d, onu_id %d, uni_id %d, gemport_id %d, direction %s\n", access_intf_id, onu_id, uni_id, gemport_id, direction.c_str());
return BCM_ERR_OK;
}
} else {
/* In the upstream we use pre-created queues on the NNI scheduler that are used by all subscribers.
They should not be removed. So, lets return OK. */
return BCM_ERR_OK;
}
if (qos_type == BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE)
key.tm_q_set_id = BCMOLT_TM_QUEUE_SET_ID_QSET_NOT_USE;
else if (qos_type == BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE)
key.tm_q_set_id = get_tm_qmp_id(key.sched_id, access_intf_id, onu_id, uni_id);
else
key.tm_q_set_id = BCMOLT_TM_QUEUE_KEY_TM_Q_SET_ID_DEFAULT;
BCMOLT_CFG_INIT(&cfg, tm_queue, key);
err = bcmolt_cfg_clear(dev_id, &(cfg.hdr));
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to remove queue, direction = %s, id %d, sched_id %d, \
tm_q_set_id %d, intf_id %d, onu_id %d, uni_id %d\n",
direction.c_str(), key.id, key.sched_id, key.tm_q_set_id, access_intf_id, onu_id, uni_id);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Removed tm_queue, direction %s, id %d, sched_id %d, tm_q_set_id %d, \
intf_id %d, onu_id %d, uni_id %d\n", direction.c_str(), key.id, key.sched_id, key.tm_q_set_id, access_intf_id, onu_id, uni_id);
return BCM_ERR_OK;
}
Status RemoveTrafficQueues_(const tech_profile::TrafficQueues *traffic_queues) {
uint32_t intf_id = traffic_queues->intf_id();
uint32_t onu_id = traffic_queues->onu_id();
uint32_t uni_id = traffic_queues->uni_id();
uint32_t port_no = traffic_queues->port_no();
uint32_t sched_id;
std::string direction;
bcmos_errno err;
qos_type = (traffic_queues->traffic_queues_size() > 1) ? \
BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE : BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE;
for (int i = 0; i < traffic_queues->traffic_queues_size(); i++) {
tech_profile::TrafficQueue traffic_queue = traffic_queues->traffic_queues(i);
direction = GetDirection(traffic_queue.direction());
if (direction.compare("direction-not-supported") == 0)
return bcm_to_grpc_err(BCM_ERR_PARM, "direction-not-supported");
err = RemoveQueue(direction, intf_id, onu_id, uni_id, traffic_queue.priority(), traffic_queue.gemport_id());
if (err) {
return bcm_to_grpc_err(err, "Failed to remove queue");
}
}
if (qos_type == BCMOLT_EGRESS_QOS_TYPE_PRIORITY_TO_QUEUE && (direction.compare(upstream) == 0 || direction.compare(downstream) == 0 && is_tm_sched_id_present(intf_id, onu_id, uni_id, direction))) {
sched_id = (direction.compare(upstream) == 0) ? get_default_tm_sched_id(nni_intf_id, direction) : \
get_tm_sched_id(intf_id, onu_id, uni_id, direction);
int tm_qmp_id = get_tm_qmp_id(sched_id, intf_id, onu_id, uni_id);
if (free_tm_qmp_id(sched_id, intf_id, onu_id, uni_id, tm_qmp_id)) {
RemoveTrafficQueueMappingProfile(tm_qmp_id);
}
}
return Status::OK;
}