blob: 2912932e628719fdff4dda2586146a5df570dfc3 [file] [log] [blame]
/*
Copyright (C) 2018 Open Networking Foundation
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include <memory>
#include <string>
#include "Queue.h"
#include <iostream>
#include <sstream>
#include <chrono>
#include <thread>
#include <bitset>
#include "device.h"
#include "core.h"
#include "indications.h"
#include "stats_collection.h"
#include "error_format.h"
#include "state.h"
#include "utils.h"
extern "C"
{
#include <bcmos_system.h>
#include <bal_api.h>
#include <bal_api_end.h>
// FIXME : dependency problem
// #include <bcm_common_gpon.h>
// #include <bcm_dev_log_task.h>
}
// These need patched into bal_model_types.h directly. But, with above extern "C", it cannot be done
inline bcmbal_action_cmd_id& operator|=(bcmbal_action_cmd_id& a, bcmbal_action_cmd_id b) {return a = static_cast<bcmbal_action_cmd_id>(static_cast<int>(a) | static_cast<int>(b));}
inline bcmbal_action_id& operator|=(bcmbal_action_id& a, bcmbal_action_id b) {return a = static_cast<bcmbal_action_id>(static_cast<int>(a) | static_cast<int>(b));}
inline bcmbal_classifier_id& operator|=(bcmbal_classifier_id& a, bcmbal_classifier_id b) {return a = static_cast<bcmbal_classifier_id>(static_cast<int>(a) | static_cast<int>(b));}
inline bcmbal_tm_sched_owner_agg_port_id& operator|=(bcmbal_tm_sched_owner_agg_port_id& a, bcmbal_tm_sched_owner_agg_port_id b) {return a = static_cast<bcmbal_tm_sched_owner_agg_port_id>(static_cast<int>(a) | static_cast<int>(b));}
inline bcmbal_tm_sched_parent_id& operator|=(bcmbal_tm_sched_parent_id& a, bcmbal_tm_sched_parent_id b) {return a = static_cast<bcmbal_tm_sched_parent_id>(static_cast<int>(a) | static_cast<int>(b));}
inline bcmbal_tm_shaping_id& operator|=(bcmbal_tm_shaping_id& a, bcmbal_tm_shaping_id b) {return a = static_cast<bcmbal_tm_shaping_id>(static_cast<int>(a) | static_cast<int>(b));}
dev_log_id openolt_log_id = bcm_dev_log_id_register("OPENOLT", DEV_LOG_LEVEL_INFO, DEV_LOG_ID_TYPE_BOTH);
dev_log_id omci_log_id = bcm_dev_log_id_register("OMCI", DEV_LOG_LEVEL_INFO, DEV_LOG_ID_TYPE_BOTH);
#define MAX_SUPPORTED_INTF 16
#define BAL_RSC_MANAGER_BASE_TM_SCHED_ID 16384
#define MAX_TM_QUEUE_ID 8192
#define MAX_TM_SCHED_ID 16384
#define EAP_ETHER_TYPE 34958
static unsigned int num_of_nni_ports = 0;
static unsigned int num_of_pon_ports = 0;
static std::string intf_technologies[MAX_SUPPORTED_INTF];
static const std::string UNKNOWN_TECH("unknown");
static const std::string MIXED_TECH("mixed");
static std::string board_technology(UNKNOWN_TECH);
static unsigned int OPENOLT_FIELD_LEN = 200;
static std::string firmware_version = "Openolt.2018.10.04";
const uint32_t tm_upstream_sched_id_start = 18432;
const uint32_t tm_downstream_sched_id_start = 16384;
//0 to 3 are default queues. Lets not use them.
const uint32_t tm_queue_id_start = 4;
// Upto 8 fixed Upstream. Queue id 0 to 3 are pre-created, lets not use them.
const uint32_t us_fixed_queue_id_list[8] = {4, 5, 6, 7, 8, 9, 10, 11};
const std::string upstream = "upstream";
const std::string downstream = "downstream";
State state;
static std::map<uint32_t, uint32_t> flowid_to_port; // For mapping upstream flows to logical ports
static std::map<uint32_t, uint32_t> flowid_to_gemport; // For mapping downstream flows into gemports
static std::map<uint32_t, std::set<uint32_t> > port_to_flows; // For mapping logical ports to downstream flows
// This represents the Key to 'queue_map' map.
// Represents (pon_intf_id, onu_id, uni_id, gemport_id, direction)
typedef std::tuple<uint32_t, uint32_t, uint32_t, uint32_t, std::string> queue_map_key_tuple;
// 'queue_map' maps queue_map_key_tuple to downstream queue id present
// on the Subscriber Scheduler
static std::map<queue_map_key_tuple, int> queue_map;
// This represents the Key to 'sched_map' map.
// Represents (pon_intf_id, onu_id, uni_id, direction)
typedef std::tuple<uint32_t, uint32_t, uint32_t, std::string> sched_map_key_tuple;
// 'sched_map' maps sched_map_key_tuple to DBA (Upstream) or
// Subscriber (Downstream) Scheduler ID
static std::map<sched_map_key_tuple, int> sched_map;
std::bitset<MAX_TM_QUEUE_ID> tm_queue_bitset;
std::bitset<MAX_TM_SCHED_ID> tm_sched_bitset;
static bcmos_fastlock data_lock;
#define MIN_ALLOC_ID_GPON 256
#define MIN_ALLOC_ID_XGSPON 1024
static bcmos_errno CreateSched(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, \
uint32_t port_no, uint32_t alloc_id, tech_profile::AdditionalBW additional_bw, uint32_t weight, \
uint32_t priority, tech_profile::SchedulingPolicy sched_policy,
tech_profile::TrafficShapingInfo traffic_shaping_info);
static bcmos_errno RemoveSched(int intf_id, int onu_id, int uni_id, std::string direction);
static bcmos_errno CreateQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, \
uint32_t priority, uint32_t gemport_id);
static bcmos_errno RemoveQueue(std::string direction, int intf_id, int onu_id, int uni_id, uint32_t port_no, int alloc_id);
/**
* Returns the default NNI (Upstream direction) or PON (Downstream direction) scheduler
* Every NNI port and PON port have default scheduler.
* The NNI0 default scheduler ID is 18432, and NNI1 is 18433 and so on.
* Similarly, PON0 default scheduler ID is 16384. PON1 is 16385 and so on.
*
* @param intf_id NNI or PON interface ID
* @param direction "upstream" or "downstream"
*
* @return default scheduler ID for the given interface.
*/
static inline int get_default_tm_sched_id(int intf_id, std::string direction) {
if (direction.compare(upstream) == 0) {
return tm_upstream_sched_id_start + intf_id;
} else if (direction.compare(downstream) == 0) {
return tm_downstream_sched_id_start + intf_id;
}
else {
BCM_LOG(ERROR, openolt_log_id, "invalid direction - %s\n", direction.c_str());
return 0;
}
}
/**
* Gets a unique tm_queue_id for a given intf_id, onu_id, uni_id, gemport_id, direction
* The tm_queue_id is locally cached in a map, so that it can rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*
* @return tm_queue_id
*/
int get_tm_queue_id(int intf_id, int onu_id, int uni_id, int gemport_id, std::string direction) {
queue_map_key_tuple key(intf_id, onu_id, uni_id, gemport_id, direction);
int queue_id = -1;
std::map<queue_map_key_tuple, int>::const_iterator it = queue_map.find(key);
if (it != queue_map.end()) {
queue_id = it->second;
}
if (queue_id != -1) {
return queue_id;
}
bcmos_fastlock_lock(&data_lock);
// Complexity of O(n). Is there better way that can avoid linear search?
for (queue_id = 0; queue_id < MAX_TM_QUEUE_ID; queue_id++) {
if (tm_queue_bitset[queue_id] == 0) {
tm_queue_bitset[queue_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (queue_id < MAX_TM_QUEUE_ID) {
bcmos_fastlock_lock(&data_lock);
queue_map[key] = queue_id;
bcmos_fastlock_unlock(&data_lock, 0);
return queue_id;
} else {
return -1;
}
}
/**
* Update tm_queue_id for a given intf_id, onu_id, uni_id, gemport_id, direction
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
* @param tm_queue_id tm_queue_id
*/
void update_tm_queue_id(int pon_intf_id, int onu_id, int uni_id, int gemport_id, std::string direction,
uint32_t queue_id) {
queue_map_key_tuple key(pon_intf_id, onu_id, uni_id, gemport_id, direction);
bcmos_fastlock_lock(&data_lock);
queue_map[key] = queue_id;
bcmos_fastlock_unlock(&data_lock, 0);
}
/**
* Free tm_queue_id for a given intf_id, onu_id, uni_id, gemport_id, direction
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*/
void free_tm_queue_id(int pon_intf_id, int onu_id, int uni_id, int gemport_id, std::string direction) {
queue_map_key_tuple key(pon_intf_id, onu_id, uni_id, gemport_id, direction);
std::map<queue_map_key_tuple, int>::const_iterator it;
bcmos_fastlock_lock(&data_lock);
it = queue_map.find(key);
if (it != queue_map.end()) {
tm_queue_bitset[it->second] = 0;
queue_map.erase(it);
}
bcmos_fastlock_unlock(&data_lock, 0);
}
/**
* Gets a unique tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction
* The tm_sched_id is locally cached in a map, so that it can rendered when necessary.
* VOLTHA replays whole configuration on OLT reboot, so caching locally is not a problem
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*
* @return tm_sched_id
*/
uint32_t get_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
int sched_id = -1;
std::map<sched_map_key_tuple, int>::const_iterator it = sched_map.find(key);
if (it != sched_map.end()) {
sched_id = it->second;
}
if (sched_id != -1) {
return sched_id;
}
bcmos_fastlock_lock(&data_lock);
// Complexity of O(n). Is there better way that can avoid linear search?
for (sched_id = 0; sched_id < MAX_TM_SCHED_ID; sched_id++) {
if (tm_sched_bitset[sched_id] == 0) {
tm_sched_bitset[sched_id] = 1;
break;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (sched_id < MAX_TM_SCHED_ID) {
bcmos_fastlock_lock(&data_lock);
sched_map[key] = sched_id;
bcmos_fastlock_unlock(&data_lock, 0);
return sched_id;
} else {
return -1;
}
}
/**
* Free tm_sched_id for a given intf_id, onu_id, uni_id, gemport_id, direction
*
* @param intf_id NNI or PON intf ID
* @param onu_id ONU ID
* @param uni_id UNI ID
* @param gemport_id GEM Port ID
* @param direction Upstream or downstream
*/
void free_tm_sched_id(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
std::map<sched_map_key_tuple, int>::const_iterator it;
bcmos_fastlock_lock(&data_lock);
it = sched_map.find(key);
if (it != sched_map.end()) {
tm_sched_bitset[it->second] = 0;
sched_map.erase(it);
}
bcmos_fastlock_unlock(&data_lock, 0);
}
bool is_tm_sched_id_present(int pon_intf_id, int onu_id, int uni_id, std::string direction) {
sched_map_key_tuple key(pon_intf_id, onu_id, uni_id, direction);
return sched_map.count(key) > 0 ? true: false;
}
bool is_tm_queue_id_present(int pon_intf_id, int onu_id, int uni_id, int gemport_id, std::string direction) {
queue_map_key_tuple key(pon_intf_id, onu_id, uni_id, gemport_id, direction);
return queue_map.count(key) > 0 ? true: false;
}
char* openolt_read_sysinfo(char* field_name, char* field_val)
{
FILE *fp;
/* Prepare the command*/
char command[150];
snprintf(command, sizeof command, "bash -l -c \"onlpdump -s\" | perl -ne 'print $1 if /%s: (\\S+)/'", field_name);
/* Open the command for reading. */
fp = popen(command, "r");
if (fp == NULL) {
/*The client has to check for a Null field value in this case*/
BCM_LOG(INFO, openolt_log_id, "Failed to query the %s\n", field_name);
return field_val;
}
/*Read the field value*/
if (fp) {
fread(field_val, OPENOLT_FIELD_LEN, 1, fp);
pclose(fp);
}
return field_val;
}
Status GetDeviceInfo_(openolt::DeviceInfo* device_info) {
device_info->set_vendor(VENDOR_ID);
device_info->set_model(MODEL_ID);
device_info->set_hardware_version("");
device_info->set_firmware_version(firmware_version);
device_info->set_technology(board_technology);
device_info->set_pon_ports(num_of_pon_ports);
char serial_number[OPENOLT_FIELD_LEN];
memset(serial_number, '\0', OPENOLT_FIELD_LEN);
openolt_read_sysinfo("Serial Number", serial_number);
BCM_LOG(INFO, openolt_log_id, "Fetched device serial number %s\n", serial_number);
device_info->set_device_serial_number(serial_number);
// Legacy, device-wide ranges. To be deprecated when adapter
// is upgraded to support per-interface ranges
if (board_technology == "xgspon") {
device_info->set_onu_id_start(1);
device_info->set_onu_id_end(255);
device_info->set_alloc_id_start(MIN_ALLOC_ID_XGSPON);
device_info->set_alloc_id_end(16383);
device_info->set_gemport_id_start(1024);
device_info->set_gemport_id_end(65535);
device_info->set_flow_id_start(1);
device_info->set_flow_id_end(16383);
}
else if (board_technology == "gpon") {
device_info->set_onu_id_start(1);
device_info->set_onu_id_end(127);
device_info->set_alloc_id_start(MIN_ALLOC_ID_GPON);
device_info->set_alloc_id_end(767);
device_info->set_gemport_id_start(256);
device_info->set_gemport_id_end(4095);
device_info->set_flow_id_start(1);
device_info->set_flow_id_end(16383);
}
std::map<std::string, openolt::DeviceInfo::DeviceResourceRanges*> ranges;
for (uint32_t intf_id = 0; intf_id < num_of_pon_ports; ++intf_id) {
std::string intf_technology = intf_technologies[intf_id];
openolt::DeviceInfo::DeviceResourceRanges *range = ranges[intf_technology];
if(range == nullptr) {
range = device_info->add_ranges();
ranges[intf_technology] = range;
range->set_technology(intf_technology);
if (intf_technology == "xgspon") {
openolt::DeviceInfo::DeviceResourceRanges::Pool* pool;
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ONU_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::DEDICATED_PER_INTF);
pool->set_start(1);
pool->set_end(255);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ALLOC_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_SAME_TECH);
pool->set_start(1024);
pool->set_end(16383);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::GEMPORT_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1024);
pool->set_end(65535);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::FLOW_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1);
pool->set_end(16383);
}
else if (intf_technology == "gpon") {
openolt::DeviceInfo::DeviceResourceRanges::Pool* pool;
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ONU_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::DEDICATED_PER_INTF);
pool->set_start(1);
pool->set_end(127);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::ALLOC_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_SAME_TECH);
pool->set_start(256);
pool->set_end(757);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::GEMPORT_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(256);
pool->set_end(4095);
pool = range->add_pools();
pool->set_type(openolt::DeviceInfo::DeviceResourceRanges::Pool::FLOW_ID);
pool->set_sharing(openolt::DeviceInfo::DeviceResourceRanges::Pool::SHARED_BY_ALL_INTF_ALL_TECH);
pool->set_start(1);
pool->set_end(16383);
}
}
range->add_intf_ids(intf_id);
}
// FIXME: Once dependency problem is fixed
// device_info->set_pon_ports(num_of_pon_ports);
// device_info->set_onu_id_end(XGPON_NUM_OF_ONUS - 1);
// device_info->set_alloc_id_start(1024);
// device_info->set_alloc_id_end(XGPON_NUM_OF_ALLOC_IDS * num_of_pon_ports ? - 1);
// device_info->set_gemport_id_start(XGPON_MIN_BASE_SERVICE_PORT_ID);
// device_info->set_gemport_id_end(XGPON_NUM_OF_GEM_PORT_IDS_PER_PON * num_of_pon_ports ? - 1);
// device_info->set_pon_ports(num_of_pon_ports);
return Status::OK;
}
Status Enable_(int argc, char *argv[]) {
bcmbal_access_terminal_cfg acc_term_obj;
bcmbal_access_terminal_key key = { };
if (!state.is_activated()) {
vendor_init();
bcmbal_init(argc, argv, NULL);
bcmos_fastlock_init(&data_lock, 0);
BCM_LOG(INFO, openolt_log_id, "Enable OLT - %s-%s\n", VENDOR_ID, MODEL_ID);
Status status = SubscribeIndication();
if (!status.ok()) {
BCM_LOG(ERROR, openolt_log_id, "SubscribeIndication failed - %s : %s\n",
grpc_status_code_to_string(status.error_code()).c_str(),
status.error_message().c_str());
return status;
}
key.access_term_id = DEFAULT_ATERM_ID;
BCMBAL_CFG_INIT(&acc_term_obj, access_terminal, key);
BCMBAL_CFG_PROP_SET(&acc_term_obj, access_terminal, admin_state, BCMBAL_STATE_UP);
bcmos_errno err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(acc_term_obj.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to enable OLT\n");
return bcm_to_grpc_err(err, "Failed to enable OLT");
}
init_stats();
}
//If already enabled, generate an extra indication ????
return Status::OK;
}
Status Disable_() {
// bcmbal_access_terminal_cfg acc_term_obj;
// bcmbal_access_terminal_key key = { };
//
// if (state::is_activated) {
// std::cout << "Disable OLT" << std::endl;
// key.access_term_id = DEFAULT_ATERM_ID;
// BCMBAL_CFG_INIT(&acc_term_obj, access_terminal, key);
// BCMBAL_CFG_PROP_SET(&acc_term_obj, access_terminal, admin_state, BCMBAL_STATE_DOWN);
// bcmos_errno err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(acc_term_obj.hdr));
// if (err) {
// std::cout << "ERROR: Failed to disable OLT" << std::endl;
// return bcm_to_grpc_err(err, "Failed to disable OLT");
// }
// }
// //If already disabled, generate an extra indication ????
// return Status::OK;
//This fails with Operation Not Supported, bug ???
//TEMPORARY WORK AROUND
Status status = DisableUplinkIf_(nni_intf_id);
if (status.ok()) {
state.deactivate();
openolt::Indication ind;
openolt::OltIndication* olt_ind = new openolt::OltIndication;
olt_ind->set_oper_state("down");
ind.set_allocated_olt_ind(olt_ind);
BCM_LOG(INFO, openolt_log_id, "Disable OLT, add an extra indication\n");
oltIndQ.push(ind);
}
return status;
}
Status Reenable_() {
Status status = EnableUplinkIf_(0);
if (status.ok()) {
state.activate();
openolt::Indication ind;
openolt::OltIndication* olt_ind = new openolt::OltIndication;
olt_ind->set_oper_state("up");
ind.set_allocated_olt_ind(olt_ind);
BCM_LOG(INFO, openolt_log_id, "Reenable OLT, add an extra indication\n");
oltIndQ.push(ind);
}
return status;
}
Status EnablePonIf_(uint32_t intf_id) {
bcmbal_interface_cfg interface_obj;
bcmbal_interface_key interface_key;
interface_key.intf_id = intf_id;
interface_key.intf_type = BCMBAL_INTF_TYPE_PON;
BCMBAL_CFG_INIT(&interface_obj, interface, interface_key);
BCMBAL_CFG_PROP_GET(&interface_obj, interface, admin_state);
bcmos_errno err = bcmbal_cfg_get(DEFAULT_ATERM_ID, &(interface_obj.hdr));
if (err == BCM_ERR_OK && interface_obj.data.admin_state == BCMBAL_STATE_UP) {
BCM_LOG(DEBUG, openolt_log_id, "PON interface: %d already enabled\n", intf_id);
return Status::OK;
}
BCMBAL_CFG_PROP_SET(&interface_obj, interface, admin_state, BCMBAL_STATE_UP);
err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(interface_obj.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to enable PON interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to enable PON interface");
}
return Status::OK;
}
Status DisableUplinkIf_(uint32_t intf_id) {
bcmbal_interface_cfg interface_obj;
bcmbal_interface_key interface_key;
interface_key.intf_id = intf_id;
interface_key.intf_type = BCMBAL_INTF_TYPE_NNI;
BCMBAL_CFG_INIT(&interface_obj, interface, interface_key);
BCMBAL_CFG_PROP_SET(&interface_obj, interface, admin_state, BCMBAL_STATE_DOWN);
bcmos_errno err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(interface_obj.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to disable Uplink interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to disable Uplink interface");
}
return Status::OK;
}
Status ProbeDeviceCapabilities_() {
bcmbal_access_terminal_cfg acc_term_obj;
bcmbal_access_terminal_key key = { };
key.access_term_id = DEFAULT_ATERM_ID;
BCMBAL_CFG_INIT(&acc_term_obj, access_terminal, key);
BCMBAL_CFG_PROP_GET(&acc_term_obj, access_terminal, admin_state);
BCMBAL_CFG_PROP_GET(&acc_term_obj, access_terminal, oper_status);
BCMBAL_CFG_PROP_GET(&acc_term_obj, access_terminal, topology);
BCMBAL_CFG_PROP_GET(&acc_term_obj, access_terminal, sw_version);
BCMBAL_CFG_PROP_GET(&acc_term_obj, access_terminal, conn_id);
bcmos_errno err = bcmbal_cfg_get(DEFAULT_ATERM_ID, &(acc_term_obj.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to query OLT\n");
return bcm_to_grpc_err(err, "Failed to query OLT");
}
BCM_LOG(INFO, openolt_log_id, "OLT capabilitites, admin_state: %s oper_state: %s\n",
acc_term_obj.data.admin_state == BCMBAL_STATE_UP ? "up" : "down",
acc_term_obj.data.oper_status == BCMBAL_STATUS_UP ? "up" : "down");
std::string bal_version;
bal_version += std::to_string(acc_term_obj.data.sw_version.major_rev)
+ "." + std::to_string(acc_term_obj.data.sw_version.minor_rev)
+ "." + std::to_string(acc_term_obj.data.sw_version.release_rev);
firmware_version = "BAL." + bal_version + "__" + firmware_version;
BCM_LOG(INFO, openolt_log_id, "--------------- version %s object model: %d\n", bal_version.c_str(),
acc_term_obj.data.sw_version.om_version);
BCM_LOG(INFO, openolt_log_id, "--------------- topology nni:%d pon:%d dev:%d ppd:%d family: %d:%d\n",
acc_term_obj.data.topology.num_of_nni_ports,
acc_term_obj.data.topology.num_of_pon_ports,
acc_term_obj.data.topology.num_of_mac_devs,
acc_term_obj.data.topology.num_of_pons_per_mac_dev,
acc_term_obj.data.topology.pon_family,
acc_term_obj.data.topology.pon_sub_family
);
switch(acc_term_obj.data.topology.pon_sub_family)
{
case BCMBAL_PON_SUB_FAMILY_GPON: board_technology = "gpon"; break;
case BCMBAL_PON_SUB_FAMILY_XGS: board_technology = "xgspon"; break;
}
num_of_nni_ports = acc_term_obj.data.topology.num_of_nni_ports;
num_of_pon_ports = acc_term_obj.data.topology.num_of_pon_ports;
BCM_LOG(INFO, openolt_log_id, "PON num_intfs: %d global board_technology: %s\n", num_of_pon_ports, board_technology.c_str());
return Status::OK;
}
Status ProbePonIfTechnology_() {
// Probe maximum extent possible as configured into BAL driver to determine
// which are active in the current BAL topology. And for those
// that are active, determine each port's access technology, i.e. "gpon" or "xgspon".
for (uint32_t intf_id = 0; intf_id < num_of_pon_ports; ++intf_id) {
bcmbal_interface_cfg interface_obj;
bcmbal_interface_key interface_key;
interface_key.intf_id = intf_id;
interface_key.intf_type = BCMBAL_INTF_TYPE_PON;
BCMBAL_CFG_INIT(&interface_obj, interface, interface_key);
BCMBAL_CFG_PROP_GET(&interface_obj, interface, admin_state);
BCMBAL_CFG_PROP_GET(&interface_obj, interface, transceiver_type);
bcmos_errno err = bcmbal_cfg_get(DEFAULT_ATERM_ID, &(interface_obj.hdr));
if (err != BCM_ERR_OK) {
intf_technologies[intf_id] = UNKNOWN_TECH;
if(err != BCM_ERR_RANGE) BCM_LOG(ERROR, openolt_log_id, "Failed to get PON config: %d\n", intf_id);
}
else {
switch(interface_obj.data.transceiver_type) {
case BCMBAL_TRX_TYPE_GPON_SPS_43_48:
case BCMBAL_TRX_TYPE_GPON_SPS_SOG_4321:
case BCMBAL_TRX_TYPE_GPON_LTE_3680_M:
case BCMBAL_TRX_TYPE_GPON_SOURCE_PHOTONICS:
case BCMBAL_TRX_TYPE_GPON_LTE_3680_P:
intf_technologies[intf_id] = "gpon";
break;
default:
intf_technologies[intf_id] = "xgspon";
break;
}
BCM_LOG(INFO, openolt_log_id, "PON intf_id: %d intf_technologies: %d:%s\n", intf_id,
interface_obj.data.transceiver_type, intf_technologies[intf_id].c_str());
if (board_technology != UNKNOWN_TECH) {
board_technology = intf_technologies[intf_id];
} else if (board_technology != MIXED_TECH && board_technology != intf_technologies[intf_id]) {
intf_technologies[intf_id] = MIXED_TECH;
}
}
}
return Status::OK;
}
unsigned NumNniIf_() {return num_of_nni_ports;}
unsigned NumPonIf_() {return num_of_pon_ports;}
Status EnableUplinkIf_(uint32_t intf_id) {
bcmbal_interface_cfg interface_obj;
bcmbal_interface_key interface_key;
interface_key.intf_id = intf_id;
interface_key.intf_type = BCMBAL_INTF_TYPE_NNI;
BCMBAL_CFG_INIT(&interface_obj, interface, interface_key);
BCMBAL_CFG_PROP_GET(&interface_obj, interface, admin_state);
bcmos_errno err = bcmbal_cfg_get(DEFAULT_ATERM_ID, &(interface_obj.hdr));
if (err == BCM_ERR_OK && interface_obj.data.admin_state == BCMBAL_STATE_UP) {
BCM_LOG(DEBUG, openolt_log_id, "Uplink interface: %d already enabled\n", intf_id);
return Status::OK;
}
BCMBAL_CFG_PROP_SET(&interface_obj, interface, admin_state, BCMBAL_STATE_UP);
err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(interface_obj.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to enable Uplink interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to enable Uplink interface");
}
return Status::OK;
}
Status DisablePonIf_(uint32_t intf_id) {
bcmbal_interface_cfg interface_obj;
bcmbal_interface_key interface_key;
interface_key.intf_id = intf_id;
interface_key.intf_type = BCMBAL_INTF_TYPE_PON;
BCMBAL_CFG_INIT(&interface_obj, interface, interface_key);
BCMBAL_CFG_PROP_SET(&interface_obj, interface, admin_state, BCMBAL_STATE_DOWN);
bcmos_errno err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(interface_obj.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to disable PON interface: %d\n", intf_id);
return bcm_to_grpc_err(err, "Failed to disable PON interface");
}
return Status::OK;
}
Status ActivateOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific, uint32_t pir) {
bcmbal_subscriber_terminal_cfg sub_term_obj = {};
bcmbal_subscriber_terminal_key subs_terminal_key;
bcmbal_serial_number serial_num = {};
bcmbal_registration_id registration_id = {};
BCM_LOG(INFO, openolt_log_id, "Enabling ONU %d on PON %d : vendor id %s, vendor specific %s, pir %d\n",
onu_id, intf_id, vendor_id, vendor_specific_to_str(vendor_specific).c_str(), pir);
subs_terminal_key.sub_term_id = onu_id;
subs_terminal_key.intf_id = intf_id;
BCMBAL_CFG_INIT(&sub_term_obj, subscriber_terminal, subs_terminal_key);
memcpy(serial_num.vendor_id, vendor_id, 4);
memcpy(serial_num.vendor_specific, vendor_specific, 4);
BCMBAL_CFG_PROP_SET(&sub_term_obj, subscriber_terminal, serial_number, serial_num);
#if 0
// Commenting out as this is causing issues with onu activation
// with BAL 2.6 (Broadcom CS5248819).
// FIXME - Use a default (all zeros) registration id.
memset(registration_id.arr, 0, sizeof(registration_id.arr));
BCMBAL_CFG_PROP_SET(&sub_term_obj, subscriber_terminal, registration_id, registration_id);
#endif
BCMBAL_CFG_PROP_SET(&sub_term_obj, subscriber_terminal, admin_state, BCMBAL_STATE_UP);
bcmos_errno err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(sub_term_obj.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to enable ONU %d on PON %d\n", onu_id, intf_id);
return bcm_to_grpc_err(err, "Failed to enable ONU");
}
return Status::OK;
}
Status DeactivateOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific) {
bcmbal_subscriber_terminal_cfg sub_term_obj = {};
bcmbal_subscriber_terminal_key subs_terminal_key;
BCM_LOG(INFO, openolt_log_id, "Deactivating ONU %d on PON %d : vendor id %s, vendor specific %s\n",
onu_id, intf_id, vendor_id, vendor_specific_to_str(vendor_specific).c_str());
subs_terminal_key.sub_term_id = onu_id;
subs_terminal_key.intf_id = intf_id;
BCMBAL_CFG_INIT(&sub_term_obj, subscriber_terminal, subs_terminal_key);
BCMBAL_CFG_PROP_SET(&sub_term_obj, subscriber_terminal, admin_state, BCMBAL_STATE_DOWN);
if (bcmbal_cfg_set(DEFAULT_ATERM_ID, &(sub_term_obj.hdr))) {
BCM_LOG(ERROR, openolt_log_id, "Failed to deactivate ONU %d on PON %d\n", onu_id, intf_id);
return Status(grpc::StatusCode::INTERNAL, "Failed to deactivate ONU");
}
return Status::OK;
}
Status DeleteOnu_(uint32_t intf_id, uint32_t onu_id,
const char *vendor_id, const char *vendor_specific) {
BCM_LOG(INFO, openolt_log_id, "DeleteOnu ONU %d on PON %d : vendor id %s, vendor specific %s\n",
onu_id, intf_id, vendor_id, vendor_specific_to_str(vendor_specific).c_str());
// Need to deactivate before removing it (BAL rules)
DeactivateOnu_(intf_id, onu_id, vendor_id, vendor_specific);
// Sleep to allow the state to propagate
// We need the subscriber terminal object to be admin down before removal
// Without sleep the race condition is lost by ~ 20 ms
std::this_thread::sleep_for(std::chrono::milliseconds(100));
// TODO: Delete the schedulers and queues.
bcmos_errno err = BCM_ERR_OK;
bcmbal_subscriber_terminal_cfg cfg;
bcmbal_subscriber_terminal_key key = { };
BCM_LOG(INFO, openolt_log_id, "Processing subscriber terminal cfg clear for sub_term_id %d and intf_id %d\n",
onu_id, intf_id);
key.sub_term_id = onu_id ;
key.intf_id = intf_id ;
if (0 == key.sub_term_id)
{
BCM_LOG(INFO, openolt_log_id,"Invalid Key to handle subscriber terminal clear subscriber_terminal_id %d, \
Interface ID %d\n", onu_id, intf_id);
return Status(grpc::StatusCode::INTERNAL, "Failed to delete ONU");
}
BCMBAL_CFG_INIT(&cfg, subscriber_terminal, key);
err = bcmbal_cfg_clear(DEFAULT_ATERM_ID, &cfg.hdr);
if (err != BCM_ERR_OK)
{
BCM_LOG(ERROR, openolt_log_id, "Failed to clear information for BAL subscriber_terminal_id %d, Interface ID %d\n",
onu_id, intf_id);
return Status(grpc::StatusCode::INTERNAL, "Failed to delete ONU");
}
return Status::OK;;
}
#define MAX_CHAR_LENGTH 20
#define MAX_OMCI_MSG_LENGTH 44
Status OmciMsgOut_(uint32_t intf_id, uint32_t onu_id, const std::string pkt) {
bcmbal_u8_list_u32_max_2048 buf; /* A structure with a msg pointer and length value */
bcmos_errno err = BCM_ERR_OK;
/* The destination of the OMCI packet is a registered ONU on the OLT PON interface */
bcmbal_dest proxy_pkt_dest;
proxy_pkt_dest.type = BCMBAL_DEST_TYPE_ITU_OMCI_CHANNEL;
proxy_pkt_dest.u.itu_omci_channel.sub_term_id = onu_id;
proxy_pkt_dest.u.itu_omci_channel.intf_id = intf_id;
// ???
if ((pkt.size()/2) > MAX_OMCI_MSG_LENGTH) {
buf.len = MAX_OMCI_MSG_LENGTH;
} else {
buf.len = pkt.size()/2;
}
/* Send the OMCI packet using the BAL remote proxy API */
uint16_t idx1 = 0;
uint16_t idx2 = 0;
uint8_t arraySend[buf.len];
char str1[MAX_CHAR_LENGTH];
char str2[MAX_CHAR_LENGTH];
memset(&arraySend, 0, buf.len);
for (idx1=0,idx2=0; idx1<((buf.len)*2); idx1++,idx2++) {
sprintf(str1,"%c", pkt[idx1]);
sprintf(str2,"%c", pkt[++idx1]);
strcat(str1,str2);
arraySend[idx2] = strtol(str1, NULL, 16);
}
buf.val = (uint8_t *)malloc((buf.len)*sizeof(uint8_t));
memcpy(buf.val, (uint8_t *)arraySend, buf.len);
err = bcmbal_pkt_send(0, proxy_pkt_dest, (const char *)(buf.val), buf.len);
if (err) {
BCM_LOG(ERROR, omci_log_id, "Error sending OMCI message to ONU %d on PON %d\n", onu_id, intf_id);
} else {
BCM_LOG(DEBUG, omci_log_id, "OMCI request msg of length %d sent to ONU %d on PON %d : %s\n",
buf.len, onu_id, intf_id, pkt.c_str());
}
free(buf.val);
return Status::OK;
}
Status OnuPacketOut_(uint32_t intf_id, uint32_t onu_id, uint32_t port_no, uint32_t gemport_id, const std::string pkt) {
bcmos_errno err = BCM_ERR_OK;
bcmbal_dest proxy_pkt_dest;
bcmbal_u8_list_u32_max_2048 buf;
if (port_no > 0) {
bool found = false;
if (gemport_id == 0) {
bcmos_fastlock_lock(&data_lock);
// Map the port_no to one of the flows that owns it to find a gemport_id for that flow.
// Pick any flow that is mapped with the same port_no.
std::map<uint32_t, std::set<uint32_t> >::const_iterator it = port_to_flows.find(port_no);
if (it != port_to_flows.end() && !it->second.empty()) {
uint32_t flow_id = *(it->second.begin()); // Pick any flow_id out of the bag set
std::map<uint32_t, uint32_t>::const_iterator fit = flowid_to_gemport.find(flow_id);
if (fit != flowid_to_gemport.end()) {
found = true;
gemport_id = fit->second;
}
}
bcmos_fastlock_unlock(&data_lock, 0);
if (!found) {
BCM_LOG(ERROR, openolt_log_id, "Packet out failed to find destination for ONU %d port_no %u on PON %d\n",
onu_id, port_no, intf_id);
return grpc::Status(grpc::StatusCode::NOT_FOUND, "no flow for port_no");
}
BCM_LOG(INFO, openolt_log_id, "Gem port %u found for ONU %d port_no %u on PON %d\n",
gemport_id, onu_id, port_no, intf_id);
}
proxy_pkt_dest.type = BCMBAL_DEST_TYPE_SVC_PORT;
proxy_pkt_dest.u.svc_port.svc_port_id = gemport_id;
proxy_pkt_dest.u.svc_port.intf_id = intf_id;
BCM_LOG(INFO, openolt_log_id, "Packet out of length %d sent to gemport %d on pon %d port_no %u\n",
pkt.size(), gemport_id, intf_id, port_no);
}
else {
proxy_pkt_dest.type = BCMBAL_DEST_TYPE_SUB_TERM,
proxy_pkt_dest.u.sub_term.sub_term_id = onu_id;
proxy_pkt_dest.u.sub_term.intf_id = intf_id;
BCM_LOG(INFO, openolt_log_id, "Packet out of length %d sent to onu %d on pon %d\n",
pkt.size(), onu_id, intf_id);
}
buf.len = pkt.size();
buf.val = (uint8_t *)malloc((buf.len)*sizeof(uint8_t));
memcpy(buf.val, (uint8_t *)pkt.data(), buf.len);
err = bcmbal_pkt_send(0, proxy_pkt_dest, (const char *)(buf.val), buf.len);
free(buf.val);
return Status::OK;
}
Status UplinkPacketOut_(uint32_t intf_id, const std::string pkt) {
bcmos_errno err = BCM_ERR_OK;
bcmbal_dest proxy_pkt_dest;
bcmbal_u8_list_u32_max_2048 buf;
proxy_pkt_dest.type = BCMBAL_DEST_TYPE_NNI,
proxy_pkt_dest.u.nni.intf_id = intf_id;
buf.len = pkt.size();
buf.val = (uint8_t *)malloc((buf.len)*sizeof(uint8_t));
memcpy(buf.val, (uint8_t *)pkt.data(), buf.len);
err = bcmbal_pkt_send(0, proxy_pkt_dest, (const char *)(buf.val), buf.len);
BCM_LOG(INFO, openolt_log_id, "Packet out of length %d sent through uplink port %d\n",
buf.len, intf_id);
free(buf.val);
return Status::OK;
}
uint32_t GetPortNum_(uint32_t flow_id)
{
bcmos_fastlock_lock(&data_lock);
uint32_t port_no = 0;
std::map<uint32_t, uint32_t >::const_iterator it = flowid_to_port.find(flow_id);
if (it != flowid_to_port.end()) {
port_no = it->second;
}
bcmos_fastlock_unlock(&data_lock, 0);
return port_no;
}
Status FlowAdd_(int32_t access_intf_id, int32_t onu_id, int32_t uni_id, uint32_t port_no,
uint32_t flow_id, const std::string flow_type,
int32_t alloc_id, int32_t network_intf_id,
int32_t gemport_id, const ::openolt::Classifier& classifier,
const ::openolt::Action& action, int32_t priority_value, uint64_t cookie) {
bcmos_errno err;
bcmbal_flow_cfg cfg;
bcmbal_flow_key key = { };
int32_t o_vid = -1;
bool single_tag = false;
uint32_t ether_type = 0;
BCM_LOG(INFO, openolt_log_id, "flow add - intf_id %d, onu_id %d, uni_id %d, port_no %u, flow_id %d, flow_type %s, \
gemport_id %d, network_intf_id %d, cookie %llu\n", \
access_intf_id, onu_id, uni_id, port_no, flow_id, flow_type.c_str(), gemport_id, network_intf_id, cookie);
key.flow_id = flow_id;
if (flow_type.compare(upstream) == 0 ) {
key.flow_type = BCMBAL_FLOW_TYPE_UPSTREAM;
} else if (flow_type.compare(downstream) == 0) {
key.flow_type = BCMBAL_FLOW_TYPE_DOWNSTREAM;
} else {
BCM_LOG(WARNING, openolt_log_id, "Invalid flow type %s\n", flow_type.c_str());
return bcm_to_grpc_err(BCM_ERR_PARM, "Invalid flow type");
}
BCMBAL_CFG_INIT(&cfg, flow, key);
BCMBAL_CFG_PROP_SET(&cfg, flow, admin_state, BCMBAL_STATE_UP);
BCMBAL_CFG_PROP_SET(&cfg, flow, cookie, cookie);
if (access_intf_id >= 0) {
BCMBAL_CFG_PROP_SET(&cfg, flow, access_int_id, access_intf_id);
}
if (network_intf_id >= 0) {
BCMBAL_CFG_PROP_SET(&cfg, flow, network_int_id, network_intf_id);
}
if (onu_id >= 0) {
BCMBAL_CFG_PROP_SET(&cfg, flow, sub_term_id, onu_id);
}
if (gemport_id >= 0) {
BCMBAL_CFG_PROP_SET(&cfg, flow, svc_port_id, gemport_id);
}
if (gemport_id >= 0 && port_no != 0) {
bcmos_fastlock_lock(&data_lock);
if (key.flow_type == BCMBAL_FLOW_TYPE_DOWNSTREAM) {
port_to_flows[port_no].insert(key.flow_id);
flowid_to_gemport[key.flow_id] = gemport_id;
}
else
{
flowid_to_port[key.flow_id] = port_no;
}
bcmos_fastlock_unlock(&data_lock, 0);
}
if (priority_value >= 0) {
BCMBAL_CFG_PROP_SET(&cfg, flow, priority, priority_value);
}
{
bcmbal_classifier val = { };
if (classifier.o_tpid()) {
BCM_LOG(DEBUG, openolt_log_id, "classify o_tpid 0x%04x\n", classifier.o_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, o_tpid, classifier.o_tpid());
}
if (classifier.o_vid()) {
BCM_LOG(DEBUG, openolt_log_id, "classify o_vid %d\n", classifier.o_vid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, o_vid, classifier.o_vid());
}
if (classifier.i_tpid()) {
BCM_LOG(DEBUG, openolt_log_id, "classify i_tpid 0x%04x\n", classifier.i_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, i_tpid, classifier.i_tpid());
}
if (classifier.i_vid()) {
BCM_LOG(DEBUG, openolt_log_id, "classify i_vid %d\n", classifier.i_vid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, i_vid, classifier.i_vid());
}
if (classifier.eth_type()) {
ether_type = classifier.eth_type();
BCM_LOG(DEBUG, openolt_log_id, "classify ether_type 0x%04x\n", classifier.eth_type());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, ether_type, classifier.eth_type());
}
/*
if (classifier.dst_mac()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, dst_mac, classifier.dst_mac());
}
if (classifier.src_mac()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, src_mac, classifier.src_mac());
}
*/
if (classifier.ip_proto()) {
BCM_LOG(DEBUG, openolt_log_id, "classify ip_proto %d\n", classifier.ip_proto());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, ip_proto, classifier.ip_proto());
}
/*
if (classifier.dst_ip()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, dst_ip, classifier.dst_ip());
}
if (classifier.src_ip()) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, src_ip, classifier.src_ip());
}
*/
if (classifier.src_port()) {
BCM_LOG(DEBUG, openolt_log_id, "classify src_port %d\n", classifier.src_port());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, src_port, classifier.src_port());
}
if (classifier.dst_port()) {
BCM_LOG(DEBUG, openolt_log_id, "classify dst_port %d\n", classifier.dst_port());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, dst_port, classifier.dst_port());
}
if (!classifier.pkt_tag_type().empty()) {
BCM_LOG(DEBUG, openolt_log_id, "classify tag_type %s\n", classifier.pkt_tag_type().c_str());
if (classifier.pkt_tag_type().compare("untagged") == 0) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, pkt_tag_type, BCMBAL_PKT_TAG_TYPE_UNTAGGED);
} else if (classifier.pkt_tag_type().compare("single_tag") == 0) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, pkt_tag_type, BCMBAL_PKT_TAG_TYPE_SINGLE_TAG);
single_tag = true;
BCM_LOG(DEBUG, openolt_log_id, "classify o_pbits 0x%x\n", classifier.o_pbits());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, o_pbits, classifier.o_pbits());
} else if (classifier.pkt_tag_type().compare("double_tag") == 0) {
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, pkt_tag_type, BCMBAL_PKT_TAG_TYPE_DOUBLE_TAG);
BCM_LOG(DEBUG, openolt_log_id, "classify o_pbits 0x%x\n", classifier.o_pbits());
BCMBAL_ATTRIBUTE_PROP_SET(&val, classifier, o_pbits, classifier.o_pbits());
}
}
BCMBAL_CFG_PROP_SET(&cfg, flow, classifier, val);
}
{
bcmbal_action val = { };
const ::openolt::ActionCmd& cmd = action.cmd();
if (cmd.add_outer_tag()) {
BCM_LOG(INFO, openolt_log_id, "action add o_tag\n");
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, cmds_bitmask, BCMBAL_ACTION_CMD_ID_ADD_OUTER_TAG);
}
if (cmd.remove_outer_tag()) {
BCM_LOG(INFO, openolt_log_id, "action pop o_tag\n");
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, cmds_bitmask, BCMBAL_ACTION_CMD_ID_REMOVE_OUTER_TAG);
}
if (cmd.trap_to_host()) {
BCM_LOG(INFO, openolt_log_id, "action trap-to-host\n");
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, cmds_bitmask, BCMBAL_ACTION_CMD_ID_TRAP_TO_HOST);
}
if (action.o_vid()) {
BCM_LOG(INFO, openolt_log_id, "action o_vid=%d\n", action.o_vid());
o_vid = action.o_vid();
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, o_vid, action.o_vid());
}
if (action.o_pbits()) {
BCM_LOG(INFO, openolt_log_id, "action o_pbits=0x%x\n", action.o_pbits());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, o_pbits, action.o_pbits());
}
if (action.o_tpid()) {
BCM_LOG(INFO, openolt_log_id, "action o_tpid=0x%04x\n", action.o_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, o_tpid, action.o_tpid());
}
if (action.i_vid()) {
BCM_LOG(INFO, openolt_log_id, "action i_vid=%d\n", action.i_vid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, i_vid, action.i_vid());
}
if (action.i_pbits()) {
BCM_LOG(DEBUG, openolt_log_id, "action i_pbits=0x%x\n", action.i_pbits());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, i_pbits, action.i_pbits());
}
if (action.i_tpid()) {
BCM_LOG(DEBUG, openolt_log_id, "action i_tpid=0x%04x\n", action.i_tpid());
BCMBAL_ATTRIBUTE_PROP_SET(&val, action, i_tpid, action.i_tpid());
}
BCMBAL_CFG_PROP_SET(&cfg, flow, action, val);
}
if ((access_intf_id >= 0) && (onu_id >= 0)) {
if (key.flow_type == BCMBAL_FLOW_TYPE_DOWNSTREAM) {
bcmbal_tm_queue_ref val = { };
if (single_tag && ether_type == EAP_ETHER_TYPE) {
val.sched_id = get_default_tm_sched_id(access_intf_id, downstream);
val.queue_id = 0;
} else {
val.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, downstream); // Subscriber Scheduler
val.queue_id = get_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, downstream);
}
BCMBAL_CFG_PROP_SET(&cfg, flow, queue, val);
} else if (key.flow_type == BCMBAL_FLOW_TYPE_UPSTREAM) {
bcmbal_tm_sched_id val1;
val1 = get_tm_sched_id(access_intf_id, onu_id, uni_id, upstream); // DBA Scheduler ID
BCMBAL_CFG_PROP_SET(&cfg, flow, dba_tm_sched_id, val1);
bcmbal_tm_queue_ref val2 = { };
val2.sched_id = get_default_tm_sched_id(network_intf_id, upstream); // NNI Scheduler ID
val2.queue_id = get_tm_queue_id(network_intf_id, onu_id, uni_id, gemport_id, upstream); // Queue on NNI
BCMBAL_CFG_PROP_SET(&cfg, flow, queue, val2);
}
}
err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(cfg.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Flow add failed\n");
return bcm_to_grpc_err(err, "flow add failed");
}
// register_new_flow(key);
return Status::OK;
}
Status FlowRemove_(uint32_t flow_id, const std::string flow_type) {
bcmbal_flow_cfg cfg;
bcmbal_flow_key key = { };
key.flow_id = (bcmbal_flow_id) flow_id;
key.flow_id = flow_id;
if (flow_type.compare(upstream) == 0 ) {
key.flow_type = BCMBAL_FLOW_TYPE_UPSTREAM;
} else if (flow_type.compare(downstream) == 0) {
key.flow_type = BCMBAL_FLOW_TYPE_DOWNSTREAM;
} else {
BCM_LOG(WARNING, openolt_log_id, "Invalid flow type %s\n", flow_type.c_str());
return bcm_to_grpc_err(BCM_ERR_PARM, "Invalid flow type");
}
bcmos_fastlock_lock(&data_lock);
uint32_t port_no = flowid_to_port[key.flow_id];
if (key.flow_type == BCMBAL_FLOW_TYPE_DOWNSTREAM) {
flowid_to_gemport.erase(key.flow_id);
port_to_flows[port_no].erase(key.flow_id);
if (port_to_flows[port_no].empty()) port_to_flows.erase(port_no);
}
else
{
flowid_to_port.erase(key.flow_id);
}
bcmos_fastlock_unlock(&data_lock, 0);
BCMBAL_CFG_INIT(&cfg, flow, key);
bcmos_errno err = bcmbal_cfg_clear(DEFAULT_ATERM_ID, &cfg.hdr);
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Error %d while removing flow %d, %s\n",
err, flow_id, flow_type.c_str());
return Status(grpc::StatusCode::INTERNAL, "Failed to remove flow");
}
BCM_LOG(INFO, openolt_log_id, "Flow %d, %s removed\n", flow_id, flow_type.c_str());
return Status::OK;
}
bcmos_errno CreateSched(std::string direction, uint32_t intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t port_no,
uint32_t alloc_id, tech_profile::AdditionalBW additional_bw, uint32_t weight, uint32_t priority,
tech_profile::SchedulingPolicy sched_policy, tech_profile::TrafficShapingInfo tf_sh_info) {
bcmos_errno err;
if (direction == downstream) {
bcmbal_tm_sched_cfg cfg;
bcmbal_tm_sched_key key = { };
key.id = get_tm_sched_id(intf_id, onu_id, uni_id, direction);
key.dir = BCMBAL_TM_SCHED_DIR_DS;
BCMBAL_CFG_INIT(&cfg, tm_sched, key);
{
// bcmbal_tm_sched_owner
// In downstream it is sub_term scheduler
bcmbal_tm_sched_owner tm_sched_owner = { };
tm_sched_owner.type = BCMBAL_TM_SCHED_OWNER_TYPE_SUB_TERM;
tm_sched_owner.u.sub_term.intf_id = intf_id;
tm_sched_owner.u.sub_term.sub_term_id = onu_id;
BCMBAL_CFG_PROP_SET(&cfg, tm_sched, owner, tm_sched_owner);
// bcmbal_tm_sched_type
// set the deafult policy to strict priority
BCMBAL_CFG_PROP_SET(&cfg, tm_sched, sched_type, BCMBAL_TM_SCHED_TYPE_SP);
// bcmbal_tm_sched_parent
// The parent for the sub_term scheduler is the PON scheduler in the downstream
bcmbal_tm_sched_parent tm_sched_parent = { };
tm_sched_parent.presence_mask |= (BCMBAL_TM_SCHED_PARENT_ID_SCHED_ID);
tm_sched_parent.sched_id = get_default_tm_sched_id(intf_id, downstream);
tm_sched_parent.presence_mask |= (BCMBAL_TM_SCHED_PARENT_ID_PRIORITY);
tm_sched_parent.priority = 1; // TODO: Hardcoded priority as 1
BCMBAL_CFG_PROP_SET(&cfg, tm_sched, sched_parent, tm_sched_parent);
// num_priorities: Max number of strict priority scheduling elements
BCMBAL_CFG_PROP_SET(&cfg, tm_sched, num_priorities, 8); // TODO: hardcoded 8 priorities.
// bcmbal_tm_shaping
if (tf_sh_info.cir() >= 0 && tf_sh_info.pir() > 0) {
bcmbal_tm_shaping rate = {};
uint32_t cir = tf_sh_info.cir();
uint32_t pir = tf_sh_info.pir();
uint32_t burst = tf_sh_info.pbs();
BCM_LOG(INFO, openolt_log_id, "applying traffic shaping in DL cir=%u, pir=%u, burst=%u\n",
cir, pir, burst);
rate.presence_mask = BCMBAL_TM_SHAPING_ID_NONE;
rate.presence_mask |= BCMBAL_TM_SHAPING_ID_PIR;
rate.presence_mask |= BCMBAL_TM_SHAPING_ID_BURST;
// FIXME: Setting CIR, results in BAL throwing error 'tm_sched minimum rate is not supported yet'
// rate.cir = cir;
rate.pir = pir;
rate.burst = burst;
BCMBAL_CFG_PROP_SET(&cfg, tm_queue, rate, rate);
}
// creation_mode
// BCMBAL_CFG_PROP_SET(&cfg, tm_sched, creation_mode, BCMBAL_TM_CREATION_MODE_MANUAL);
}
err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(cfg.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to create downstream subscriber scheduler, id %d, intf_id %d, \
onu_id %d, uni_id %d, port_no %u\n", key.id, intf_id, onu_id,uni_id,port_no);
return err;
}
BCM_LOG(INFO, openolt_log_id, "Create downstream subscriber sched, id %d, intf_id %d, onu_id %d, \
uni_id %d, port_no %u\n", key.id,intf_id,onu_id,uni_id,port_no);
} else { //upstream
bcmbal_tm_sched_cfg cfg;
bcmbal_tm_sched_key key = { };
key.id = get_tm_sched_id(intf_id, onu_id, uni_id, direction);
key.dir = BCMBAL_TM_SCHED_DIR_US;
BCMBAL_CFG_INIT(&cfg, tm_sched, key);
{
// bcmbal_tm_sched_owner: AGG PORT
bcmbal_tm_sched_owner tm_sched_owner = { };
tm_sched_owner.type = BCMBAL_TM_SCHED_OWNER_TYPE_AGG_PORT;
tm_sched_owner.u.agg_port.presence_mask |= bcmbal_tm_sched_owner_agg_port_id_all;
tm_sched_owner.u.agg_port.intf_id = intf_id;
tm_sched_owner.u.agg_port.sub_term_id = onu_id;
tm_sched_owner.u.agg_port.agg_port_id = alloc_id;
BCMBAL_CFG_PROP_SET(&cfg, tm_sched, owner, tm_sched_owner);
// bcmbal_tm_shaping
if (tf_sh_info.cir() >= 0 && tf_sh_info.pir() > 0) {
bcmbal_tm_shaping rate = {};
uint32_t cir = tf_sh_info.cir();
uint32_t pir = tf_sh_info.pir();
uint32_t burst = tf_sh_info.pbs();
BCM_LOG(INFO, openolt_log_id, "applying traffic shaping in UL cir=%u, pir=%u, burst=%u\n",
cir, pir, burst);
rate.presence_mask = BCMBAL_TM_SHAPING_ID_ALL;
rate.cir = cir;
rate.pir = pir;
rate.burst = burst;
BCMBAL_CFG_PROP_SET(&cfg, tm_sched, rate, rate);
}
}
err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &(cfg.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to create upstream DBA sched, id %d, intf_id %d, onu_id %d, uni_id %d,\
port_no %u, alloc_id %d\n", key.id, intf_id, onu_id,uni_id,port_no,alloc_id);
return err;
}
BCM_LOG(INFO, openolt_log_id, "Create upstream DBA sched, id %d, intf_id %d, onu_id %d, uni_id %d, port_no %u, \
alloc_id %d\n", key.id,intf_id,onu_id,uni_id,port_no,alloc_id);
}
return BCM_ERR_OK;
}
Status CreateTrafficSchedulers_(const tech_profile::TrafficSchedulers *traffic_scheds) {
uint32_t intf_id = traffic_scheds->intf_id();
uint32_t onu_id = traffic_scheds->onu_id();
uint32_t uni_id = traffic_scheds->uni_id();
uint32_t port_no = traffic_scheds->port_no();
std::string direction;
unsigned int alloc_id;
tech_profile::SchedulerConfig sched_config;
tech_profile::AdditionalBW additional_bw;
uint32_t priority;
uint32_t weight;
tech_profile::SchedulingPolicy sched_policy;
tech_profile::TrafficShapingInfo traffic_shaping_info;
bcmos_errno err;
for (int i = 0; i < traffic_scheds->traffic_scheds_size(); i++) {
tech_profile::TrafficScheduler traffic_sched = traffic_scheds->traffic_scheds(i);
if (traffic_sched.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_sched.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
}
else {
BCM_LOG(ERROR, openolt_log_id, "direction-not-supported %d", traffic_sched.direction());
return Status::CANCELLED;
}
alloc_id = traffic_sched.alloc_id();
sched_config = traffic_sched.scheduler();
additional_bw = sched_config.additional_bw();
priority = sched_config.priority();
weight = sched_config.weight();
sched_policy = sched_config.sched_policy();
traffic_shaping_info = traffic_sched.traffic_shaping_info();
err = CreateSched(direction, intf_id, onu_id, uni_id, port_no, alloc_id, additional_bw, weight, priority,
sched_policy, traffic_shaping_info);
if (err) {
return bcm_to_grpc_err(err, "Failed to create scheduler");
}
}
return Status::OK;
}
bcmos_errno RemoveSched(int intf_id, int onu_id, int uni_id, std::string direction) {
bcmos_errno err;
bcmbal_tm_sched_cfg tm_cfg_us;
bcmbal_tm_sched_key tm_key_us = { };
if (is_tm_sched_id_present(intf_id, onu_id, uni_id, direction)) {
tm_key_us.id = get_tm_sched_id(intf_id, onu_id, uni_id, direction);
} else {
BCM_LOG(INFO, openolt_log_id, "schduler not present in %s\n", direction.c_str());
return BCM_ERR_OK;
}
if (direction == upstream) {
tm_key_us.dir = BCMBAL_TM_SCHED_DIR_US;
} else {
tm_key_us.dir = BCMBAL_TM_SCHED_DIR_DS;
}
BCMBAL_CFG_INIT(&tm_cfg_us, tm_sched, tm_key_us);
err = bcmbal_cfg_clear(DEFAULT_ATERM_ID, &(tm_cfg_us.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to remove scheduler sched, direction = %s, id %d, intf_id %d, onu_id %d\n", \
direction.c_str(), tm_key_us.id, intf_id, onu_id);
return err;
}
free_tm_sched_id(intf_id, onu_id, uni_id, direction);
BCM_LOG(INFO, openolt_log_id, "Removed sched, direction = %s, id %d, intf_id %d, onu_id %d\n", \
direction.c_str(), tm_key_us.id, intf_id, onu_id);
return BCM_ERR_OK;
}
Status RemoveTrafficSchedulers_(const tech_profile::TrafficSchedulers *traffic_scheds) {
uint32_t intf_id = traffic_scheds->intf_id();
uint32_t onu_id = traffic_scheds->onu_id();
uint32_t uni_id = traffic_scheds->uni_id();
std::string direction;
bcmos_errno err;
for (int i = 0; i < traffic_scheds->traffic_scheds_size(); i++) {
tech_profile::TrafficScheduler traffic_sched = traffic_scheds->traffic_scheds(i);
if (traffic_sched.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_sched.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
}
else {
BCM_LOG(ERROR, openolt_log_id, "direction-not-supported %d", traffic_sched.direction());
return Status::CANCELLED;
}
err = RemoveSched(intf_id, onu_id, uni_id, direction);
if (err) {
return bcm_to_grpc_err(err, "error-removing-traffic-scheduler");
}
}
return Status::OK;
}
bcmos_errno CreateQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t priority,
uint32_t gemport_id) {
bcmos_errno err;
bcmbal_tm_queue_cfg cfg;
bcmbal_tm_queue_key key = { };
if (direction == downstream) {
// In the downstream, the queues are on the 'sub term' scheduler
// There is one queue per gem port
key.sched_dir = BCMBAL_TM_SCHED_DIR_DS;
key.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, direction);
key.id = get_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
} else {
queue_map_key_tuple map_key(access_intf_id, onu_id, uni_id, gemport_id, direction);
if (queue_map.count(map_key) > 0) {
BCM_LOG(INFO, openolt_log_id, "upstream queue exists for intf_id %d, onu_id %d, uni_id %d\n. Not re-creating", \
access_intf_id, onu_id, uni_id);
return BCM_ERR_OK;
}
key.sched_dir = BCMBAL_TM_SCHED_DIR_US;
key.sched_id = get_default_tm_sched_id(nni_intf_id, direction);
if (priority > 7) {
return BCM_ERR_RANGE;
}
// There are 8 queues (one per p-bit)
key.id = us_fixed_queue_id_list[priority];
update_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction, key.id);
// FIXME: The upstream queues have to be created once only.
// The upstream queues on the NNI scheduler are shared by all subscribers.
// When the first scheduler comes in, the queues get created, and are re-used by all others.
// Also, these queues should be present until the last subscriber exits the system.
// One solution is to have these queues always, i.e., create it as soon as OLT is enabled.
}
BCMBAL_CFG_INIT(&cfg, tm_queue, key);
BCMBAL_CFG_PROP_SET(&cfg, tm_queue, priority, priority);
// BCMBAL_CFG_PROP_SET(&cfg, tm_queue, creation_mode, BCMBAL_TM_CREATION_MODE_MANUAL);
err = bcmbal_cfg_set(DEFAULT_ATERM_ID, &cfg.hdr);
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to create subscriber tm queue, direction = %s, id %d, sched_id %d, \
intf_id %d, onu_id %d, uni_id %d\n", \
direction.c_str(), key.id, key.sched_id, access_intf_id, onu_id, uni_id);
return err;
}
BCM_LOG(INFO, openolt_log_id, "Created tm_queue, direction %s, id %d, intf_id %d, onu_id %d, uni_id %d", \
direction.c_str(), key.id, access_intf_id, onu_id, uni_id);
return BCM_ERR_OK;
}
Status CreateTrafficQueues_(const tech_profile::TrafficQueues *traffic_queues) {
uint32_t intf_id = traffic_queues->intf_id();
uint32_t onu_id = traffic_queues->onu_id();
uint32_t uni_id = traffic_queues->uni_id();
std::string direction;
unsigned int alloc_id;
bcmos_errno err;
for (int i = 0; i < traffic_queues->traffic_queues_size(); i++) {
tech_profile::TrafficQueue traffic_queue = traffic_queues->traffic_queues(i);
if (traffic_queue.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_queue.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
}
else {
BCM_LOG(ERROR, openolt_log_id, "direction-not-supported %d", traffic_queue.direction());
return Status::CANCELLED;
}
err = CreateQueue(direction, intf_id, onu_id, uni_id, traffic_queue.priority(), traffic_queue.gemport_id());
if (err) {
return bcm_to_grpc_err(err, "Failed to create queue");
}
}
return Status::OK;
}
bcmos_errno RemoveQueue(std::string direction, uint32_t access_intf_id, uint32_t onu_id, uint32_t uni_id, uint32_t priority,
uint32_t gemport_id) {
bcmbal_tm_queue_cfg queue_cfg;
bcmbal_tm_queue_key queue_key = { };
bcmos_errno err;
if (direction == downstream) {
queue_key.sched_dir = BCMBAL_TM_SCHED_DIR_DS;
if (is_tm_queue_id_present(access_intf_id, onu_id, uni_id, gemport_id, direction) && \
is_tm_sched_id_present(access_intf_id, onu_id, uni_id, direction)) {
queue_key.sched_id = get_tm_sched_id(access_intf_id, onu_id, uni_id, direction);
queue_key.id = get_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
} else {
BCM_LOG(INFO, openolt_log_id, "queue not present in DS. Not clearing");
return BCM_ERR_OK;
}
} else {
free_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
// In the upstream we use pre-created queues on the NNI scheduler that are used by all subscribers.
// They should not be removed. So, lets return OK.
return BCM_ERR_OK;
}
BCMBAL_CFG_INIT(&queue_cfg, tm_queue, queue_key);
err = bcmbal_cfg_clear(DEFAULT_ATERM_ID, &(queue_cfg.hdr));
if (err) {
BCM_LOG(ERROR, openolt_log_id, "Failed to remove queue, direction = %s, id %d, sched_id %d, intf_id %d, onu_id %d, uni_id %d\n",
direction.c_str(), queue_key.id, queue_key.sched_id, access_intf_id, onu_id, uni_id);
return err;
}
free_tm_queue_id(access_intf_id, onu_id, uni_id, gemport_id, direction);
return BCM_ERR_OK;
}
Status RemoveTrafficQueues_(const tech_profile::TrafficQueues *traffic_queues) {
uint32_t intf_id = traffic_queues->intf_id();
uint32_t onu_id = traffic_queues->onu_id();
uint32_t uni_id = traffic_queues->uni_id();
uint32_t port_no = traffic_queues->port_no();
std::string direction;
unsigned int alloc_id;
bcmos_errno err;
for (int i = 0; i < traffic_queues->traffic_queues_size(); i++) {
tech_profile::TrafficQueue traffic_queue = traffic_queues->traffic_queues(i);
if (traffic_queue.direction() == tech_profile::Direction::UPSTREAM) {
direction = upstream;
} else if (traffic_queue.direction() == tech_profile::Direction::DOWNSTREAM) {
direction = downstream;
} else {
BCM_LOG(ERROR, openolt_log_id, "direction-not-supported %d", traffic_queue.direction());
return Status::CANCELLED;
}
err = RemoveQueue(direction, intf_id, onu_id, uni_id, traffic_queue.priority(), traffic_queue.gemport_id());
if (err) {
return bcm_to_grpc_err(err, "Failed to remove queue");
}
}
return Status::OK;
}