blob: 238ce9611b59ea70e71276eefff189142820b887 [file] [log] [blame]
/*
Copyright (C) 2018 Open Networking Foundation
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <memory>
#include <string>
#include "Queue.h"
#include <iostream>
#include <sstream>
#include <chrono>
#include <thread>
#include <bitset>
#include <inttypes.h>
#include "device.h"
#include "core.h"
#include "indications.h"
#include "stats_collection.h"
#include "error_format.h"
#include "state.h"
#include "utils.h"
extern "C"
{
#include <bcmolt_api.h>
#include <bcmolt_host_api.h>
#include <bcmolt_api_model_supporting_enums.h>
#include <bal_version.h>
#include <bcmolt_api_conn_mgr.h>
//CLI header files
#include <bcmcli_session.h>
#include <bcmcli.h>
#include <bcm_api_cli.h>
#include <bcmos_common.h>
#include <bcm_config.h>
// FIXME : dependency problem
// #include <bcm_common_gpon.h>
// #include <bcm_dev_log_task.h>
}
dev_log_id openolt_log_id = bcm_dev_log_id_register("OPENOLT", DEV_LOG_LEVEL_INFO, DEV_LOG_ID_TYPE_BOTH);
dev_log_id omci_log_id = bcm_dev_log_id_register("OMCI", DEV_LOG_LEVEL_INFO, DEV_LOG_ID_TYPE_BOTH);
#define MAX_SUPPORTED_INTF 16
#define BAL_RSC_MANAGER_BASE_TM_SCHED_ID 16384
#define MAX_TM_QUEUE_ID 8192
#define MAX_TM_SCHED_ID 4075
#define EAP_ETHER_TYPE 34958
#define XGS_BANDWIDTH_GRANULARITY 16000
#define GPON_BANDWIDTH_GRANULARITY 32000
#define FILL_ARRAY(ARRAY,START,END,VALUE) for(int i=START;i<END;ARRAY[i++]=VALUE);
#define GET_FLOW_INTERFACE_TYPE(type) \
(type == BCMOLT_FLOW_INTERFACE_TYPE_PON) ? "PON" : \
(type == BCMOLT_FLOW_INTERFACE_TYPE_NNI) ? "NNI" : \
(type == BCMOLT_FLOW_INTERFACE_TYPE_HOST) ? "HOST" : "unknown"
#define GET_PKT_TAG_TYPE(type) \
(type == BCMOLT_PKT_TAG_TYPE_UNTAGGED) ? "UNTAG" : \
(type == BCMOLT_PKT_TAG_TYPE_SINGLE_TAG) ? "SINGLE_TAG" : \
(type == BCMOLT_PKT_TAG_TYPE_DOUBLE_TAG) ? "DOUBLE_TAG" : "unknown"
static unsigned int num_of_nni_ports = 0;
static unsigned int num_of_pon_ports = 0;
static std::string intf_technologies[MAX_SUPPORTED_INTF];
static const std::string UNKNOWN_TECH("unknown");
static const std::string MIXED_TECH("mixed");
static std::string board_technology(UNKNOWN_TECH);
static std::string chip_family(UNKNOWN_TECH);
static unsigned int OPENOLT_FIELD_LEN = 200;
static std::string firmware_version = "Openolt.2019.07.01";
const uint32_t tm_upstream_sched_id_start = 4092;
const uint32_t tm_downstream_sched_id_start = 4076;
//0 to 3 are default queues. Lets not use them.
const uint32_t tm_queue_id_start = 4;
// Upto 8 fixed Upstream. Queue id 0 to 3 are pre-created, lets not use them.
const uint32_t us_fixed_queue_id_list[8] = {4, 5, 6, 7, 8, 9, 10, 11};
const std::string upstream = "upstream";
const std::string downstream = "downstream";
bcmolt_oltid dev_id = 0;
/* Current session */
static bcmcli_session *current_session;
static bcmcli_entry *api_parent_dir;
bcmos_bool status_bcm_cli_quit = BCMOS_FALSE;
bcmos_task bal_cli_thread;
const char *bal_cli_thread_name = "bal_cli_thread";
uint16_t flow_id_counters = 0;
int flow_id_data[16384][2];
State state;
static std::map<uint32_t, uint32_t> flowid_to_port; // For mapping upstream flows to logical ports
static std::map<uint32_t, uint32_t> flowid_to_gemport; // For mapping downstream flows into gemports
static std::map<uint32_t, std::set<uint32_t> > port_to_flows; // For mapping logical ports to downstream flows
// This represents the Key to 'queue_map' map.
// Represents (pon_intf_id, onu_id, uni_id, gemport_id, direction)
typedef std::tuple<uint32_t, uint32_t, uint32_t, uint32_t, std::string> queue_map_key_tuple;
// 'queue_map' maps queue_map_key_tuple to downstream queue id present
// on the Subscriber Scheduler
static std::map<queue_map_key_tuple, int> queue_map;
// This represents the Key to 'sched_map' map.
// Represents (pon_intf_id, onu_id, uni_id, direction)
typedef std::tuple<uint32_t, uint32_t, uint32_t, std::string> sched_map_key_tuple;
// 'sched_map' maps sched_map_key_tuple to DBA (Upstream) or
// Subscriber (Downstream) Scheduler ID
static std::map<sched_map_key_tuple, int> sched_map;
std::bitset<MAX_TM_QUEUE_ID> tm_queue_bitset;
std::bitset<MAX_TM_SCHED_ID> tm_sched_bitset;
static bcmos_fastlock data_lock;
#define MIN_ALLOC_ID_GPON 256
#define MIN_ALLOC_ID_XGSPON 1024
static bcmos_errno CreateSched(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, \
uint32_t port_no, uint32_t alloc_id, tech_profile::AdditionalBW additional_bw, uint32_t weight, \
uint32_t priority, tech_profile::SchedulingPolicy sched_policy,
tech_profile::TrafficShapingInfo traffic_shaping_info);
static bcmos_errno RemoveSched(int intf_id, int onu_id, int uni_id, int alloc_id, std::string direction);
static bcmos_errno CreateQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, \
uint32_t priority, uint32_t gemport_id);
static bcmos_errno RemoveQueue(std::string direction, int intf_id, int onu_id, int uni_id, uint32_t port_no, int alloc_id);
uint16_t get_dev_id(void) {
return dev_id;
}
/**
* Returns the default NNI (Upstream direction) or PON (Downstream direction) scheduler
* Every NNI port and PON port have default scheduler.
* The NNI0 default scheduler ID is 18432, and NNI1 is 18433 and so on.
* Similarly, PON0 default scheduler ID is 16384. PON1 is 16385 and so on.
*
* @param intf_id NNI or PON interface ID
* @param direction "upstream" or "downstream"
*
* @return default scheduler ID for the given interface.
*/
static inline int get_default_tm_sched_id(int intf_id, std::string direction) {
if (direction.compare(upstream) == 0) {
return tm_upstream_sched_id_start + intf_id;
} else if (direction.compare(downstream) == 0) {
return tm_downstream_sched_id_start + intf_id;
}
else {
OPENOLT_LOG(ERROR, openolt_log_id, "invalid direction - %s\n", direction.c_str());
return 0;
}
}
/**
* Gets a unique tm_queue_id for a given intf_id, onu_id, uni_id, gemport_id, direction
* The tm_queue_id is locally cached in a map, so that it can rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*
* @return tm_queue_id
*/
int get_tm_queue_id(int intf_id, int onu_id, int uni_id, int gemport_id, std::string direction) {
queue_map_key_tuple key(intf_id, onu_id, uni_id, gemport_id, direction);
int queue_id = -1;
std::map<queue_map_key_tuple, int>::const_iterator it = queue_map.find(key);
if (it != queue_map.end()) {
queue_id = it->second;
}
if (queue_id != -1) {
return queue_id;
}
bcmos_fastlock_lock(&data_lock);
// Complexity of O(n). Is there better way that can avoid linear search?
for (queue_id = 0; queue_id < MAX_TM_QUEUE_ID; queue_id++) {
if (tm_queue_bitset[queue_id] == 0) {
tm_queue_bitset[queue_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (queue_id < MAX_TM_QUEUE_ID) {
bcmos_fastlock_lock(&data_lock);
queue_map[key] = queue_id;
bcmos_fastlock_unlock(&data_lock, 0);
return queue_id;
} else {
return -1;
}
}
/**
* Update tm_queue_id for a given intf_id, onu_id, uni_id, gemport_id, direction
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
* @param tm_queue_id tm_queue_id
*/
void update_tm_queue_id(int pon_intf_id, int onu_id, int uni_id, int gemport_id, std::string direction,
uint32_t queue_id) {
queue_map_key_tuple key(pon_intf_id, onu_id, uni_id, gemport_id, direction);
bcmos_fastlock_lock(&data_lock);
queue_map[key] = queue_id;
bcmos_fastlock_unlock(&data_lock, 0);
}
/**
* Free tm_queue_id for a given intf_id, onu_id, uni_id, gemport_id, direction
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*/
void free_tm_queue_id(int pon_intf_id, int onu_id, int uni_id, int gemport_id, std::string direction) {
queue_map_key_tuple key(pon_intf_id, onu_id, uni_id, gemport_id, direction);
std::map<queue_map_key_tuple, int>::const_iterator it;
bcmos_fastlock_lock(&data_lock);
it = queue_map.find(key);
if (it != queue_map.end()) {
tm_queue_bitset[it->second] = 0;
queue_map.erase(it);
}
bcmos_fastlock_unlock(&data_lock, 0);
}
/**
* Gets a unique tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction
* The tm_sched_id is locally cached in a map, so that it can rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*
* @return tm_sched_id
*/
uint32_t get_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
int sched_id = -1;
std::map<sched_map_key_tuple, int>::const_iterator it = sched_map.find(key);
if (it != sched_map.end()) {
sched_id = it->second;
}
if (sched_id != -1) {
return sched_id;
}
bcmos_fastlock_lock(&data_lock);
// Complexity of O(n). Is there better way that can avoid linear search?
for (sched_id = 0; sched_id < MAX_TM_SCHED_ID; sched_id++) {
if (tm_sched_bitset[sched_id] == 0) {
tm_sched_bitset[sched_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (sched_id < MAX_TM_SCHED_ID) {
bcmos_fastlock_lock(&data_lock);
sched_map[key] = sched_id;
bcmos_fastlock_unlock(&data_lock, 0);
return sched_id;
} else {
return -1;
}
}
/**
* Free tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*/
void free_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
std::map<sched_map_key_tuple, int>::const_iterator it;
bcmos_fastlock_lock(&data_lock);
it = sched_map.find(key);
if (it != sched_map.end()) {
tm_sched_bitset[it->second] = 0;
sched_map.erase(it);
}
bcmos_fastlock_unlock(&data_lock, 0);
}
bool is_tm_sched_id_present(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
return sched_map.count(key) > 0 ? true: false;
}
bool is_tm_queue_id_present(int pon_intf_id, int onu_id, int uni_id, int gemport_id, std::string direction) {
queue_map_key_tuple key(pon_intf_id, onu_id, uni_id, gemport_id, direction);
return queue_map.count(key) > 0 ? true: false;
}
inline const char *get_flow_acton_command(uint32_t command) {
char actions[200] = { };
char *s_actions_ptr = actions;
if (command & BCMOLT_ACTION_CMD_ID_ADD_OUTER_TAG) strcat(s_actions_ptr, "ADD_OUTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_REMOVE_OUTER_TAG) strcat(s_actions_ptr, "REMOVE_OUTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_XLATE_OUTER_TAG) strcat(s_actions_ptr, "TRANSLATE_OUTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_ADD_INNER_TAG) strcat(s_actions_ptr, "ADD_INNTER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_REMOVE_INNER_TAG) strcat(s_actions_ptr, "REMOVE_INNER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_XLATE_INNER_TAG) strcat(s_actions_ptr, "TRANSLATE_INNER_TAG|");
if (command & BCMOLT_ACTION_CMD_ID_REMARK_OUTER_PBITS) strcat(s_actions_ptr, "REMOVE_OUTER_PBITS|");
if (command & BCMOLT_ACTION_CMD_ID_REMARK_INNER_PBITS) strcat(s_actions_ptr, "REMAKE_INNER_PBITS|");
return s_actions_ptr;
}
char* openolt_read_sysinfo(const char* field_name, char* field_val)
{
FILE *fp;
/* Prepare the command*/
char command[150];
snprintf(command, sizeof command, "bash -l -c \"onlpdump -s\" | perl -ne 'print $1 if /%s: (\\S+)/'", field_name);
/* Open the command for reading. */
fp = popen(command, "r");
if (fp == NULL) {
/*The client has to check for a Null field value in this case*/
OPENOLT_LOG(INFO, openolt_log_id, "Failed to query the %s\n", field_name);
return field_val;
}
/*Read the field value*/
if (fp) {
uint8_t ret;
ret = fread(field_val, OPENOLT_FIELD_LEN, 1, fp);
if (ret >= OPENOLT_FIELD_LEN)
OPENOLT_LOG(INFO, openolt_log_id, "Read data length %u\n", ret);
pclose(fp);
}
return field_val;
}
Status GetDeviceInfo_(openolt::DeviceInfo* device_info) {
device_info->set_vendor(VENDOR_ID);
device_info->set_model(MODEL_ID);
device_info->set_hardware_version("");
device_info->set_firmware_version(firmware_version);
device_info->set_technology(board_technology);
device_info->set_pon_ports(num_of_pon_ports);
char serial_number[OPENOLT_FIELD_LEN];
memset(serial_number, '\0', OPENOLT_FIELD_LEN);
openolt_read_sysinfo("Serial Number", serial_number);
OPENOLT_LOG(INFO, openolt_log_id, "Fetched device serial number %s\n", serial_number);
device_info->set_device_serial_number(serial_number);
// Legacy, device-wide ranges. To be deprecated when adapter
// is upgraded to support per-interface ranges
if (board_technology == "XGS-PON") {
device_info->set_onu_id_start(1);
device_info->set_onu_id_end(255);
device_info->set_alloc_id_start(MIN_ALLOC_ID_XGSPON);
device_info->set_alloc_id_end(16383);
device_info->set_gemport_id_start(1024);
device_info->set_gemport_id_end(65535);
device_info->set_flow_id_start(1);
device_info->set_flow_id_end(16383);
}
else if (board_technology == "GPON") {
device_info->set_onu_id_start(1);
device_info->set_onu_id_end(127);
device_info->set_alloc_id_start(MIN_ALLOC_ID_GPON);
device_info->set_alloc_id_end(767);
device_info->set_gemport_id_start(256);
device_info->set_gemport_id_end(4095);
device_info->set_flow_id_start(1);
device_info->set_flow_id_end(16383);
}
std::map<std::string, openolt::DeviceInfo::DeviceResourceRanges*> ranges;
for (uint32_t intf_id = 0; intf_id < num_of_pon_ports; ++intf_id) {
std::string intf_technology = intf_technologies[intf_id];
openolt::DeviceInfo::DeviceResourceRanges *range = ranges[intf_technology];
if(range == nullptr) {
range = device_info->add_ranges();
ranges[intf_technology] = range;
range->set_technology(intf_technology);
if (intf_technology == "XGS-PON") {
openolt::DeviceInfo::DeviceResourceRanges::Pool* pool;
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ONU_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::DEDICATED_PER_INTF);
pool->set_start(1);
pool->set_end(255);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ALLOC_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_SAME_TECH);
pool->set_start(1024);
pool->set_end(16383);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::GEMPORT_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1024);
pool->set_end(65535);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::FLOW_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1);
pool->set_end(16383);
}
else if (intf_technology == "GPON") {
openolt::DeviceInfo::DeviceResourceRanges::Pool* pool;
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ONU_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::DEDICATED_PER_INTF);
pool->set_start(1);
pool->set_end(127);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ALLOC_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_SAME_TECH);
pool->set_start(256);
pool->set_end(757);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::GEMPORT_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(256);
pool->set_end(4095);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::FLOW_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1);
pool->set_end(16383);
}
}
range->add_intf_ids(intf_id);
}
// FIXME: Once dependency problem is fixed
// device_info->set_pon_ports(num_of_pon_ports);
// device_info->set_onu_id_end(XGPON_NUM_OF_ONUS - 1);
// device_info->set_alloc_id_start(1024);
// device_info->set_alloc_id_end(XGPON_NUM_OF_ALLOC_IDS * num_of_pon_ports ? - 1);
// device_info->set_gemport_id_start(XGPON_MIN_BASE_SERVICE_PORT_ID);
// device_info->set_gemport_id_end(XGPON_NUM_OF_GEM_PORT_IDS_PER_PON * num_of_pon_ports ? - 1);
// device_info->set_pon_ports(num_of_pon_ports);
return Status::OK;
}
Status pushOltOperInd(uint32_t intf_id, const char *type, const char *state)
{
openolt::Indication ind;
openolt::IntfOperIndication* intf_oper_ind = new openolt::IntfOperIndication;
intf_oper_ind->set_type(type);
intf_oper_ind->set_intf_id(intf_id);
intf_oper_ind->set_oper_state(state);
ind.set_allocated_intf_oper_ind(intf_oper_ind);
oltIndQ.push(ind);
return Status::OK;
}
#define CLI_HOST_PROMPT_FORMAT "BCM.%u> "
/* Build CLI prompt */
static void openolt_cli_get_prompt_cb(bcmcli_session *session, char *buf, uint32_t max_len)
{
snprintf(buf, max_len, CLI_HOST_PROMPT_FORMAT, dev_id);
}
static int _bal_apiend_cli_thread_handler(long data)
{
char init_string[]="\n";
bcmcli_session *sess = current_session;
bcmos_task_parm bal_cli_task_p_dummy;
/* Switch to interactive mode if not stopped in the init script */
if (!bcmcli_is_stopped(sess))
{
/* Force a CLI command prompt
* The string passed into the parse function
* must be modifiable, so a string constant like
* bcmcli_parse(current_session, "\n") will not
* work.
*/
bcmcli_parse(sess, init_string);
/* Process user input until EOF or quit command */
bcmcli_driver(sess);
};
OPENOLT_LOG(INFO, openolt_log_id, "BAL API End CLI terminated\n");
/* Cleanup */
bcmcli_session_close(current_session);
bcmcli_token_destroy(NULL);
return 0;
}
/* Init API CLI commands for the current device */
bcmos_errno bcm_openolt_api_cli_init(bcmcli_entry *parent_dir, bcmcli_session *session)
{
bcmos_errno rc;
api_parent_dir = parent_dir;
rc = bcm_api_cli_set_commands(session);
#ifdef BCM_SUBSYSTEM_HOST
/* Subscribe for device change indication */
rc = rc ? rc : bcmolt_olt_sel_ind_register(_api_cli_olt_change_ind);
#endif
return rc;
}
static bcmos_errno bcm_cli_quit(bcmcli_session *session, const bcmcli_cmd_parm parm[], uint16_t n_parms)
{
bcmcli_stop(session);
bcmcli_session_print(session, "CLI terminated by 'Quit' command\n");
status_bcm_cli_quit = BCMOS_TRUE;
return BCM_ERR_OK;
}
int get_status_bcm_cli_quit(void) {
return status_bcm_cli_quit;
}
bcmos_errno bcmolt_apiend_cli_init() {
bcmos_errno ret;
bcmos_task_parm bal_cli_task_p = {};
bcmos_task_parm bal_cli_task_p_dummy;
/** before creating the task, check if it is already created by the other half of BAL i.e. Core side */
if (BCM_ERR_OK != bcmos_task_query(&bal_cli_thread, &bal_cli_task_p_dummy))
{
/* Create BAL CLI thread */
bal_cli_task_p.name = bal_cli_thread_name;
bal_cli_task_p.handler = _bal_apiend_cli_thread_handler;
bal_cli_task_p.priority = TASK_PRIORITY_CLI;
ret = bcmos_task_create(&bal_cli_thread, &bal_cli_task_p);
if (BCM_ERR_OK != ret)
{
bcmos_printf("Couldn't create BAL API end CLI thread\n");
return ret;
}
}
}
Status Enable_(int argc, char *argv[]) {
bcmos_errno err;
bcmolt_host_init_parms init_parms = {};
init_parms.transport.type = BCM_HOST_API_CONN_LOCAL;
bcmcli_session_parm mon_session_parm;
if (!state.is_activated()) {
vendor_init();
/* Initialize host subsystem */
err = bcmolt_host_init(&init_parms);
if (BCM_ERR_OK != err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to init OLT\n");
return bcm_to_grpc_err(err, "Failed to init OLT");
}
/* Create CLI session */
memset(&mon_session_parm, 0, sizeof(mon_session_parm));
mon_session_parm.get_prompt = openolt_cli_get_prompt_cb;
mon_session_parm.access_right = BCMCLI_ACCESS_ADMIN;
bcmos_errno rc = bcmcli_session_open(&mon_session_parm, &current_session);
BUG_ON(rc != BCM_ERR_OK);
/* API CLI */
bcm_openolt_api_cli_init(NULL, current_session);
/* Add quit command */
BCMCLI_MAKE_CMD_NOPARM(NULL, "quit", "Quit", bcm_cli_quit);
err = bcmolt_apiend_cli_init();
if (BCM_ERR_OK != err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to add apiend init\n");
return bcm_to_grpc_err(err, "Failed to add apiend init");
}
bcmos_fastlock_init(&data_lock, 0);
OPENOLT_LOG(INFO, openolt_log_id, "Enable OLT - %s-%s\n", VENDOR_ID, MODEL_ID);
if (bcmolt_api_conn_mgr_is_connected(dev_id))
{
Status status = SubscribeIndication();
if (!status.ok()) {
OPENOLT_LOG(ERROR, openolt_log_id, "SubscribeIndication failed - %s : %s\n",
grpc_status_code_to_string(status.error_code()).c_str(),
status.error_message().c_str());
return status;
}
bcmos_errno err;
bcmolt_odid dev;
OPENOLT_LOG(INFO, openolt_log_id, "Enabling PON %d Devices ... \n", BCM_MAX_DEVS_PER_LINE_CARD);
for (dev = 0; dev < BCM_MAX_DEVS_PER_LINE_CARD; dev++) {
bcmolt_device_cfg dev_cfg = { };
bcmolt_device_key dev_key = { };
dev_key.device_id = dev;
BCMOLT_CFG_INIT(&dev_cfg, device, dev_key);
BCMOLT_MSG_FIELD_GET(&dev_cfg, system_mode);
err = bcmolt_cfg_get(dev_id, &dev_cfg.hdr);
if (err == BCM_ERR_NOT_CONNECTED) {
bcmolt_device_key key = {.device_id = dev};
bcmolt_device_connect oper;
BCMOLT_OPER_INIT(&oper, device, connect, key);
BCMOLT_MSG_FIELD_SET(&oper, inni_config.mode, BCMOLT_INNI_MODE_ALL_10_G_XFI);
BCMOLT_MSG_FIELD_SET (&oper, system_mode, BCMOLT_SYSTEM_MODE_XGS__2_X);
err = bcmolt_oper_submit(dev_id, &oper.hdr);
if (err)
OPENOLT_LOG(ERROR, openolt_log_id, "Enable PON deivce %d failed\n", dev);
bcmos_usleep(200000);
}
else {
OPENOLT_LOG(WARNING, openolt_log_id, "PON deivce %d already connected\n", dev);
state.activate();
}
}
init_stats();
}
}
/* Start CLI */
OPENOLT_LOG(INFO, def_log_id, "Starting CLI\n");
//If already enabled, generate an extra indication ????
return Status::OK;
}
Status Disable_() {
// bcmbal_access_terminal_cfg acc_term_obj;
// bcmbal_access_terminal_key key = { };
//
// if (state::is_activated) {
// std::cout << "Disable OLT" << std::endl;
// key.access_term_id = DEFAULT_ATERM_ID;
// BCMBAL_CFG_INIT(&acc_term_obj, access_terminal, key);
// BCMBAL_CFG_PROP_SET(&acc_term_obj, access_terminal, admin_state, BCMBAL_STATE_DOWN);
// bcmos_errno err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(acc_term_obj.hdr));
// if (err) {
// std::cout << "ERROR: Failed to disable OLT" << std::endl;
// return bcm_to_grpc_err(err, "Failed to disable OLT");
// }
// }
// //If already disabled, generate an extra indication ????
// return Status::OK;
//This fails with Operation Not Supported, bug ???
//TEMPORARY WORK AROUND
Status status = SetStateUplinkIf_(nni_intf_id, false);
if (status.ok()) {
state.deactivate();
OPENOLT_LOG(INFO, openolt_log_id, "Disable OLT, add an extra indication\n");
pushOltOperInd(nni_intf_id, "nni", "up");
}
return status;
}
Status Reenable_() {
Status status = SetStateUplinkIf_(0, true);
if (status.ok()) {
state.activate();
OPENOLT_LOG(INFO, openolt_log_id, "Reenable OLT, add an extra indication\n");
pushOltOperInd(0, "nni", "up");
}
return status;
}
bcmos_errno get_pon_interface_status(bcmolt_interface pon_ni, bcmolt_interface_state *state) {
bcmos_errno err;
bcmolt_pon_interface_key pon_key;
bcmolt_pon_interface_cfg pon_cfg;
pon_key.pon_ni = pon_ni;
BCMOLT_CFG_INIT(&pon_cfg, pon_interface, pon_key);
BCMOLT_FIELD_SET_PRESENT(&pon_cfg.data, pon_interface_cfg_data, state);
BCMOLT_FIELD_SET_PRESENT(&pon_cfg.data, pon_interface_cfg_data, itu);
err = bcmolt_cfg_get(dev_id, &pon_cfg.hdr);
*state = pon_cfg.data.state;
return err;
}
inline uint64_t get_flow_status(uint16_t flow_id, uint16_t flow_type, uint16_t data_id) {
bcmos_errno err;
bcmolt_flow_key flow_key;
bcmolt_flow_cfg flow_cfg;
flow_key.flow_id = flow_id;
flow_key.flow_type = (bcmolt_flow_type)flow_type;
BCMOLT_CFG_INIT(&flow_cfg, flow, flow_key);
switch (data_id) {
case ONU_ID: //onu_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, onu_id);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get onu_id\n");
return err;
}
return flow_cfg.data.onu_id;
case FLOW_TYPE:
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get flow_type\n");
return err;
}
return flow_cfg.key.flow_type;
case SVC_PORT_ID: //svc_port_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, svc_port_id);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get svc_port_id\n");
return err;
}
return flow_cfg.data.svc_port_id;
case PRIORITY:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, priority);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get priority\n");
return err;
}
return flow_cfg.data.priority;
case COOKIE: //cookie
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, cookie);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get cookie\n");
return err;
}
return flow_cfg.data.cookie;
case INGRESS_INTF_TYPE: //ingress intf_type
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, ingress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get ingress intf_type\n");
return err;
}
return flow_cfg.data.ingress_intf.intf_type;
case EGRESS_INTF_TYPE: //egress intf_type
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress intf_type\n");
return err;
}
return flow_cfg.data.egress_intf.intf_type;
case INGRESS_INTF_ID: //ingress intf_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, ingress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get ingress intf_id\n");
return err;
}
return flow_cfg.data.ingress_intf.intf_id;
case EGRESS_INTF_ID: //egress intf_id
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_intf);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress intf_id\n");
return err;
}
return flow_cfg.data.egress_intf.intf_id;
case CLASSIFIER_O_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier o_vid\n");
return err;
}
return flow_cfg.data.classifier.o_vid;
case CLASSIFIER_O_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier o_pbits\n");
return err;
}
return flow_cfg.data.classifier.o_pbits;
case CLASSIFIER_I_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier i_vid\n");
return err;
}
return flow_cfg.data.classifier.i_vid;
case CLASSIFIER_I_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier i_pbits\n");
return err;
}
return flow_cfg.data.classifier.i_pbits;
case CLASSIFIER_ETHER_TYPE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier ether_type\n");
return err;
}
return flow_cfg.data.classifier.ether_type;
case CLASSIFIER_IP_PROTO:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier ip_proto\n");
return err;
}
return flow_cfg.data.classifier.ip_proto;
case CLASSIFIER_SRC_PORT:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier src_port\n");
return err;
}
return flow_cfg.data.classifier.src_port;
case CLASSIFIER_DST_PORT:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier dst_port\n");
return err;
}
return flow_cfg.data.classifier.dst_port;
case CLASSIFIER_PKT_TAG_TYPE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, classifier);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get classifier pkt_tag_type\n");
return err;
}
return flow_cfg.data.classifier.pkt_tag_type;
case EGRESS_QOS_TYPE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_qos);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress_qos type\n");
return err;
}
return flow_cfg.data.egress_qos.type;
case EGRESS_QOS_QUEUE_ID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_qos);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress_qos queue_id\n");
return err;
}
switch (flow_cfg.data.egress_qos.type) {
case BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE:
return flow_cfg.data.egress_qos.u.fixed_queue.queue_id;
case BCMOLT_EGRESS_QOS_TYPE_TC_TO_QUEUE:
return flow_cfg.data.egress_qos.u.tc_to_queue.tc_to_queue_id;
case BCMOLT_EGRESS_QOS_TYPE_PBIT_TO_TC:
return flow_cfg.data.egress_qos.u.pbit_to_tc.tc_to_queue_id;
case BCMOLT_EGRESS_QOS_TYPE_NONE:
default:
return -1;
}
case EGRESS_QOS_TM_SCHED_ID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, egress_qos);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get egress_qos tm_sched_id\n");
return err;
}
return flow_cfg.data.egress_qos.tm_sched.id;
case ACTION_CMDS_BITMASK:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action cmds_bitmask\n");
return err;
}
return flow_cfg.data.action.cmds_bitmask;
case ACTION_O_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action o_vid\n");
return err;
}
return flow_cfg.data.action.o_vid;
case ACTION_O_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action o_pbits\n");
return err;
}
return flow_cfg.data.action.o_pbits;
case ACTION_I_VID:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action i_vid\n");
return err;
}
return flow_cfg.data.action.i_vid;
case ACTION_I_PBITS:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, action);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get action i_pbits\n");
return err;
}
return flow_cfg.data.action.i_pbits;
case STATE:
BCMOLT_FIELD_SET_PRESENT(&flow_cfg.data, flow_cfg_data, state);
err = bcmolt_cfg_get(dev_id, &flow_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get state\n");
return err;
}
return flow_cfg.data.state;
default:
return BCM_ERR_INTERNAL;
}
return err;
}
Status EnablePonIf_(uint32_t intf_id) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_pon_interface_cfg interface_obj;
bcmolt_pon_interface_key intf_key = {.pon_ni = (bcmolt_interface)intf_id};
bcmolt_pon_interface_set_pon_interface_state pon_interface_set_state;
bcmolt_interface_state state;
err = get_pon_interface_status((bcmolt_interface)intf_id, &state);
if (err == BCM_ERR_OK) {
if (state == BCMOLT_INTERFACE_STATE_ACTIVE_WORKING) {
OPENOLT_LOG(INFO, openolt_log_id, "PON interface: %d already enabled\n", intf_id);
return Status::OK;
}
}
BCMOLT_CFG_INIT(&interface_obj, pon_interface, intf_key);
BCMOLT_OPER_INIT(&pon_interface_set_state, pon_interface, set_pon_interface_state, intf_key);
BCMOLT_MSG_FIELD_SET(&interface_obj, discovery.control, BCMOLT_CONTROL_STATE_ENABLE);
BCMOLT_MSG_FIELD_SET(&interface_obj, discovery.interval, 5000);
BCMOLT_MSG_FIELD_SET(&interface_obj, discovery.onu_post_discovery_mode,
BCMOLT_ONU_POST_DISCOVERY_MODE_ACTIVATE);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.los, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.onu_alarms, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.tiwi, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.ack_timeout, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.sfi, true);
BCMOLT_MSG_FIELD_SET(&interface_obj, itu.automatic_onu_deactivation.loki, true);
BCMOLT_FIELD_SET(&pon_interface_set_state.data, pon_interface_set_pon_interface_state_data,
operation, BCMOLT_INTERFACE_OPERATION_ACTIVE_WORKING);
err = bcmolt_cfg_set(dev_id, &interface_obj.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to enable discovery onu, PON interface %d, err %d\n", intf_id, err);
return bcm_to_grpc_err(err, "Failed to enable discovery onu");
}
err = bcmolt_oper_submit(dev_id, &pon_interface_set_state.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to enable PON interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to enable PON interface");
}
else {
OPENOLT_LOG(INFO, openolt_log_id, "Successfully enabled PON interface: %d\n", intf_id);
OPENOLT_LOG(INFO, openolt_log_id, "Initializing tm sched creation for PON interface: %d\n", intf_id);
CreateDefaultSchedQueue_(intf_id, downstream);
}
return Status::OK;
}
Status ProbeDeviceCapabilities_() {
bcmos_errno err;
bcmolt_device_cfg dev_cfg = { };
bcmolt_device_key dev_key = { };
bcmolt_olt_cfg olt_cfg = { };
bcmolt_olt_key olt_key = { };
bcmolt_topology_map topo_map[BCM_MAX_PONS_PER_OLT] = { };
bcmolt_topology topo = { };
topo.topology_maps.len = BCM_MAX_PONS_PER_OLT;
topo.topology_maps.arr = &topo_map[0];
BCMOLT_CFG_INIT(&olt_cfg, olt, olt_key);
BCMOLT_MSG_FIELD_GET(&olt_cfg, bal_state);
BCMOLT_FIELD_SET_PRESENT(&olt_cfg.data, olt_cfg_data, topology);
BCMOLT_CFG_LIST_BUF_SET(&olt_cfg, olt, topo.topology_maps.arr,
sizeof(bcmolt_topology_map) * topo.topology_maps.len);
err = bcmolt_cfg_get(dev_id, &olt_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "cfg: Failed to query OLT\n");
return bcm_to_grpc_err(err, "cfg: Failed to query OLT");
}
num_of_nni_ports = olt_cfg.data.topology.num_switch_ports;
num_of_pon_ports = olt_cfg.data.topology.topology_maps.len;
OPENOLT_LOG(INFO, openolt_log_id, "OLT capabilitites, oper_state: %s\n",
olt_cfg.data.bal_state == BCMOLT_BAL_STATE_BAL_AND_SWITCH_READY
? "up" : "down");
OPENOLT_LOG(INFO, openolt_log_id, "topology nni: %d pon: %d dev: %d\n",
num_of_nni_ports,
num_of_pon_ports,
BCM_MAX_DEVS_PER_LINE_CARD);
for (int devid = 0; devid < BCM_MAX_DEVS_PER_LINE_CARD; devid++) {
dev_key.device_id = devid;
BCMOLT_CFG_INIT(&dev_cfg, device, dev_key);
BCMOLT_MSG_FIELD_GET(&dev_cfg, firmware_sw_version);
BCMOLT_MSG_FIELD_GET(&dev_cfg, chip_family);
BCMOLT_MSG_FIELD_GET(&dev_cfg, system_mode);
err = bcmolt_cfg_get(dev_id, &dev_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "device: Failed to query OLT\n");
return bcm_to_grpc_err(err, "device: Failed to query OLT");
}
std::string bal_version;
bal_version += std::to_string(dev_cfg.data.firmware_sw_version.major)
+ "." + std::to_string(dev_cfg.data.firmware_sw_version.minor)
+ "." + std::to_string(dev_cfg.data.firmware_sw_version.revision);
firmware_version = "BAL." + bal_version + "__" + firmware_version;
switch(dev_cfg.data.system_mode) {
case 10: board_technology = "GPON"; FILL_ARRAY(intf_technologies,devid*4,(devid+1)*4,"GPON"); break;
case 11: board_technology = "GPON"; FILL_ARRAY(intf_technologies,devid*8,(devid+1)*8,"GPON"); break;
case 12: board_technology = "GPON"; FILL_ARRAY(intf_technologies,devid*16,(devid+1)*16,"GPON"); break;
case 13: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*2,(devid+1)*2,"XGPON"); break;
case 14: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*4,(devid+1)*4,"XGPON"); break;
case 15: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*8,(devid+1)*8,"XGPON"); break;
case 16: board_technology = "XGPON"; FILL_ARRAY(intf_technologies,devid*16,(devid+1)*16,"XGPON"); break;
case 18: board_technology = "XGS-PON"; FILL_ARRAY(intf_technologies,devid*2,(devid+1)*2,"XGS-PON"); break;
case 19: board_technology = "XGS-PON"; FILL_ARRAY(intf_technologies,devid*16,(devid+1)*16,"XGS-PON"); break;
case 20: board_technology = MIXED_TECH; FILL_ARRAY(intf_technologies,devid*2,(devid+1)*2,MIXED_TECH); break;
}
switch(dev_cfg.data.chip_family) {
case BCMOLT_CHIP_FAMILY_CHIP_FAMILY_6862_X_: chip_family = "Maple"; break;
case BCMOLT_CHIP_FAMILY_CHIP_FAMILY_6865_X_: chip_family = "Aspen"; break;
}
OPENOLT_LOG(INFO, openolt_log_id, "device %d, pon: %d, version %s object model: %d, family: %s, board_technology: %s\n",
devid, BCM_MAX_PONS_PER_DEV, bal_version.c_str(), BAL_API_VERSION, chip_family.c_str(), board_technology.c_str());
bcmos_usleep(500000);
}
return Status::OK;
}
#if 0
Status ProbePonIfTechnology_() {
// Probe maximum extent possible as configured into BAL driver to determine
// which are active in the current BAL topology. And for those
// that are active, determine each port's access technology, i.e. "gpon" or "xgspon".
for (uint32_t intf_id = 0; intf_id < num_of_pon_ports; ++intf_id) {
bcmolt_pon_interface_cfg interface_obj;
bcmolt_pon_interface_key interface_key;
interface_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&interface_obj, pon_interface, interface_key);
if (board_technology == "XGS-PON")
BCMOLT_MSG_FIELD_GET(&interface_obj, xgs_ngpon2_trx);
else if (board_technology == "GPON")
BCMOLT_MSG_FIELD_GET(&interface_obj, gpon_trx);
bcmos_errno err = bcmolt_cfg_get(dev_id, &interface_obj.hdr);
if (err != BCM_ERR_OK) {
intf_technologies[intf_id] = UNKNOWN_TECH;
if(err != BCM_ERR_RANGE) OPENOLT_LOG(ERROR, openolt_log_id, "Failed to get PON config: %d err %d\n", intf_id, err);
}
else {
if (board_technology == "XGS-PON") {
switch(interface_obj.data.xgpon_trx.transceiver_type) {
case BCMOLT_XGPON_TRX_TYPE_LTH_7222_PC:
case BCMOLT_XGPON_TRX_TYPE_WTD_RTXM266_702:
case BCMOLT_XGPON_TRX_TYPE_LTH_7222_BC_PLUS:
case BCMOLT_XGPON_TRX_TYPE_LTH_7226_PC:
case BCMOLT_XGPON_TRX_TYPE_LTH_5302_PC:
case BCMOLT_XGPON_TRX_TYPE_LTH_7226_A_PC_PLUS:
case BCMOLT_XGPON_TRX_TYPE_D272RR_SSCB_DM:
intf_technologies[intf_id] = "XGS-PON";
break;
}
} else if (board_technology == "GPON") {
switch(interface_obj.data.gpon_trx.transceiver_type) {
case BCMOLT_TRX_TYPE_SPS_43_48_H_HP_CDE_SD_2013:
case BCMOLT_TRX_TYPE_LTE_3680_M:
case BCMOLT_TRX_TYPE_SOURCE_PHOTONICS:
case BCMOLT_TRX_TYPE_LTE_3680_P_TYPE_C_PLUS:
case BCMOLT_TRX_TYPE_LTE_3680_P_BC:
intf_technologies[intf_id] = "GPON";
break;
}
}
if (board_technology != UNKNOWN_TECH) {
board_technology = intf_technologies[intf_id];
} else if (board_technology != MIXED_TECH && board_technology != intf_technologies[intf_id]) {
intf_technologies[intf_id] = MIXED_TECH;
}
}
}
return Status::OK;
}
#endif
unsigned NumNniIf_() {return num_of_nni_ports;}
unsigned NumPonIf_() {return num_of_pon_ports;}
bcmos_errno get_nni_interface_status(bcmolt_interface id, bcmolt_interface_state *state) {
bcmos_errno err;
bcmolt_nni_interface_key nni_key;
bcmolt_nni_interface_cfg nni_cfg;
nni_key.id = id;
BCMOLT_CFG_INIT(&nni_cfg, nni_interface, nni_key);
BCMOLT_FIELD_SET_PRESENT(&nni_cfg.data, nni_interface_cfg_data, state);
err = bcmolt_cfg_get(dev_id, &nni_cfg.hdr);
*state = nni_cfg.data.state;
return err;
}
Status SetStateUplinkIf_(uint32_t intf_id, bool set_state) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_nni_interface_key intf_key = {.id = (bcmolt_interface)intf_id};
bcmolt_nni_interface_set_nni_state nni_interface_set_state;
bcmolt_interface_state state;
err = get_nni_interface_status((bcmolt_interface)intf_id, &state);
if (err == BCM_ERR_OK) {
if (set_state && state == BCMOLT_INTERFACE_STATE_ACTIVE_WORKING) {
OPENOLT_LOG(INFO, openolt_log_id, "NNI interface: %d already enabled\n", intf_id);
OPENOLT_LOG(INFO, openolt_log_id, "Initializing tm sched creation for NNI interface: %d\n", intf_id);
CreateDefaultSchedQueue_(intf_id, upstream);
return Status::OK;
} else if (!set_state && state == BCMOLT_INTERFACE_STATE_INACTIVE) {
OPENOLT_LOG(INFO, openolt_log_id, "NNI interface: %d already disabled\n", intf_id);
return Status::OK;
}
}
BCMOLT_OPER_INIT(&nni_interface_set_state, nni_interface, set_nni_state, intf_key);
if (set_state) {
BCMOLT_FIELD_SET(&nni_interface_set_state.data, nni_interface_set_nni_state_data,
nni_state, BCMOLT_INTERFACE_OPERATION_ACTIVE_WORKING);
} else {
BCMOLT_FIELD_SET(&nni_interface_set_state.data, nni_interface_set_nni_state_data,
nni_state, BCMOLT_INTERFACE_OPERATION_INACTIVE);
}
err = bcmolt_oper_submit(dev_id, &nni_interface_set_state.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to %s NNI interface: %d, err %d\n",
(set_state)?"enable":"disable", intf_id, err);
return bcm_to_grpc_err(err, "Failed to enable NNI interface");
}
else {
OPENOLT_LOG(INFO, openolt_log_id, "Successfully %s NNI interface: %d\n", (set_state)?"enable":"disable", intf_id);
if (set_state) {
OPENOLT_LOG(INFO, openolt_log_id, "Initializing tm sched creation for NNI interface: %d\n", intf_id);
CreateDefaultSchedQueue_(intf_id, upstream);
}
}
return Status::OK;
}
Status DisablePonIf_(uint32_t intf_id) {
bcmolt_pon_interface_cfg interface_obj;
bcmolt_pon_interface_key interface_key;
interface_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&interface_obj, pon_interface, interface_key);
BCMOLT_MSG_FIELD_GET(&interface_obj, state);
bcmos_errno err = bcmolt_cfg_get(dev_id, &interface_obj.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to disable PON interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to disable PON interface");
}
return Status::OK;
}
Status ActivateOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific, uint32_t pir) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_onu_cfg onu_cfg;
bcmolt_onu_key onu_key;
bcmolt_serial_number serial_number; /**< ONU serial number */
bcmolt_bin_str_36 registration_id; /**< ONU registration ID */
onu_key.onu_id = onu_id;
onu_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&onu_cfg, onu, onu_key);
BCMOLT_FIELD_SET_PRESENT(&onu_cfg.data, onu_cfg_data, onu_state);
err = bcmolt_cfg_get(dev_id, &onu_cfg.hdr);
if (err == BCM_ERR_OK) {
if ((onu_cfg.data.onu_state == BCMOLT_ONU_STATE_PROCESSING ||
onu_cfg.data.onu_state == BCMOLT_ONU_STATE_ACTIVE) ||
(onu_cfg.data.onu_state == BCMOLT_ONU_STATE_INACTIVE &&
onu_cfg.data.onu_old_state == BCMOLT_ONU_STATE_NOT_CONFIGURED))
return Status::OK;
}
OPENOLT_LOG(INFO, openolt_log_id, "Enabling ONU %d on PON %d : vendor id %s, \
vendor specific %s, pir %d\n", onu_id, intf_id, vendor_id,
vendor_specific_to_str(vendor_specific).c_str(), pir);
memcpy(serial_number.vendor_id.arr, vendor_id, 4);
memcpy(serial_number.vendor_specific.arr, vendor_specific, 4);
BCMOLT_CFG_INIT(&onu_cfg, onu, onu_key);
BCMOLT_MSG_FIELD_SET(&onu_cfg, onu_rate, BCMOLT_ONU_RATE_RATE_10G_DS_10G_US);
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.serial_number, serial_number);
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.auto_learning, BCMOS_TRUE);
/*set burst and data profiles to fec disabled*/
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.xgpon.ranging_burst_profile, 0);
BCMOLT_MSG_FIELD_SET(&onu_cfg, itu.xgpon.data_burst_profile, 1);
err = bcmolt_cfg_set(dev_id, &onu_cfg.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to set activate ONU %d on PON %d, err %d\n", onu_id, intf_id, err);
return bcm_to_grpc_err(err, "Failed to activate ONU");
}
return Status::OK;
}
Status DeactivateOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific) {
bcmos_errno err = BCM_ERR_OK;
bcmolt_onu_set_onu_state onu_oper; /* declare main API struct */
bcmolt_onu_cfg onu_cfg;
bcmolt_onu_key onu_key; /**< Object key. */
bcmolt_onu_state onu_state;
onu_key.onu_id = onu_id;
onu_key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&onu_cfg, onu, onu_key);
BCMOLT_FIELD_SET_PRESENT(&onu_cfg.data, onu_cfg_data, onu_state);
err = bcmolt_cfg_get(dev_id, &onu_cfg.hdr);
if (err == BCM_ERR_OK) {
switch (onu_state) {
case BCMOLT_ONU_OPERATION_ACTIVE:
BCMOLT_OPER_INIT(&onu_oper, onu, set_onu_state, onu_key);
BCMOLT_FIELD_SET(&onu_oper.data, onu_set_onu_state_data,
onu_state, BCMOLT_ONU_OPERATION_INACTIVE);
err = bcmolt_oper_submit(dev_id, &onu_oper.hdr);
if (err != BCM_ERR_OK) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to \
deactivate ONU %d on PON %d, err %d\n", onu_id, intf_id, err);
return bcm_to_grpc_err(err, "Failed to deactivate ONU");
}
break;
}
}
return Status::OK;
}
Status DeleteOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific) {
OPENOLT_LOG(INFO, openolt_log_id, "DeleteOnu ONU %d on PON %d : vendor id %s, vendor specific %s\n",
onu_id, intf_id, vendor_id, vendor_specific_to_str(vendor_specific).c_str());
// Need to deactivate before removing it (BAL rules)
DeactivateOnu_(intf_id, onu_id, vendor_id, vendor_specific);
// Sleep to allow the state to propagate
// We need the subscriber terminal object to be admin down before removal
// Without sleep the race condition is lost by ~ 20 ms
std::this_thread::sleep_for(std::chrono::milliseconds(100));
// TODO: Delete the schedulers and queues.
bcmolt_onu_cfg cfg_obj;
bcmolt_onu_key key;
OPENOLT_LOG(INFO, openolt_log_id, "Processing subscriber terminal cfg clear for sub_term_id %d and intf_id %d\n",
onu_id, intf_id);
key.onu_id = onu_id;
key.pon_ni = intf_id;
BCMOLT_CFG_INIT(&cfg_obj, onu, key);
bcmos_errno err = bcmolt_cfg_clear(dev_id, &cfg_obj.hdr);
if (err != BCM_ERR_OK)
{
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to clear information for BAL subscriber_terminal_id %d, Interface ID %d\n",
onu_id, intf_id);
return Status(grpc::StatusCode::INTERNAL, "Failed to delete ONU");
}
return Status::OK;
}
#define MAX_CHAR_LENGTH 20
#define MAX_OMCI_MSG_LENGTH 44
Status OmciMsgOut_(uint32_t intf_id, uint32_t onu_id, const std::string pkt) {
bcmolt_bin_str buf = {};
bcmolt_onu_cpu_packets omci_cpu_packets;
bcmolt_onu_key key;
key.pon_ni = intf_id;
key.onu_id = onu_id;
BCMOLT_OPER_INIT(&omci_cpu_packets, onu, cpu_packets, key);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, packet_type, BCMOLT_PACKET_TYPE_OMCI);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, calc_crc, BCMOS_TRUE);
// ???
if ((pkt.size()/2) > MAX_OMCI_MSG_LENGTH) {
buf.len = MAX_OMCI_MSG_LENGTH;
} else {
buf.len = pkt.size()/2;
}
/* Send the OMCI packet using the BAL remote proxy API */
uint16_t idx1 = 0;
uint16_t idx2 = 0;
uint8_t arraySend[buf.len];
char str1[MAX_CHAR_LENGTH];
char str2[MAX_CHAR_LENGTH];
memset(&arraySend, 0, buf.len);
for (idx1=0,idx2=0; idx1<((buf.len)*2); idx1++,idx2++) {
sprintf(str1,"%c", pkt[idx1]);
sprintf(str2,"%c", pkt[++idx1]);
strcat(str1,str2);
arraySend[idx2] = strtol(str1, NULL, 16);
}
buf.arr = (uint8_t *)malloc((buf.len)*sizeof(uint8_t));
memcpy(buf.arr, (uint8_t *)arraySend, buf.len);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, number_of_packets, 1);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, packet_size, buf.len);
BCMOLT_MSG_FIELD_SET(&omci_cpu_packets, buffer, buf);
bcmos_errno err = bcmolt_oper_submit(dev_id, &omci_cpu_packets.hdr);
if (err) {
OPENOLT_LOG(ERROR, omci_log_id, "Error sending OMCI message to ONU %d on PON %d\n", onu_id, intf_id);
return bcm_to_grpc_err(err, "send OMCI failed");
} else {
OPENOLT_LOG(DEBUG, omci_log_id, "OMCI request msg of length %d sent to ONU %d on PON %d : %s\n",
buf.len, onu_id, intf_id, pkt.c_str());
}
free(buf.arr);
return Status::OK;
}
Status OnuPacketOut_(uint32_t intf_id, uint32_t onu_id, uint32_t port_no, uint32_t gemport_id, const std::string pkt) {
bcmolt_pon_interface_cpu_packets pon_interface_cpu_packets; /**< declare main API struct */
bcmolt_pon_interface_key key = {.pon_ni = (bcmolt_interface)intf_id}; /**< declare key */
bcmolt_bin_str buf = {};
bcmolt_gem_port_id gem_port_id_array[1];
bcmolt_gem_port_id_list_u8_max_16 gem_port_list = {};
if (port_no > 0) {
bool found = false;
if (gemport_id == 0) {
bcmos_fastlock_lock(&data_lock);
// Map the port_no to one of the flows that owns it to find a gemport_id for that flow.
// Pick any flow that is mapped with the same port_no.
std::map<uint32_t, std::set<uint32_t> >::const_iterator it = port_to_flows.find(port_no);
if (it != port_to_flows.end() && !it->second.empty()) {
uint32_t flow_id = *(it->second.begin()); // Pick any flow_id out of the bag set
std::map<uint32_t, uint32_t>::const_iterator fit = flowid_to_gemport.find(flow_id);
if (fit != flowid_to_gemport.end()) {
found = true;
gemport_id = fit->second;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (!found) {
OPENOLT_LOG(ERROR, openolt_log_id, "Packet out failed to find destination for ONU %d port_no %u on PON %d\n",
onu_id, port_no, intf_id);
return grpc::Status(grpc::StatusCode::NOT_FOUND, "no flow for port_no");
}
OPENOLT_LOG(INFO, openolt_log_id, "Gem port %u found for ONU %d port_no %u on PON %d\n",
gemport_id, onu_id, port_no, intf_id);
}
gem_port_id_array[0] = gemport_id;
gem_port_list.len = 1;
gem_port_list.arr = gem_port_id_array;
buf.len = pkt.size();
buf.arr = (uint8_t *)malloc((buf.len)*sizeof(uint8_t));
memcpy(buf.arr, (uint8_t *)pkt.data(), buf.len);
/* init the API struct */
BCMOLT_OPER_INIT(&pon_interface_cpu_packets, pon_interface, cpu_packets, key);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, packet_type, BCMOLT_PACKET_TYPE_ETH);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, calc_crc, BCMOS_TRUE);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, gem_port_list, gem_port_list);
BCMOLT_MSG_FIELD_SET(&pon_interface_cpu_packets, buffer, buf);
OPENOLT_LOG(INFO, openolt_log_id, "Packet out of length %d sent to gemport %d on pon %d port_no %u\n",
(uint8_t)pkt.size(), gemport_id, intf_id, port_no);
/* call API */
bcmolt_oper_submit(dev_id, &pon_interface_cpu_packets.hdr);
}
else {
//TODO: Port No is 0, it is coming sender requirement.
OPENOLT_LOG(INFO, openolt_log_id, "port_no %d onu %d on pon %d\n",
port_no, onu_id, intf_id);
}
free(buf.arr);
return Status::OK;
}
Status UplinkPacketOut_(uint32_t intf_id, const std::string pkt, bcmolt_flow_id flow_id) {
bcmolt_flow_key key = {}; /* declare key */
bcmolt_bin_str buffer = {};
bcmolt_flow_send_eth_packet oper; /* declare main API struct */
//validate flow_id and find flow_id/flow type: upstream/ingress type: PON/egress type: NNI
if (get_flow_status(flow_id, BCMOLT_FLOW_TYPE_UPSTREAM, FLOW_TYPE) == BCMOLT_FLOW_TYPE_UPSTREAM && \
get_flow_status(flow_id, BCMOLT_FLOW_TYPE_UPSTREAM, INGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_PON && \
get_flow_status(flow_id, BCMOLT_FLOW_TYPE_UPSTREAM, EGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_NNI)
key.flow_id = flow_id;
else {
if (flow_id_counters != 0) {
for (int flowid=0; flowid < flow_id_counters; flowid++) {
int flow_index = flow_id_data[flowid][0];
if (get_flow_status(flow_index, BCMOLT_FLOW_TYPE_UPSTREAM, FLOW_TYPE) == BCMOLT_FLOW_TYPE_UPSTREAM && \
get_flow_status(flow_index, BCMOLT_FLOW_TYPE_UPSTREAM, INGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_PON && \
get_flow_status(flow_index, BCMOLT_FLOW_TYPE_UPSTREAM, EGRESS_INTF_TYPE) == BCMOLT_FLOW_INTERFACE_TYPE_NNI) {
key.flow_id = flow_index;
break;
}
}
}
else
return grpc::Status(grpc::StatusCode::NOT_FOUND, "no flow id found");
}
key.flow_type = BCMOLT_FLOW_TYPE_UPSTREAM; /* send from uplink direction */
/* Initialize the API struct. */
BCMOLT_OPER_INIT(&oper, flow, send_eth_packet, key);
buffer.len = pkt.size();
buffer.arr = (uint8_t *)malloc((buffer.len)*sizeof(uint8_t));
memcpy(buffer.arr, (uint8_t *)pkt.data(), buffer.len);
if (buffer.arr == NULL) {
OPENOLT_LOG(ERROR, openolt_log_id, "allocate pakcet buffer failed\n");
return bcm_to_grpc_err(BCM_ERR_PARM, "allocate pakcet buffer failed");
}
BCMOLT_FIELD_SET(&oper.data, flow_send_eth_packet_data, buffer, buffer);
bcmos_errno err = bcmolt_oper_submit(dev_id, &oper.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Error sending packets to port %d, flow_id %d, err %d\n", intf_id, key.flow_id, err);
} else {
OPENOLT_LOG(INFO, openolt_log_id, "sent packets to port %d in upstream direction (flow_id %d)\n", intf_id, key.flow_id);
}
return Status::OK;
}
uint32_t GetPortNum_(uint32_t flow_id) {
bcmos_fastlock_lock(&data_lock);
uint32_t port_no = 0;
std::map<uint32_t, uint32_t >::const_iterator it = flowid_to_port.find(flow_id);
if (it != flowid_to_port.end()) {
port_no = it->second;
}
bcmos_fastlock_unlock(&data_lock, 0);
return port_no;
}
#define FLOW_LOG(level,msg,err) \
do { \
OPENOLT_LOG(level, openolt_log_id, "--------> %s (flow_id %d) err: %d <--------\n", msg, key.flow_id, err); \
OPENOLT_LOG(level, openolt_log_id, "intf_id %d, onu_id %d, uni_id %d, port_no %u, cookie %"PRIu64"\n", \
access_intf_id, onu_id, uni_id, port_no, cookie); \
OPENOLT_LOG(level, openolt_log_id, "flow_type %s, queue_id %d, sched_id %d\n", flow_type.c_str(), \
cfg.data.egress_qos.u.fixed_queue.queue_id, cfg.data.egress_qos.tm_sched.id); \
OPENOLT_LOG(level, openolt_log_id, "Ingress(intfd_type %s, intf_id %d), Egress(intf_type %s, intf_id %d)\n", \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type), cfg.data.ingress_intf.intf_id, \
GET_FLOW_INTERFACE_TYPE(cfg.data.egress_intf.intf_type), cfg.data.egress_intf.intf_id); \
OPENOLT_LOG(level, openolt_log_id, "classifier(o_vid %d, o_pbits %d, i_vid %d, i_pbits %d, ether type 0x%x)\n", \
c_val.o_vid, c_val.o_pbits, c_val.i_vid, c_val.i_pbits, classifier.eth_type()); \
OPENOLT_LOG(level, openolt_log_id, "classifier(ip_proto 0x%x, gemport_id %d, src_port %d, dst_port %d, pkt_tag_type %s)\n", \
c_val.ip_proto, gemport_id, c_val.src_port, c_val.dst_port, GET_PKT_TAG_TYPE(c_val.pkt_tag_type)); \
OPENOLT_LOG(level, openolt_log_id, "action(cmds_bitmask %s, o_vid %d, o_pbits %d, i_vid %d, i_pbits %d)\n\n", \
get_flow_acton_command(a_val.cmds_bitmask), a_val.o_vid, a_val.o_pbits, a_val.i_vid, a_val.i_pbits); \
} while(0)
#define FLOW_PARAM_LOG() \
do { \
OPENOLT_LOG(INFO, openolt_log_id, "--------> flow comparison (now before) <--------\n"); \
OPENOLT_LOG(INFO, openolt_log_id, "flow_id (%d %d)\n", \
key.flow_id, flow_index); \
OPENOLT_LOG(INFO, openolt_log_id, "onu_id (%d %lu)\n", \
cfg.data.onu_id , get_flow_status(flow_index, flow_id_data[flowid][1], ONU_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "type (%d %lu)\n", \
key.flow_type, get_flow_status(flow_index, flow_id_data[flowid][1], FLOW_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "svc_port_id (%d %lu)\n", \
cfg.data.svc_port_id, get_flow_status(flow_index, flow_id_data[flowid][1], SVC_PORT_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "priority (%d %lu)\n", \
cfg.data.priority, get_flow_status(flow_index, flow_id_data[flowid][1], PRIORITY)); \
OPENOLT_LOG(INFO, openolt_log_id, "cookie (%lu %lu)\n", \
cfg.data.cookie, get_flow_status(flow_index, flow_id_data[flowid][1], COOKIE)); \
OPENOLT_LOG(INFO, openolt_log_id, "ingress intf_type (%s %s)\n", \
GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type), \
GET_FLOW_INTERFACE_TYPE(get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_TYPE))); \
OPENOLT_LOG(INFO, openolt_log_id, "ingress intf id (%d %lu)\n", \
cfg.data.ingress_intf.intf_id , get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "egress intf_type (%d %lu)\n", \
cfg.data.egress_intf.intf_type , get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "egress intf_id (%d %lu)\n", \
cfg.data.egress_intf.intf_id , get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier o_vid (%d %lu)\n", \
c_val.o_vid , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier o_pbits (%d %lu)\n", \
c_val.o_pbits , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_PBITS)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier i_vid (%d %lu)\n", \
c_val.i_vid , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier i_pbits (%d %lu)\n", \
c_val.i_pbits , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_PBITS)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier ether_type (0x%x 0x%lx)\n", \
c_val.ether_type , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_ETHER_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier ip_proto (%d %lu)\n", \
c_val.ip_proto , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_IP_PROTO)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier src_port (%d %lu)\n", \
c_val.src_port , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_SRC_PORT)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier dst_port (%d %lu)\n", \
c_val.dst_port , get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_DST_PORT)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier pkt_tag_type (%s %s)\n", \
GET_PKT_TAG_TYPE(c_val.pkt_tag_type), \
GET_PKT_TAG_TYPE(get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_PKT_TAG_TYPE))); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier egress_qos type (%d %lu)\n", \
cfg.data.egress_qos.type , get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TYPE)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier egress_qos queue_id (%d %lu)\n", \
cfg.data.egress_qos.u.fixed_queue.queue_id, \
get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_QUEUE_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier egress_qos sched_id (%d %lu)\n", \
cfg.data.egress_qos.tm_sched.id, \
get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TM_SCHED_ID)); \
OPENOLT_LOG(INFO, openolt_log_id, "classifier cmds_bitmask (%s %s)\n", \
get_flow_acton_command(a_val.cmds_bitmask), \
get_flow_acton_command(get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_CMDS_BITMASK))); \
OPENOLT_LOG(INFO, openolt_log_id, "action o_vid (%d %lu)\n", \
a_val.o_vid , get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "action i_vid (%d %lu)\n", \
a_val.i_vid , get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_VID)); \
OPENOLT_LOG(INFO, openolt_log_id, "action o_pbits (%d %lu)\n", \
a_val.o_pbits , get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_PBITS)); \
OPENOLT_LOG(INFO, openolt_log_id, "action i_pbits (%d %lu)\n\n", \
a_val.i_pbits, get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_PBITS)); \
} while(0)
#define FLOW_CHECKER
//#define SHOW_FLOW_PARAM
Status FlowAdd_(int32_t access_intf_id, int32_t onu_id, int32_t uni_id, uint32_t port_no,
uint32_t flow_id, const std::string flow_type,
int32_t alloc_id, int32_t network_intf_id,
int32_t gemport_id, const ::openolt::Classifier& classifier,
const ::openolt::Action& action, int32_t priority_value, uint64_t cookie) {
bcmolt_flow_cfg cfg;
bcmolt_flow_key key = { }; /**< Object key. */
int32_t o_vid = -1;
bool single_tag = false;
uint32_t ether_type = 0;
bcmolt_classifier c_val = { };
bcmolt_action a_val = { };
bcmolt_tm_queue_ref tm_val = { };
//Pre-defined Fixed Queue, It decides the type by caller, TODO
bcmolt_egress_qos_type qos_type = BCMOLT_EGRESS_QOS_TYPE_FIXED_QUEUE;
key.flow_id = flow_id;
if (flow_type.compare(upstream) == 0 ) {
key.flow_type = BCMOLT_FLOW_TYPE_UPSTREAM;
} else if (flow_type.compare(downstream) == 0) {
key.flow_type = BCMOLT_FLOW_TYPE_DOWNSTREAM;
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "Invalid flow type %s\n", flow_type.c_str());
return bcm_to_grpc_err(BCM_ERR_PARM, "Invalid flow type");
}
BCMOLT_CFG_INIT(&cfg, flow, key);
BCMOLT_MSG_FIELD_SET(&cfg, cookie, cookie);
if (access_intf_id >= 0 && network_intf_id >= 0) {
if (key.flow_type == BCMOLT_FLOW_TYPE_UPSTREAM) { //upstream
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_PON);
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_id, access_intf_id);
if (classifier.eth_type() == EAP_ETHER_TYPE || //EAPOL packet
(classifier.ip_proto() == 17 && classifier.src_port() == 68 && classifier.dst_port() == 67)) { //DHCP packet
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_HOST);
} else {
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_NNI);
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_id, network_intf_id);
}
} else if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) { //downstream
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_NNI);
BCMOLT_MSG_FIELD_SET(&cfg, ingress_intf.intf_id, network_intf_id);
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_type, BCMOLT_FLOW_INTERFACE_TYPE_PON);
BCMOLT_MSG_FIELD_SET(&cfg, egress_intf.intf_id, access_intf_id);
}
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "flow network setting invalid\n");
return bcm_to_grpc_err(BCM_ERR_PARM, "flow network setting invalid");
}
if (onu_id >= 0) {
BCMOLT_MSG_FIELD_SET(&cfg, onu_id, onu_id);
}
if (gemport_id >= 0) {
BCMOLT_MSG_FIELD_SET(&cfg, svc_port_id, gemport_id);
}
if (gemport_id >= 0 && port_no != 0) {
bcmos_fastlock_lock(&data_lock);
if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) {
port_to_flows[port_no].insert(key.flow_id);
flowid_to_gemport[key.flow_id] = gemport_id;
}
else
{
flowid_to_port[key.flow_id] = port_no;
}
bcmos_fastlock_unlock(&data_lock, 0);
}
if (priority_value >= 0) {
BCMOLT_MSG_FIELD_SET(&cfg, priority, priority_value);
}
{
/* removed by BAL v3.0
if (classifier.o_tpid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_tpid 0x%04x\n", classifier.o_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, o_tpid, classifier.o_tpid());
}
*/
if (classifier.o_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_vid %d\n", classifier.o_vid());
BCMOLT_FIELD_SET(&c_val, classifier, o_vid, classifier.o_vid());
}
/* removed by BAL v3.0
if (classifier.i_tpid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify i_tpid 0x%04x\n", classifier.i_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, i_tpid, classifier.i_tpid());
}
*/
if (classifier.i_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify i_vid %d\n", classifier.i_vid());
BCMOLT_FIELD_SET(&c_val, classifier, i_vid, classifier.i_vid());
}
if (classifier.eth_type()) {
ether_type = classifier.eth_type();
OPENOLT_LOG(DEBUG, openolt_log_id, "classify ether_type 0x%04x\n", classifier.eth_type());
BCMOLT_FIELD_SET(&c_val, classifier, ether_type, classifier.eth_type());
}
/*
if (classifier.dst_mac()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, dst_mac, classifier.dst_mac());
}
if (classifier.src_mac()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, src_mac, classifier.src_mac());
}
*/
if (classifier.ip_proto()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify ip_proto %d\n", classifier.ip_proto());
BCMOLT_FIELD_SET(&c_val, classifier, ip_proto, classifier.ip_proto());
}
/*
if (classifier.dst_ip()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, dst_ip, classifier.dst_ip());
}
if (classifier.src_ip()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, src_ip, classifier.src_ip());
}
*/
if (classifier.src_port()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify src_port %d\n", classifier.src_port());
BCMOLT_FIELD_SET(&c_val, classifier, src_port, classifier.src_port());
}
if (classifier.dst_port()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify dst_port %d\n", classifier.dst_port());
BCMOLT_FIELD_SET(&c_val, classifier, dst_port, classifier.dst_port());
}
if (!classifier.pkt_tag_type().empty()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "classify tag_type %s\n", classifier.pkt_tag_type().c_str());
if (classifier.pkt_tag_type().compare("untagged") == 0) {
BCMOLT_FIELD_SET(&c_val, classifier, pkt_tag_type, BCMOLT_PKT_TAG_TYPE_UNTAGGED);
} else if (classifier.pkt_tag_type().compare("single_tag") == 0) {
BCMOLT_FIELD_SET(&c_val, classifier, pkt_tag_type, BCMOLT_PKT_TAG_TYPE_SINGLE_TAG);
single_tag = true;
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_pbits 0x%x\n", classifier.o_pbits());
BCMOLT_FIELD_SET(&c_val, classifier, o_pbits, classifier.o_pbits());
} else if (classifier.pkt_tag_type().compare("double_tag") == 0) {
BCMOLT_FIELD_SET(&c_val, classifier, pkt_tag_type, BCMOLT_PKT_TAG_TYPE_DOUBLE_TAG);
OPENOLT_LOG(DEBUG, openolt_log_id, "classify o_pbits 0x%x\n", classifier.o_pbits());
BCMOLT_FIELD_SET(&c_val, classifier, o_pbits, classifier.o_pbits());
}
}
BCMOLT_MSG_FIELD_SET(&cfg, classifier, c_val);
}
if (cfg.data.egress_intf.intf_type != BCMOLT_FLOW_INTERFACE_TYPE_HOST) {
const ::openolt::ActionCmd& cmd = action.cmd();
if (cmd.add_outer_tag()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action add o_tag\n");
BCMOLT_FIELD_SET(&a_val, action, cmds_bitmask, BCMOLT_ACTION_CMD_ID_ADD_OUTER_TAG);
}
if (cmd.remove_outer_tag()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action pop o_tag\n");
BCMOLT_FIELD_SET(&a_val, action, cmds_bitmask, BCMOLT_ACTION_CMD_ID_REMOVE_OUTER_TAG);
}
/* removed by BAL v3.0
if (cmd.trap_to_host()) {
OPENOLT_LOG(INFO, openolt_log_id, "action trap-to-host\n");
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, cmds_bitmask, BCMBAL_ACTION_CMD_ID_TRAP_TO_HOST);
}
*/
if (action.o_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action o_vid=%d\n", action.o_vid());
o_vid = action.o_vid();
BCMOLT_FIELD_SET(&a_val, action, o_vid, action.o_vid());
}
if (action.o_pbits()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action o_pbits=0x%x\n", action.o_pbits());
BCMOLT_FIELD_SET(&a_val, action, o_pbits, action.o_pbits());
}
/* removed by BAL v3.0
if (action.o_tpid()) {
OPENOLT_LOG(INFO, openolt_log_id, "action o_tpid=0x%04x\n", action.o_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, o_tpid, action.o_tpid());
}
*/
if (action.i_vid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action i_vid=%d\n", action.i_vid());
BCMOLT_FIELD_SET(&a_val, action, i_vid, action.i_vid());
}
if (action.i_pbits()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action i_pbits=0x%x\n", action.i_pbits());
BCMOLT_FIELD_SET(&a_val, action, i_pbits, action.i_pbits());
}
/* removed by BAL v3.0
if (action.i_tpid()) {
OPENOLT_LOG(DEBUG, openolt_log_id, "action i_tpid=0x%04x\n", action.i_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, i_tpid, action.i_tpid());
}
*/
BCMOLT_MSG_FIELD_SET(&cfg, action, a_val);
}
if ((access_intf_id >= 0) && (onu_id >= 0)) {
if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) {
if (single_tag && ether_type == EAP_ETHER_TYPE) {
tm_val.sched_id = get_default_tm_sched_id(access_intf_id, downstream);
tm_val.queue_id = 0;
} else {
tm_val.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, downstream); // Subscriber Scheduler
tm_val.queue_id = get_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, downstream);
}
OPENOLT_LOG(DEBUG, openolt_log_id, "direction = %s, queue_id = %d, sched_id = %d, intf_type %s\n", \
downstream.c_str(), tm_val.queue_id, tm_val.sched_id, GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type));
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.type, qos_type);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.tm_sched.id, tm_val.sched_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.fixed_queue.queue_id, tm_val.queue_id);
} else if (key.flow_type == BCMOLT_FLOW_TYPE_UPSTREAM) {
/* removed by BAL v3.0. N/A - Alloc ID is out of the scope of BAL. Used for OMCI only.
bcmbal_tm_sched_id val1;
val1 = get_tm_sched_id(access_intf_id, onu_id, uni_id, upstream); // DBA Scheduler ID
BCMBAL_CFG_PROP_SET(&cfg, flow, dba_tm_sched_id, val1);
*/
tm_val.sched_id = get_default_tm_sched_id(network_intf_id, upstream); // NNI Scheduler ID
tm_val.queue_id = get_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, upstream); // Queue on NNI
OPENOLT_LOG(DEBUG, openolt_log_id, "direction = %s, queue_id = %d, sched_id = %d, intf_type %s\n", \
upstream.c_str(), tm_val.queue_id, tm_val.sched_id, GET_FLOW_INTERFACE_TYPE(cfg.data.ingress_intf.intf_type));
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.type, qos_type);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.tm_sched.id, tm_val.sched_id);
BCMOLT_MSG_FIELD_SET(&cfg , egress_qos.u.fixed_queue.queue_id, tm_val.queue_id);
}
}
BCMOLT_MSG_FIELD_SET(&cfg, state, BCMOLT_FLOW_STATE_ENABLE);
#ifdef FLOW_CHECKER
//Flow Checker, To avoid duplicate flow.
if (flow_id_counters != 0) {
bool b_duplicate_flow = false;
for (int flowid=0; flowid < flow_id_counters; flowid++) {
int flow_index = flow_id_data[flowid][0];
b_duplicate_flow = (cfg.data.onu_id == get_flow_status(flow_index, flow_id_data[flowid][1], ONU_ID)) && \
(key.flow_type == flow_id_data[flowid][1]) && \
(cfg.data.svc_port_id == get_flow_status(flow_index, flow_id_data[flowid][1], SVC_PORT_ID)) && \
(cfg.data.priority == get_flow_status(flow_index, flow_id_data[flowid][1], PRIORITY)) && \
(cfg.data.cookie == get_flow_status(flow_index, flow_id_data[flowid][1], COOKIE)) && \
(cfg.data.ingress_intf.intf_type == get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_TYPE)) && \
(cfg.data.ingress_intf.intf_id == get_flow_status(flow_index, flow_id_data[flowid][1], INGRESS_INTF_ID)) && \
(cfg.data.egress_intf.intf_type == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_TYPE)) && \
(cfg.data.egress_intf.intf_id == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_INTF_ID)) && \
(c_val.o_vid == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_VID)) && \
(c_val.o_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_O_PBITS)) && \
(c_val.i_vid == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_VID)) && \
(c_val.i_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_I_PBITS)) && \
(c_val.ether_type == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_ETHER_TYPE)) && \
(c_val.ip_proto == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_IP_PROTO)) && \
(c_val.src_port == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_SRC_PORT)) && \
(c_val.dst_port == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_DST_PORT)) && \
(c_val.pkt_tag_type == get_flow_status(flow_index, flow_id_data[flowid][1], CLASSIFIER_PKT_TAG_TYPE)) && \
(cfg.data.egress_qos.type == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TYPE)) && \
(cfg.data.egress_qos.u.fixed_queue.queue_id == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_QUEUE_ID)) && \
(cfg.data.egress_qos.tm_sched.id == get_flow_status(flow_index, flow_id_data[flowid][1], EGRESS_QOS_TM_SCHED_ID)) && \
(a_val.cmds_bitmask == get_flow_status(flowid, flow_id_data[flowid][1], ACTION_CMDS_BITMASK)) && \
(a_val.o_vid == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_VID)) && \
(a_val.i_vid == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_VID)) && \
(a_val.o_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_O_PBITS)) && \
(a_val.i_pbits == get_flow_status(flow_index, flow_id_data[flowid][1], ACTION_I_PBITS)) && \
(cfg.data.state == get_flow_status(flowid, flow_id_data[flowid][1], STATE));
#ifdef SHOW_FLOW_PARAM
// Flow Parameter
FLOW_PARAM_LOG();
#endif
if (b_duplicate_flow) {
FLOW_LOG(WARNING, "Flow duplicate", 0);
return bcm_to_grpc_err(BCM_ERR_ALREADY, "flow exists");
}
}
}
#endif
bcmos_errno err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if (err) {
FLOW_LOG(ERROR, "Flow add failed", err);
return bcm_to_grpc_err(err, "flow add failed");
} else {
FLOW_LOG(INFO, "Flow add ok", err);
bcmos_fastlock_lock(&data_lock);
flow_id_data[flow_id_counters][0] = key.flow_id;
flow_id_data[flow_id_counters][1] = key.flow_type;
flow_id_counters += 1;
bcmos_fastlock_unlock(&data_lock, 0);
}
return Status::OK;
}
Status FlowRemove_(uint32_t flow_id, const std::string flow_type) {
bcmolt_flow_cfg cfg;
bcmolt_flow_key key = { };
key.flow_id = (bcmolt_flow_id) flow_id;
key.flow_id = flow_id;
if (flow_type.compare(upstream) == 0 ) {
key.flow_type = BCMOLT_FLOW_TYPE_UPSTREAM;
} else if (flow_type.compare(downstream) == 0) {
key.flow_type = BCMOLT_FLOW_TYPE_DOWNSTREAM;
} else {
OPENOLT_LOG(WARNING, openolt_log_id, "Invalid flow type %s\n", flow_type.c_str());
return bcm_to_grpc_err(BCM_ERR_PARM, "Invalid flow type");
}
bcmos_fastlock_lock(&data_lock);
uint32_t port_no = flowid_to_port[key.flow_id];
if (key.flow_type == BCMOLT_FLOW_TYPE_DOWNSTREAM) {
flowid_to_gemport.erase(key.flow_id);
port_to_flows[port_no].erase(key.flow_id);
if (port_to_flows[port_no].empty()) port_to_flows.erase(port_no);
}
else
{
flowid_to_port.erase(key.flow_id);
}
bcmos_fastlock_unlock(&data_lock, 0);
BCMOLT_CFG_INIT(&cfg, flow, key);
bcmos_errno err = bcmolt_cfg_clear(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Error %d while removing flow %d, %s\n",
err, flow_id, flow_type.c_str());
return Status(grpc::StatusCode::INTERNAL, "Failed to remove flow");
}
bcmos_fastlock_lock(&data_lock);
for (int flowid=0; flowid < flow_id_counters; flowid++) {
if (flow_id_data[flowid][0] == flow_id && flow_id_data[flowid][1] == key.flow_type) {
flow_id_counters -= 1;
for (int i=flowid; i < flow_id_counters; i++) {
flow_id_data[i][0] = flow_id_data[i + 1][0];
flow_id_data[i][1] = flow_id_data[i + 1][1];
}
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
OPENOLT_LOG(INFO, openolt_log_id, "Flow %d, %s removed\n", flow_id, flow_type.c_str());
return Status::OK;
}
Status CreateDefaultSchedQueue_(uint32_t intf_id, const std::string direction) {
bcmos_errno err;
bcmolt_tm_sched_cfg tm_sched_cfg;
bcmolt_tm_sched_key tm_sched_key = {.id = 1};
tm_sched_key.id = get_default_tm_sched_id(intf_id, direction);
// bcmbal_tm_sched_owner
BCMOLT_CFG_INIT(&tm_sched_cfg, tm_sched, tm_sched_key);
/**< The output of the tm_sched object instance */
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.type, BCMOLT_TM_SCHED_OUTPUT_TYPE_INTERFACE);
if (direction.compare(upstream) == 0) {
// In upstream it is NNI scheduler
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.interface.interface_ref.intf_type, BCMOLT_INTERFACE_TYPE_NNI);
} else if (direction.compare(downstream) == 0) {
// In downstream it is PON scheduler
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.interface.interface_ref.intf_type, BCMOLT_INTERFACE_TYPE_PON);
}
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.interface.interface_ref.intf_id, intf_id);
// bcmbal_tm_sched_type
// set the deafult policy to strict priority
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, sched_type, BCMOLT_TM_SCHED_TYPE_SP);
// num_priorities: Max number of strict priority scheduling elements
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, num_priorities, 8);
// bcmbal_tm_shaping
uint32_t cir = 1000000;
uint32_t pir = 1000000;
uint32_t burst = 65536;
OPENOLT_LOG(INFO, openolt_log_id, "applying traffic shaping in %s pir=%u, burst=%u\n",
direction.c_str(), pir, burst);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, pir);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, burst);
// FIXME: Setting CIR, results in BAL throwing error 'tm_sched minimum rate is not supported yet'
// BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.cir, cir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.pir, pir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.burst, burst);
err = bcmolt_cfg_set(dev_id, &tm_sched_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create %s scheduler, id %d, intf_id %d, err %d\n", direction.c_str(), tm_sched_key.id, intf_id, err);
return Status(grpc::StatusCode::INTERNAL, "Failed to create %s scheduler", direction.c_str());
}
OPENOLT_LOG(INFO, openolt_log_id, "Create %s scheduler success, id %d, intf_id %d\n", direction.c_str(), tm_sched_key.id, intf_id);
// Create 4 Queues for each default PON scheduler
for (int queue_id = 0; queue_id < 4; queue_id++) {
bcmolt_tm_queue_cfg tm_queue_cfg;
bcmolt_tm_queue_key tm_queue_key = {};
tm_queue_key.sched_id = get_default_tm_sched_id(intf_id, direction);
tm_queue_key.id = queue_id;
BCMOLT_CFG_INIT(&tm_queue_cfg, tm_queue, tm_queue_key);
BCMOLT_MSG_FIELD_SET(&tm_queue_cfg, tm_sched_param.type, BCMOLT_TM_SCHED_PARAM_TYPE_PRIORITY);
BCMOLT_MSG_FIELD_SET(&tm_queue_cfg, tm_sched_param.u.priority.priority, queue_id);
err = bcmolt_cfg_set(dev_id, &tm_queue_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create %s tm queue, id %d, sched_id %d\n", \
direction.c_str(), tm_queue_key.id, tm_queue_key.sched_id);
return Status(grpc::StatusCode::INTERNAL, "Failed to create %s tm queue", direction.c_str());
}
OPENOLT_LOG(INFO, openolt_log_id, "Create %s tm_queue success, id %d, sched_id %d\n", \
direction.c_str(), tm_queue_key.id, tm_queue_key.sched_id);
}
return Status::OK;
}
bcmos_errno CreateSched(std::string direction, uint32_t intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t port_no,
uint32_t alloc_id, tech_profile::AdditionalBW additional_bw, uint32_t weight, uint32_t priority,
tech_profile::SchedulingPolicy sched_policy, tech_profile::TrafficShapingInfo tf_sh_info) {
bcmos_errno err;
if (direction == downstream) {
bcmolt_tm_sched_cfg tm_sched_cfg;
bcmolt_tm_sched_key tm_sched_key = {.id = 1};
tm_sched_key.id = get_tm_sched_id(intf_id, onu_id, uni_id, direction);
// bcmbal_tm_sched_owner
// In downstream it is sub_term scheduler
BCMOLT_CFG_INIT(&tm_sched_cfg, tm_sched, tm_sched_key);
/**< The output of the tm_sched object instance */
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.type, BCMOLT_TM_SCHED_OUTPUT_TYPE_TM_SCHED);
// bcmbal_tm_sched_parent
// The parent for the sub_term scheduler is the PON scheduler in the downstream
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.tm_sched.tm_sched_id, get_default_tm_sched_id(intf_id, direction));
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, attachment_point.u.tm_sched.tm_sched_param.u.priority.priority, priority);
/* removed by BAL v3.0, N/A - No direct attachment point of type ONU, same functionality may
be achieved using the' virtual' type of attachment.
tm_sched_owner.u.sub_term.intf_id = intf_id;
tm_sched_owner.u.sub_term.sub_term_id = onu_id;
*/
// bcmbal_tm_sched_type
// set the deafult policy to strict priority
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, sched_type, BCMOLT_TM_SCHED_TYPE_SP);
// num_priorities: Max number of strict priority scheduling elements
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, num_priorities, 8);
// bcmbal_tm_shaping
if (tf_sh_info.cir() >= 0 && tf_sh_info.pir() > 0) {
uint32_t cir = tf_sh_info.cir();
uint32_t pir = tf_sh_info.pir();
uint32_t burst = tf_sh_info.pbs();
OPENOLT_LOG(INFO, openolt_log_id, "applying traffic shaping in DL cir=%u, pir=%u, burst=%u\n",
cir, pir, burst);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, pir);
BCMOLT_FIELD_SET_PRESENT(&tm_sched_cfg.data.rate, tm_shaping, burst);
// FIXME: Setting CIR, results in BAL throwing error 'tm_sched minimum rate is not supported yet'
//BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.cir, cir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.pir, pir);
BCMOLT_MSG_FIELD_SET(&tm_sched_cfg, rate.burst, burst);
}
err = bcmolt_cfg_set(dev_id, &tm_sched_cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create downstream subscriber scheduler, id %d, \
intf_id %d, onu_id %d, uni_id %d, port_no %u\n", tm_sched_key.id, intf_id, onu_id, \
uni_id, port_no);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Create downstream subscriber sched, id %d, intf_id %d, onu_id %d, \
uni_id %d, port_no %u\n", tm_sched_key.id, intf_id, onu_id, uni_id, port_no);
} else { //upstream
bcmolt_itupon_alloc_cfg cfg;
bcmolt_itupon_alloc_key key = { };
key.pon_ni = intf_id;
key.alloc_id = alloc_id;
int bw_granularity = (board_technology == "XGS-PON")?XGS_BANDWIDTH_GRANULARITY:GPON_BANDWIDTH_GRANULARITY;
int pir_bw = tf_sh_info.pir();
int cir_bw = tf_sh_info.cir();
//offset to match bandwidth granularity
int offset_pir_bw = pir_bw%bw_granularity;
int offset_cir_bw = cir_bw%bw_granularity;
pir_bw = pir_bw - offset_pir_bw;
cir_bw = cir_bw - offset_cir_bw;
BCMOLT_CFG_INIT(&cfg, itupon_alloc, key);
switch (additional_bw) {
case 2: //AdditionalBW_BestEffort
if (pir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth was set to 0, must be at least \
%d bytes/sec\n", (board_technology == "XGS-PON")?XGS_BANDWIDTH_GRANULARITY:GPON_BANDWIDTH_GRANULARITY);
} else if (pir_bw < cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth (%d) can't be less than Guaranteed \
bandwidth (%d)\n", pir_bw, cir_bw);
return BCM_ERR_PARM;
} else if (pir_bw == cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be greater than Guaranteed \
bandwidth for additional bandwidth eligibility of type best_effort\n");
return BCM_ERR_PARM;
}
BCMOLT_MSG_FIELD_SET(&cfg, sla.additional_bw_eligibility, BCMOLT_ADDITIONAL_BW_ELIGIBILITY_BEST_EFFORT);
break;
case 1: //AdditionalBW_NA
if (pir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth was set to 0, must be at least \
%d bytes/sec\n", (board_technology == "XGS-PON")?XGS_BANDWIDTH_GRANULARITY:GPON_BANDWIDTH_GRANULARITY);
return BCM_ERR_PARM;
} else if (cir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Guaranteed bandwidth must be greater than zero for \
additional bandwidth eligibility of type Non-Assured (NA)\n");
return BCM_ERR_PARM;
} else if (pir_bw < cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth (%d) can't be less than Guaranteed \
bandwidth (%d)\n", pir_bw, cir_bw);
return BCM_ERR_PARM;
} else if (pir_bw == cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be greater than Guaranteed \
bandwidth for additional bandwidth eligibility of type non_assured\n");
return BCM_ERR_PARM;
}
BCMOLT_MSG_FIELD_SET(&cfg, sla.additional_bw_eligibility, BCMOLT_ADDITIONAL_BW_ELIGIBILITY_NON_ASSURED);
break;
case 0: //AdditionalBW_None
if (pir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth was set to 0, must be at least \
16000 bytes/sec\n");
return BCM_ERR_PARM;
} else if (cir_bw == 0) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be equal to Guaranteed bandwidth \
for additional bandwidth eligibility of type None\n");
return BCM_ERR_PARM;
} else if (pir_bw > cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth must be equal to Guaranteed bandwidth \
for additional bandwidth eligibility of type None\n");
OPENOLT_LOG(ERROR, openolt_log_id, "set Maximum bandwidth (%d) to Guaranteed \
bandwidth in None eligibility\n", pir_bw);
cir_bw = pir_bw;
} else if (pir_bw < cir_bw) {
OPENOLT_LOG(ERROR, openolt_log_id, "Maximum bandwidth (%d) can't be less than Guaranteed \
bandwidth (%d)\n", pir_bw, cir_bw);
OPENOLT_LOG(ERROR, openolt_log_id, "set Maximum bandwidth (%d) to Guaranteed \
bandwidth in None eligibility\n", pir_bw);
cir_bw = pir_bw;
}
BCMOLT_MSG_FIELD_SET(&cfg, sla.additional_bw_eligibility, BCMOLT_ADDITIONAL_BW_ELIGIBILITY_NONE);
break;
default:
return BCM_ERR_PARM;
}
/* CBR Real Time Bandwidth which require shaping of the bandwidth allocations
in a fine granularity. */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_rt_bw, 0);
/* Fixed Bandwidth with no critical requirement of shaping */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_nrt_bw, 0);
/* Dynamic bandwidth which the OLT is committed to allocate upon demand */
BCMOLT_MSG_FIELD_SET(&cfg, sla.guaranteed_bw, cir_bw);
/* Maximum allocated bandwidth allowed for this alloc ID */
BCMOLT_MSG_FIELD_SET(&cfg, sla.maximum_bw, pir_bw);
BCMOLT_MSG_FIELD_SET(&cfg, sla.alloc_type, BCMOLT_ALLOC_TYPE_NSR);
/* Set to True for AllocID with CBR RT Bandwidth that requires compensation
for skipped allocations during quiet window */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_rt_compensation, BCMOS_FALSE);
/**< Allocation Profile index for CBR non-RT Bandwidth */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_nrt_ap_index, 0);
/**< Allocation Profile index for CBR RT Bandwidth */
BCMOLT_MSG_FIELD_SET(&cfg, sla.cbr_rt_ap_index, 0);
/**< Alloc ID Weight used in case of Extended DBA mode */
BCMOLT_MSG_FIELD_SET(&cfg, sla.weight, 0);
/**< Alloc ID Priority used in case of Extended DBA mode */
BCMOLT_MSG_FIELD_SET(&cfg, sla.priority, 0);
BCMOLT_MSG_FIELD_SET(&cfg, onu_id, onu_id);
err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create upstream bandwidth allocation, intf_id %d, onu_id %d, uni_id %d,\
port_no %u, alloc_id %d, err %d\n", intf_id, onu_id,uni_id,port_no,alloc_id, err);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Create upstream bandwidth allocation, intf_id %d, onu_id %d, uni_id %d, port_no %u, \
alloc_id %d\n", intf_id,onu_id,uni_id,port_no,alloc_id);
}
return BCM_ERR_OK;
}
Status CreateTrafficSchedulers_(const tech_profile::TrafficSchedulers *traffic_scheds) {
uint32_t intf_id = traffic_scheds->intf_id();
uint32_t onu_id = traffic_scheds->onu_id();
uint32_t uni_id = traffic_scheds->uni_id();
uint32_t port_no = traffic_scheds->port_no();
std::string direction;
unsigned int alloc_id;
tech_profile::SchedulerConfig sched_config;
tech_profile::AdditionalBW additional_bw;
uint32_t priority;
uint32_t weight;
tech_profile::SchedulingPolicy sched_policy;
tech_profile::TrafficShapingInfo traffic_shaping_info;
bcmos_errno err;
for (int i = 0; i < traffic_scheds->traffic_scheds_size(); i++) {
tech_profile::TrafficScheduler traffic_sched = traffic_scheds->traffic_scheds(i);
if (traffic_sched.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_sched.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
}
else {
OPENOLT_LOG(ERROR, openolt_log_id, "direction-not-supported %d\n", traffic_sched.direction());
return Status::CANCELLED;
}
alloc_id = traffic_sched.alloc_id();
sched_config = traffic_sched.scheduler();
additional_bw = sched_config.additional_bw();
priority = sched_config.priority();
weight = sched_config.weight();
sched_policy = sched_config.sched_policy();
traffic_shaping_info = traffic_sched.traffic_shaping_info();
err = CreateSched(direction, intf_id, onu_id, uni_id, port_no, alloc_id, additional_bw, weight, priority,
sched_policy, traffic_shaping_info);
if (err) {
return bcm_to_grpc_err(err, "Failed to create scheduler");
}
}
return Status::OK;
}
bcmos_errno RemoveSched(int intf_id, int onu_id, int uni_id, int alloc_id, std::string direction) {
bcmos_errno err;
if (direction == upstream) {
bcmolt_itupon_alloc_cfg cfg;
bcmolt_itupon_alloc_key key = { };
key.pon_ni = intf_id;
key.alloc_id = alloc_id;
BCMOLT_CFG_INIT(&cfg, itupon_alloc, key);
err = bcmolt_cfg_clear(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to remove scheduler sched, direction = %s, intf_id %d, alloc_id %d, err %d\n", \
direction.c_str(), intf_id, alloc_id, err);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Removed sched, direction = %s, intf_id %d, alloc_id %d\n", \
direction.c_str(), intf_id, alloc_id);
} else if (direction == downstream) {
bcmolt_tm_sched_cfg cfg;
bcmolt_tm_sched_key key = { };
if (is_tm_sched_id_present(intf_id, onu_id, uni_id, direction)) {
key.id = get_tm_sched_id(intf_id, onu_id, uni_id, direction);
} else {
OPENOLT_LOG(INFO, openolt_log_id, "schduler not present in %s, err %d\n", direction.c_str(), err);
return BCM_ERR_OK;
}
BCMOLT_CFG_INIT(&cfg, tm_sched, key);
err = bcmolt_cfg_clear(dev_id, &(cfg.hdr));
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to remove scheduler sched, direction = %s, id %d, intf_id %d, onu_id %d\n", \
direction.c_str(), key.id, intf_id, onu_id);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Removed sched, direction = %s, id %d, intf_id %d, onu_id %d\n", \
direction.c_str(), key.id, intf_id, onu_id);
}
free_tm_sched_id(intf_id, onu_id, uni_id, direction);
return BCM_ERR_OK;
}
Status RemoveTrafficSchedulers_(const tech_profile::TrafficSchedulers *traffic_scheds) {
uint32_t intf_id = traffic_scheds->intf_id();
uint32_t onu_id = traffic_scheds->onu_id();
uint32_t uni_id = traffic_scheds->uni_id();
std::string direction;
bcmos_errno err;
for (int i = 0; i < traffic_scheds->traffic_scheds_size(); i++) {
tech_profile::TrafficScheduler traffic_sched = traffic_scheds->traffic_scheds(i);
if (traffic_sched.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_sched.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
}
else {
OPENOLT_LOG(ERROR, openolt_log_id, "direction-not-supported %d\n", traffic_sched.direction());
return Status::CANCELLED;
}
int alloc_id = traffic_sched.alloc_id();
err = RemoveSched(intf_id, onu_id, uni_id, alloc_id, direction);
if (err) {
return bcm_to_grpc_err(err, "error-removing-traffic-scheduler");
}
}
return Status::OK;
}
bcmos_errno CreateQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t priority,
uint32_t gemport_id) {
bcmos_errno err;
bcmolt_tm_queue_cfg cfg;
bcmolt_tm_queue_key key = { };
OPENOLT_LOG(INFO, openolt_log_id, "creating queue. access_intf_id = %d, onu_id = %d, uni_id = %d \
gemport_id = %d, direction = %s\n", access_intf_id, onu_id, uni_id, gemport_id, direction.c_str());
if (direction == downstream) {
// There is one queue per gem port
key.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, direction);
key.id = get_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
} else {
queue_map_key_tuple map_key(access_intf_id, onu_id, uni_id, gemport_id, direction);
if (queue_map.count(map_key) > 0) {
OPENOLT_LOG(INFO, openolt_log_id, "upstream queue exists for intf_id %d, onu_id %d, uni_id %d\n. Not re-creating", \
access_intf_id, onu_id, uni_id);
return BCM_ERR_OK;
}
key.sched_id = get_default_tm_sched_id(nni_intf_id, direction);
if (priority > 7) {
return BCM_ERR_RANGE;
}
// There are 8 queues (one per p-bit)
key.id = us_fixed_queue_id_list[priority];
update_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction, key.id);
// FIXME: The upstream queues have to be created once only.
// The upstream queues on the NNI scheduler are shared by all subscribers.
// When the first scheduler comes in, the queues get created, and are re-used by all others.
// Also, these queues should be present until the last subscriber exits the system.
// One solution is to have these queues always, i.e., create it as soon as OLT is enabled.
}
OPENOLT_LOG(INFO, openolt_log_id, "queue assigned queue_id = %d\n", key.id);
BCMOLT_CFG_INIT(&cfg, tm_queue, key);
BCMOLT_MSG_FIELD_SET(&cfg, tm_sched_param.u.priority.priority, priority);
err = bcmolt_cfg_set(dev_id, &cfg.hdr);
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to create subscriber tm queue, direction = %s, id %d, sched_id %d, \
intf_id %d, onu_id %d, uni_id %d, err %d\n", \
direction.c_str(), key.id, key.sched_id, access_intf_id, onu_id, uni_id, err);
return err;
}
OPENOLT_LOG(INFO, openolt_log_id, "Created tm_queue, direction %s, id %d, intf_id %d, onu_id %d, uni_id %d\n", \
direction.c_str(), key.id, access_intf_id, onu_id, uni_id);
return BCM_ERR_OK;
}
Status CreateTrafficQueues_(const tech_profile::TrafficQueues *traffic_queues) {
uint32_t intf_id = traffic_queues->intf_id();
uint32_t onu_id = traffic_queues->onu_id();
uint32_t uni_id = traffic_queues->uni_id();
std::string direction;
bcmos_errno err;
for (int i = 0; i < traffic_queues->traffic_queues_size(); i++) {
tech_profile::TrafficQueue traffic_queue = traffic_queues->traffic_queues(i);
if (traffic_queue.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_queue.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
}
else {
OPENOLT_LOG(ERROR, openolt_log_id, "direction-not-supported %d\n", traffic_queue.direction());
return Status::CANCELLED;
}
err = CreateQueue(direction, intf_id, onu_id, uni_id, traffic_queue.priority(), traffic_queue.gemport_id());
// If the queue exists already, lets not return failure and break the loop.
if (err && err != BCM_ERR_ALREADY) {
return bcm_to_grpc_err(err, "Failed to create queue");
}
}
return Status::OK;
}
bcmos_errno RemoveQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t priority,
uint32_t gemport_id) {
bcmolt_tm_queue_cfg cfg;
bcmolt_tm_queue_key key = { };
bcmos_errno err;
if (direction == downstream) {
if (is_tm_queue_id_present(access_intf_id, onu_id, uni_id, gemport_id, direction) && \
is_tm_sched_id_present(access_intf_id, onu_id, uni_id, direction)) {
key.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, direction);
key.id = get_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
} else {
OPENOLT_LOG(INFO, openolt_log_id, "queue not present in DS. Not clearing, access_intf_id %d, onu_id %d, uni_id %d, gemport_id %d, direction %s\n", access_intf_id, onu_id, uni_id, gemport_id, direction.c_str());
return BCM_ERR_OK;
}
} else {
free_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
// In the upstream we use pre-created queues on the NNI scheduler that are used by all subscribers.
// They should not be removed. So, lets return OK.
return BCM_ERR_OK;
}
BCMOLT_CFG_INIT(&cfg, tm_queue, key);
err = bcmolt_cfg_clear(dev_id, &(cfg.hdr));
if (err) {
OPENOLT_LOG(ERROR, openolt_log_id, "Failed to remove queue, direction = %s, id %d, sched_id %d, intf_id %d, onu_id %d, uni_id %d\n",
direction.c_str(), key.id, key.sched_id, access_intf_id, onu_id, uni_id);
return err;
}
free_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
return BCM_ERR_OK;
}
Status RemoveTrafficQueues_(const tech_profile::TrafficQueues *traffic_queues) {
uint32_t intf_id = traffic_queues->intf_id();
uint32_t onu_id = traffic_queues->onu_id();
uint32_t uni_id = traffic_queues->uni_id();
uint32_t port_no = traffic_queues->port_no();
std::string direction;
bcmos_errno err;
for (int i = 0; i < traffic_queues->traffic_queues_size(); i++) {
tech_profile::TrafficQueue traffic_queue = traffic_queues->traffic_queues(i);
if (traffic_queue.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_queue.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
} else {
OPENOLT_LOG(ERROR, openolt_log_id, "direction-not-supported %d\n", traffic_queue.direction());
return Status::CANCELLED;
}
err = RemoveQueue(direction, intf_id, onu_id, uni_id, traffic_queue.priority(), traffic_queue.gemport_id());
if (err) {
return bcm_to_grpc_err(err, "Failed to remove queue");
}
}
return Status::OK;
}