blob: 8be2b9f69cc4cd9137f0a408d776bdde6a098fd8 [file] [log] [blame]
<?xml version="1.0" ?>
<net name="ResMobNet_v4 (LReLU) with single SSD head" version="10">
<layers>
<layer id="0" name="data" type="Parameter" version="opset1">
<data element_type="f32" shape="1, 3, 320, 544"/>
<output>
<port id="0" names="data" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>320</dim>
<dim>544</dim>
</port>
</output>
</layer>
<layer id="1" name="data_mul_23644" type="Const" version="opset1">
<data element_type="f32" offset="0" shape="1, 3, 1, 1" size="12"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="2" name="data/norm/bn/mean/Fused_Mul_" type="Multiply" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>320</dim>
<dim>544</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>320</dim>
<dim>544</dim>
</port>
</output>
</layer>
<layer id="3" name="data_add_23646" type="Const" version="opset1">
<data element_type="f32" offset="12" shape="1, 3, 1, 1" size="12"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="data/norm/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>320</dim>
<dim>544</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="data/norm/bn" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>320</dim>
<dim>544</dim>
</port>
</output>
</layer>
<layer id="5" name="init_block1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="24" shape="32, 3, 3, 3" size="3456"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="6" name="init_block1/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>320</dim>
<dim>544</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="7" name="data_add_2364923654" type="Const" version="opset1">
<data element_type="f32" offset="3480" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="8" name="init_block1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="init_block1/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="9" name="init_block1/dim_inc/fn" type="ReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</input>
<output>
<port id="1" names="init_block1/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="10" name="bottleneck1_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="3608" shape="8, 32, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="11" name="bottleneck1_1/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="12" name="data_add_2365723662" type="Const" version="opset1">
<data element_type="f32" offset="4632" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="13" name="bottleneck1_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="14" name="bottleneck1_1/dim_red/fn/weights3096039785" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="15" name="bottleneck1_1/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="16" name="bottleneck1_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="4668" shape="8, 1, 1, 3, 3" size="288"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="17" name="bottleneck1_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="18" name="data_add_2366523670" type="Const" version="opset1">
<data element_type="f32" offset="4956" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="19" name="bottleneck1_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="20" name="bottleneck1_1/inner/dw1/fn/weights3102439659" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="21" name="bottleneck1_1/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="22" name="bottleneck1_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="4988" shape="32, 8, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="23" name="bottleneck1_1/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="24" name="data_add_2367323678" type="Const" version="opset1">
<data element_type="f32" offset="6012" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="25" name="bottleneck1_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_1/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="26" name="bottleneck1_1/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_1/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="27" name="bottleneck1_1/fn/weights3115239677" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="28" name="bottleneck1_1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_1/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="29" name="bottleneck1_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="6140" shape="8, 32, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="30" name="bottleneck1_2/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="31" name="data_add_2368123686" type="Const" version="opset1">
<data element_type="f32" offset="7164" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="32" name="bottleneck1_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="33" name="bottleneck1_2/dim_red/fn/weights3077639878" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="34" name="bottleneck1_2/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="35" name="bottleneck1_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="7196" shape="8, 1, 1, 3, 3" size="288"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="36" name="bottleneck1_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="37" name="data_add_2368923694" type="Const" version="opset1">
<data element_type="f32" offset="7484" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="38" name="bottleneck1_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="39" name="bottleneck1_2/inner/dw1/fn/weights3087240085" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="40" name="bottleneck1_2/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="41" name="bottleneck1_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="7516" shape="32, 8, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="42" name="bottleneck1_2/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="43" name="data_add_2369723702" type="Const" version="opset1">
<data element_type="f32" offset="8540" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="44" name="bottleneck1_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_2/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="45" name="bottleneck1_2/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_2/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="46" name="bottleneck1_2/fn/weights3090439737" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="47" name="bottleneck1_2/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_2/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="48" name="bottleneck1_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="8668" shape="8, 32, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="49" name="bottleneck1_3/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="50" name="data_add_2370523710" type="Const" version="opset1">
<data element_type="f32" offset="9692" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="51" name="bottleneck1_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="52" name="bottleneck1_3/dim_red/fn/weights3092840502" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="53" name="bottleneck1_3/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="54" name="bottleneck1_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="9724" shape="8, 1, 1, 3, 3" size="288"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="55" name="bottleneck1_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="56" name="data_add_2371323718" type="Const" version="opset1">
<data element_type="f32" offset="10012" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="57" name="bottleneck1_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="58" name="bottleneck1_3/inner/dw1/fn/weights3115640004" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="59" name="bottleneck1_3/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="60" name="bottleneck1_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="10044" shape="32, 8, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="61" name="bottleneck1_3/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="62" name="data_add_2372123726" type="Const" version="opset1">
<data element_type="f32" offset="11068" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="63" name="bottleneck1_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_3/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="64" name="bottleneck1_3/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_3/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="65" name="bottleneck1_3/fn/weights3092439836" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="66" name="bottleneck1_3/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_3/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="67" name="bottleneck1_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="11196" shape="8, 32, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="68" name="bottleneck1_4/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="69" name="data_add_2372923734" type="Const" version="opset1">
<data element_type="f32" offset="12220" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="70" name="bottleneck1_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="71" name="bottleneck1_4/dim_red/fn/weights3114840622" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="72" name="bottleneck1_4/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="73" name="bottleneck1_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="12252" shape="8, 1, 1, 3, 3" size="288"/>
<output>
<port id="0" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="74" name="bottleneck1_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="75" name="data_add_2373723742" type="Const" version="opset1">
<data element_type="f32" offset="12540" shape="1, 8, 1, 1" size="32"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="76" name="bottleneck1_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="77" name="bottleneck1_4/inner/dw1/fn/weights3095640181" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="78" name="bottleneck1_4/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="79" name="bottleneck1_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="12572" shape="32, 8, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="80" name="bottleneck1_4/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>8</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="81" name="data_add_2374523750" type="Const" version="opset1">
<data element_type="f32" offset="13596" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="82" name="bottleneck1_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_4/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="83" name="bottleneck1_4/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_4/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="84" name="bottleneck1_4/fn/weights3087639962" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="85" name="bottleneck1_4/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck1_4/add" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="86" name="bottleneck2_0/skip/pooling" type="MaxPool" version="opset1">
<data auto_pad="explicit" kernel="2, 2" pads_begin="0, 0" pads_end="0, 0" rounding_type="ceil" strides="2, 2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</input>
<output>
<port id="1" names="bottleneck2_0/skip/pooling" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="87" name="bottleneck2_0/skip/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="13724" shape="64, 32, 1, 1" size="8192"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="88" name="bottleneck2_0/skip/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="89" name="data_add_2375323758" type="Const" version="opset1">
<data element_type="f32" offset="21916" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="90" name="bottleneck2_0/skip/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/skip/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="91" name="bottleneck2_0/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="22172" shape="16, 32, 1, 1" size="2048"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="92" name="bottleneck2_0/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="93" name="data_add_2376123766" type="Const" version="opset1">
<data element_type="f32" offset="24220" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="94" name="bottleneck2_0/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="95" name="bottleneck2_0/dim_red/fn/weights3103239749" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="96" name="bottleneck2_0/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>272</dim>
</port>
</output>
</layer>
<layer id="97" name="bottleneck2_0/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="24284" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="98" name="bottleneck2_0/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>160</dim>
<dim>272</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="99" name="data_add_2376923774" type="Const" version="opset1">
<data element_type="f32" offset="24860" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="100" name="bottleneck2_0/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="101" name="bottleneck2_0/inner/dw1/fn/weights3088840568" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="102" name="bottleneck2_0/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="103" name="bottleneck2_0/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="24924" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="104" name="bottleneck2_0/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="105" name="data_add_2377723782" type="Const" version="opset1">
<data element_type="f32" offset="29020" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="106" name="bottleneck2_0/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="107" name="bottleneck2_0/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="108" name="bottleneck2_0/fn/weights3086440226" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="109" name="bottleneck2_0/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_0/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="110" name="bottleneck2_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="29276" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="111" name="bottleneck2_1/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="112" name="data_add_2378523790" type="Const" version="opset1">
<data element_type="f32" offset="33372" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="113" name="bottleneck2_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="114" name="bottleneck2_1/dim_red/fn/weights3091240172" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="115" name="bottleneck2_1/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="116" name="bottleneck2_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="33436" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="117" name="bottleneck2_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="118" name="data_add_2379323798" type="Const" version="opset1">
<data element_type="f32" offset="34012" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="119" name="bottleneck2_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="120" name="bottleneck2_1/inner/dw1/fn/weights3110039803" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="121" name="bottleneck2_1/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="122" name="bottleneck2_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="34076" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="123" name="bottleneck2_1/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="124" name="data_add_2380123806" type="Const" version="opset1">
<data element_type="f32" offset="38172" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="125" name="bottleneck2_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_1/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="126" name="bottleneck2_1/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_1/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="127" name="bottleneck2_1/fn/weights3081640076" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="128" name="bottleneck2_1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_1/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="129" name="bottleneck2_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="38428" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="130" name="bottleneck2_2/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="131" name="data_add_2380923814" type="Const" version="opset1">
<data element_type="f32" offset="42524" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="132" name="bottleneck2_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="133" name="bottleneck2_2/dim_red/fn/weights3079239824" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="134" name="bottleneck2_2/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="135" name="bottleneck2_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="42588" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="136" name="bottleneck2_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="137" name="data_add_2381723822" type="Const" version="opset1">
<data element_type="f32" offset="43164" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="138" name="bottleneck2_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="139" name="bottleneck2_2/inner/dw1/fn/weights3110439791" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="140" name="bottleneck2_2/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="141" name="bottleneck2_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="43228" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="142" name="bottleneck2_2/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="143" name="data_add_2382523830" type="Const" version="opset1">
<data element_type="f32" offset="47324" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="144" name="bottleneck2_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_2/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="145" name="bottleneck2_2/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_2/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="146" name="bottleneck2_2/fn/weights3100439671" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="147" name="bottleneck2_2/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_2/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="148" name="bottleneck2_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="47580" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="149" name="bottleneck2_3/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="150" name="data_add_2383323838" type="Const" version="opset1">
<data element_type="f32" offset="51676" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="151" name="bottleneck2_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="152" name="bottleneck2_3/dim_red/fn/weights3096440040" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="153" name="bottleneck2_3/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="154" name="bottleneck2_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="51740" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="155" name="bottleneck2_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="156" name="data_add_2384123846" type="Const" version="opset1">
<data element_type="f32" offset="52316" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="157" name="bottleneck2_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="158" name="bottleneck2_3/inner/dw1/fn/weights3080039752" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="159" name="bottleneck2_3/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="160" name="bottleneck2_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="52380" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="161" name="bottleneck2_3/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="162" name="data_add_2384923854" type="Const" version="opset1">
<data element_type="f32" offset="56476" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="163" name="bottleneck2_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_3/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="164" name="bottleneck2_3/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_3/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="165" name="bottleneck2_3/fn/weights3076840016" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="166" name="bottleneck2_3/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_3/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="167" name="bottleneck2_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="56732" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="168" name="bottleneck2_4/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="169" name="data_add_2385723862" type="Const" version="opset1">
<data element_type="f32" offset="60828" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="170" name="bottleneck2_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="171" name="bottleneck2_4/dim_red/fn/weights3085640454" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="172" name="bottleneck2_4/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="173" name="bottleneck2_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="60892" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="174" name="bottleneck2_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="175" name="data_add_2386523870" type="Const" version="opset1">
<data element_type="f32" offset="61468" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="176" name="bottleneck2_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="177" name="bottleneck2_4/inner/dw1/fn/weights3082039965" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="178" name="bottleneck2_4/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="179" name="bottleneck2_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="61532" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="180" name="bottleneck2_4/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="181" name="data_add_2387323878" type="Const" version="opset1">
<data element_type="f32" offset="65628" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="182" name="bottleneck2_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_4/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="183" name="bottleneck2_4/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_4/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="184" name="bottleneck2_4/fn/weights3106840703" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="185" name="bottleneck2_4/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_4/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="186" name="bottleneck2_5/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="65884" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="187" name="bottleneck2_5/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="188" name="data_add_2388123886" type="Const" version="opset1">
<data element_type="f32" offset="69980" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="189" name="bottleneck2_5/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_5/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="190" name="bottleneck2_5/dim_red/fn/weights3082839890" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="191" name="bottleneck2_5/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_5/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="192" name="bottleneck2_5/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="70044" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="193" name="bottleneck2_5/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="194" name="data_add_2388923894" type="Const" version="opset1">
<data element_type="f32" offset="70620" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="195" name="bottleneck2_5/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_5/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="196" name="bottleneck2_5/inner/dw1/fn/weights3088039707" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="197" name="bottleneck2_5/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_5/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="198" name="bottleneck2_5/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="70684" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="199" name="bottleneck2_5/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="200" name="data_add_2389723902" type="Const" version="opset1">
<data element_type="f32" offset="74780" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="201" name="bottleneck2_5/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_5/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="202" name="bottleneck2_5/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_5/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="203" name="bottleneck2_5/fn/weights3085239683" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="204" name="bottleneck2_5/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_5/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="205" name="bottleneck2_6/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="75036" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="206" name="bottleneck2_6/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="207" name="data_add_2390523910" type="Const" version="opset1">
<data element_type="f32" offset="79132" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="208" name="bottleneck2_6/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_6/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="209" name="bottleneck2_6/dim_red/fn/weights3097240064" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="210" name="bottleneck2_6/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_6/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="211" name="bottleneck2_6/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="79196" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="212" name="bottleneck2_6/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="213" name="data_add_2391323918" type="Const" version="opset1">
<data element_type="f32" offset="79772" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="214" name="bottleneck2_6/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_6/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="215" name="bottleneck2_6/inner/dw1/fn/weights3114439989" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="216" name="bottleneck2_6/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_6/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="217" name="bottleneck2_6/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="79836" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="218" name="bottleneck2_6/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="219" name="data_add_2392123926" type="Const" version="opset1">
<data element_type="f32" offset="83932" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="220" name="bottleneck2_6/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_6/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="221" name="bottleneck2_6/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_6/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="222" name="bottleneck2_6/fn/weights3107640616" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="223" name="bottleneck2_6/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_6/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="224" name="bottleneck2_7/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="84188" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="225" name="bottleneck2_7/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="226" name="data_add_2392923934" type="Const" version="opset1">
<data element_type="f32" offset="88284" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="227" name="bottleneck2_7/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_7/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="228" name="bottleneck2_7/dim_red/fn/weights3110839845" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="229" name="bottleneck2_7/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_7/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="230" name="bottleneck2_7/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="88348" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="231" name="bottleneck2_7/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="232" name="data_add_2393723942" type="Const" version="opset1">
<data element_type="f32" offset="88924" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="233" name="bottleneck2_7/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_7/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="234" name="bottleneck2_7/inner/dw1/fn/weights3118040055" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="235" name="bottleneck2_7/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_7/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="236" name="bottleneck2_7/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="88988" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="237" name="bottleneck2_7/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="238" name="data_add_2394523950" type="Const" version="opset1">
<data element_type="f32" offset="93084" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="239" name="bottleneck2_7/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_7/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="240" name="bottleneck2_7/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_7/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="241" name="bottleneck2_7/fn/weights3106040265" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="242" name="bottleneck2_7/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_7/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="243" name="bottleneck2_8/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="93340" shape="16, 64, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="244" name="bottleneck2_8/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="245" name="data_add_2395323958" type="Const" version="opset1">
<data element_type="f32" offset="97436" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="246" name="bottleneck2_8/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_8/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="247" name="bottleneck2_8/dim_red/fn/weights3100840364" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="248" name="bottleneck2_8/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_8/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="249" name="bottleneck2_8/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="97500" shape="16, 1, 1, 3, 3" size="576"/>
<output>
<port id="0" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="250" name="bottleneck2_8/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="251" name="data_add_2396123966" type="Const" version="opset1">
<data element_type="f32" offset="98076" shape="1, 16, 1, 1" size="64"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="252" name="bottleneck2_8/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_8/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="253" name="bottleneck2_8/inner/dw1/fn/weights3094839839" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="254" name="bottleneck2_8/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_8/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="255" name="bottleneck2_8/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="98140" shape="64, 16, 1, 1" size="4096"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="256" name="bottleneck2_8/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>16</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="257" name="data_add_2396923974" type="Const" version="opset1">
<data element_type="f32" offset="102236" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="258" name="bottleneck2_8/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_8/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="259" name="bottleneck2_8/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_8/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="260" name="bottleneck2_8/fn/weights3106440124" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="261" name="bottleneck2_8/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck2_8/add" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="262" name="bottleneck3_0/skip/pooling" type="MaxPool" version="opset1">
<data auto_pad="explicit" kernel="2, 2" pads_begin="0, 0" pads_end="0, 0" rounding_type="ceil" strides="2, 2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</input>
<output>
<port id="1" names="bottleneck3_0/skip/pooling" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="263" name="bottleneck3_0/skip/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="102492" shape="128, 64, 1, 1" size="32768"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="264" name="bottleneck3_0/skip/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="265" name="data_add_2397723982" type="Const" version="opset1">
<data element_type="f32" offset="135260" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="266" name="bottleneck3_0/skip/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/skip/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="267" name="bottleneck3_0/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="135772" shape="32, 64, 1, 1" size="8192"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="268" name="bottleneck3_0/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="269" name="data_add_2398523990" type="Const" version="opset1">
<data element_type="f32" offset="143964" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="270" name="bottleneck3_0/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="271" name="bottleneck3_0/dim_red/fn/weights3097640670" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="272" name="bottleneck3_0/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
</output>
</layer>
<layer id="273" name="bottleneck3_0/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="144092" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="274" name="bottleneck3_0/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>80</dim>
<dim>136</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="275" name="data_add_2399323998" type="Const" version="opset1">
<data element_type="f32" offset="145244" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="276" name="bottleneck3_0/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="277" name="bottleneck3_0/inner/dw1/fn/weights3079640607" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="278" name="bottleneck3_0/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="279" name="bottleneck3_0/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="145372" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="280" name="bottleneck3_0/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="281" name="data_add_2400124006" type="Const" version="opset1">
<data element_type="f32" offset="161756" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="282" name="bottleneck3_0/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="283" name="bottleneck3_0/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="284" name="bottleneck3_0/fn/weights3080840268" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="285" name="bottleneck3_0/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_0/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="286" name="bottleneck3_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="162268" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="287" name="bottleneck3_1/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="288" name="data_add_2400924014" type="Const" version="opset1">
<data element_type="f32" offset="178652" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="289" name="bottleneck3_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="290" name="bottleneck3_1/dim_red/fn/weights3102040538" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="291" name="bottleneck3_1/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="292" name="bottleneck3_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="178780" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="293" name="bottleneck3_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="294" name="data_add_2401724022" type="Const" version="opset1">
<data element_type="f32" offset="179932" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="295" name="bottleneck3_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="296" name="bottleneck3_1/inner/dw1/fn/weights3082440517" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="297" name="bottleneck3_1/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="298" name="bottleneck3_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="180060" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="299" name="bottleneck3_1/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="300" name="data_add_2402524030" type="Const" version="opset1">
<data element_type="f32" offset="196444" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="301" name="bottleneck3_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_1/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="302" name="bottleneck3_1/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_1/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="303" name="bottleneck3_1/fn/weights3086039869" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="304" name="bottleneck3_1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_1/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="305" name="bottleneck3_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="196956" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="306" name="bottleneck3_2/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="307" name="data_add_2403324038" type="Const" version="opset1">
<data element_type="f32" offset="213340" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="308" name="bottleneck3_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="309" name="bottleneck3_2/dim_red/fn/weights3117639980" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="310" name="bottleneck3_2/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="311" name="bottleneck3_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="213468" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="312" name="bottleneck3_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="313" name="data_add_2404124046" type="Const" version="opset1">
<data element_type="f32" offset="214620" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="314" name="bottleneck3_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="315" name="bottleneck3_2/inner/dw1/fn/weights3108039773" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="316" name="bottleneck3_2/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="317" name="bottleneck3_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="214748" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="318" name="bottleneck3_2/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="319" name="data_add_2404924054" type="Const" version="opset1">
<data element_type="f32" offset="231132" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="320" name="bottleneck3_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_2/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="321" name="bottleneck3_2/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_2/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="322" name="bottleneck3_2/fn/weights3093640130" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="323" name="bottleneck3_2/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_2/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="324" name="bottleneck3_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="231644" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="325" name="bottleneck3_3/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="326" name="data_add_2405724062" type="Const" version="opset1">
<data element_type="f32" offset="248028" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="327" name="bottleneck3_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="328" name="bottleneck3_3/dim_red/fn/weights3107239758" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="329" name="bottleneck3_3/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="330" name="bottleneck3_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="248156" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="331" name="bottleneck3_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="332" name="data_add_2406524070" type="Const" version="opset1">
<data element_type="f32" offset="249308" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="333" name="bottleneck3_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="334" name="bottleneck3_3/inner/dw1/fn/weights3104440001" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="335" name="bottleneck3_3/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="336" name="bottleneck3_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="249436" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="337" name="bottleneck3_3/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="338" name="data_add_2407324078" type="Const" version="opset1">
<data element_type="f32" offset="265820" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="339" name="bottleneck3_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_3/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="340" name="bottleneck3_3/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_3/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="341" name="bottleneck3_3/fn/weights3083640325" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="342" name="bottleneck3_3/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_3/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="343" name="bottleneck3_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="266332" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="344" name="bottleneck3_4/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="345" name="data_add_2408124086" type="Const" version="opset1">
<data element_type="f32" offset="282716" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="346" name="bottleneck3_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="347" name="bottleneck3_4/dim_red/fn/weights3077240091" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="348" name="bottleneck3_4/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="349" name="bottleneck3_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="282844" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="350" name="bottleneck3_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="351" name="data_add_2408924094" type="Const" version="opset1">
<data element_type="f32" offset="283996" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="352" name="bottleneck3_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="353" name="bottleneck3_4/inner/dw1/fn/weights3099640157" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="354" name="bottleneck3_4/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="355" name="bottleneck3_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="284124" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="356" name="bottleneck3_4/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="357" name="data_add_2409724102" type="Const" version="opset1">
<data element_type="f32" offset="300508" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="358" name="bottleneck3_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_4/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="359" name="bottleneck3_4/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_4/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="360" name="bottleneck3_4/fn/weights3105640382" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="361" name="bottleneck3_4/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_4/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="362" name="bottleneck3_5/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="301020" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="363" name="bottleneck3_5/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="364" name="data_add_2410524110" type="Const" version="opset1">
<data element_type="f32" offset="317404" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="365" name="bottleneck3_5/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_5/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="366" name="bottleneck3_5/dim_red/fn/weights3081240661" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="367" name="bottleneck3_5/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_5/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="368" name="bottleneck3_5/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="317532" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="369" name="bottleneck3_5/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="370" name="data_add_2411324118" type="Const" version="opset1">
<data element_type="f32" offset="318684" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="371" name="bottleneck3_5/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_5/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="372" name="bottleneck3_5/inner/dw1/fn/weights3113240100" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="373" name="bottleneck3_5/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_5/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="374" name="bottleneck3_5/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="318812" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="375" name="bottleneck3_5/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="376" name="data_add_2412124126" type="Const" version="opset1">
<data element_type="f32" offset="335196" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="377" name="bottleneck3_5/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_5/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="378" name="bottleneck3_5/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_5/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="379" name="bottleneck3_5/fn/weights3108439911" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="380" name="bottleneck3_5/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_5/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="381" name="bottleneck3_6/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="335708" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="382" name="bottleneck3_6/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="383" name="data_add_2412924134" type="Const" version="opset1">
<data element_type="f32" offset="352092" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="384" name="bottleneck3_6/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_6/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="385" name="bottleneck3_6/dim_red/fn/weights3084040604" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="386" name="bottleneck3_6/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_6/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="387" name="bottleneck3_6/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="352220" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="388" name="bottleneck3_6/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="389" name="data_add_2413724142" type="Const" version="opset1">
<data element_type="f32" offset="353372" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="390" name="bottleneck3_6/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_6/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="391" name="bottleneck3_6/inner/dw1/fn/weights3090840310" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="392" name="bottleneck3_6/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_6/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="393" name="bottleneck3_6/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="353500" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="394" name="bottleneck3_6/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="395" name="data_add_2414524150" type="Const" version="opset1">
<data element_type="f32" offset="369884" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="396" name="bottleneck3_6/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_6/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="397" name="bottleneck3_6/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_6/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="398" name="bottleneck3_6/fn/weights3090039914" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="399" name="bottleneck3_6/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_6/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="400" name="bottleneck3_7/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="370396" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="401" name="bottleneck3_7/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="402" name="data_add_2415324158" type="Const" version="opset1">
<data element_type="f32" offset="386780" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="403" name="bottleneck3_7/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_7/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="404" name="bottleneck3_7/dim_red/fn/weights3113640679" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="405" name="bottleneck3_7/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_7/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="406" name="bottleneck3_7/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="386908" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="407" name="bottleneck3_7/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="408" name="data_add_2416124166" type="Const" version="opset1">
<data element_type="f32" offset="388060" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="409" name="bottleneck3_7/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_7/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="410" name="bottleneck3_7/inner/dw1/fn/weights3098040349" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="411" name="bottleneck3_7/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_7/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="412" name="bottleneck3_7/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="388188" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="413" name="bottleneck3_7/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="414" name="data_add_2416924174" type="Const" version="opset1">
<data element_type="f32" offset="404572" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="415" name="bottleneck3_7/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_7/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="416" name="bottleneck3_7/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_7/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="417" name="bottleneck3_7/fn/weights3102840676" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="418" name="bottleneck3_7/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_7/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="419" name="bottleneck3_8/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="405084" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="420" name="bottleneck3_8/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="421" name="data_add_2417724182" type="Const" version="opset1">
<data element_type="f32" offset="421468" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="422" name="bottleneck3_8/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_8/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="423" name="bottleneck3_8/dim_red/fn/weights3098440022" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="424" name="bottleneck3_8/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_8/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="425" name="bottleneck3_8/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="421596" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="426" name="bottleneck3_8/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="427" name="data_add_2418524190" type="Const" version="opset1">
<data element_type="f32" offset="422748" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="428" name="bottleneck3_8/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_8/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="429" name="bottleneck3_8/inner/dw1/fn/weights3104839899" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="430" name="bottleneck3_8/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_8/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="431" name="bottleneck3_8/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="422876" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="432" name="bottleneck3_8/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="433" name="data_add_2419324198" type="Const" version="opset1">
<data element_type="f32" offset="439260" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="434" name="bottleneck3_8/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_8/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="435" name="bottleneck3_8/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_8/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="436" name="bottleneck3_8/fn/weights3083239761" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="437" name="bottleneck3_8/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_8/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="438" name="bottleneck3_9/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="439772" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="439" name="bottleneck3_9/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="440" name="data_add_2420124206" type="Const" version="opset1">
<data element_type="f32" offset="456156" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="441" name="bottleneck3_9/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_9/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="442" name="bottleneck3_9/dim_red/fn/weights3093240487" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="443" name="bottleneck3_9/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_9/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="444" name="bottleneck3_9/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="456284" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="445" name="bottleneck3_9/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="446" name="data_add_2420924214" type="Const" version="opset1">
<data element_type="f32" offset="457436" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="447" name="bottleneck3_9/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_9/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="448" name="bottleneck3_9/inner/dw1/fn/weights3112040592" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="449" name="bottleneck3_9/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_9/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="450" name="bottleneck3_9/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="457564" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="451" name="bottleneck3_9/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="452" name="data_add_2421724222" type="Const" version="opset1">
<data element_type="f32" offset="473948" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="453" name="bottleneck3_9/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_9/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="454" name="bottleneck3_9/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_9/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="455" name="bottleneck3_9/fn/weights3116840514" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="456" name="bottleneck3_9/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_9/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="457" name="bottleneck3_10/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="474460" shape="32, 128, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="458" name="bottleneck3_10/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="459" name="data_add_2422524230" type="Const" version="opset1">
<data element_type="f32" offset="490844" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="460" name="bottleneck3_10/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_10/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="461" name="bottleneck3_10/dim_red/fn/weights3100040610" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="462" name="bottleneck3_10/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_10/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="463" name="bottleneck3_10/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="490972" shape="32, 1, 1, 3, 3" size="1152"/>
<output>
<port id="0" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="464" name="bottleneck3_10/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="465" name="data_add_2423324238" type="Const" version="opset1">
<data element_type="f32" offset="492124" shape="1, 32, 1, 1" size="128"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="466" name="bottleneck3_10/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_10/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="467" name="bottleneck3_10/inner/dw1/fn/weights3116040688" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="468" name="bottleneck3_10/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_10/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="469" name="bottleneck3_10/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="492252" shape="128, 32, 1, 1" size="16384"/>
<output>
<port id="0" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="470" name="bottleneck3_10/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>128</dim>
<dim>32</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="471" name="data_add_2424124246" type="Const" version="opset1">
<data element_type="f32" offset="508636" shape="1, 128, 1, 1" size="512"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="472" name="bottleneck3_10/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_10/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="473" name="bottleneck3_10/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_10/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="474" name="bottleneck3_10/fn/weights3103639695" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="475" name="bottleneck3_10/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck3_10/add" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="476" name="bottleneck4_0/skip/pooling" type="MaxPool" version="opset1">
<data auto_pad="explicit" kernel="2, 2" pads_begin="0, 0" pads_end="0, 0" rounding_type="ceil" strides="2, 2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</input>
<output>
<port id="1" names="bottleneck4_0/skip/pooling" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="477" name="bottleneck4_0/skip/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="509148" shape="256, 128, 1, 1" size="131072"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="478" name="bottleneck4_0/skip/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="479" name="data_add_2424924254" type="Const" version="opset1">
<data element_type="f32" offset="640220" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="480" name="bottleneck4_0/skip/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/skip/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="481" name="bottleneck4_0/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="641244" shape="64, 128, 1, 1" size="32768"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="482" name="bottleneck4_0/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>128</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>128</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="483" name="data_add_2425724262" type="Const" version="opset1">
<data element_type="f32" offset="674012" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="484" name="bottleneck4_0/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="485" name="bottleneck4_0/dim_red/fn/weights3109639941" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="486" name="bottleneck4_0/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
</output>
</layer>
<layer id="487" name="bottleneck4_0/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="674268" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="488" name="bottleneck4_0/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="2, 2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>40</dim>
<dim>68</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="489" name="data_add_2426524270" type="Const" version="opset1">
<data element_type="f32" offset="676572" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="490" name="bottleneck4_0/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="491" name="bottleneck4_0/inner/dw1/fn/weights3118439713" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="492" name="bottleneck4_0/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="493" name="bottleneck4_0/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="676828" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="494" name="bottleneck4_0/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="495" name="data_add_2427324278" type="Const" version="opset1">
<data element_type="f32" offset="742364" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="496" name="bottleneck4_0/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="497" name="bottleneck4_0/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="498" name="bottleneck4_0/fn/weights3078039842" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="499" name="bottleneck4_0/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_0/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="500" name="bottleneck4_1/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="743388" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="501" name="bottleneck4_1/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="502" name="data_add_2428124286" type="Const" version="opset1">
<data element_type="f32" offset="808924" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="503" name="bottleneck4_1/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="504" name="bottleneck4_1/dim_red/fn/weights3112840550" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="505" name="bottleneck4_1/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_1/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="506" name="bottleneck4_1/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="809180" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="507" name="bottleneck4_1/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="508" name="data_add_2428924294" type="Const" version="opset1">
<data element_type="f32" offset="811484" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="509" name="bottleneck4_1/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="510" name="bottleneck4_1/inner/dw1/fn/weights3101640097" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="511" name="bottleneck4_1/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_1/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="512" name="bottleneck4_1/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="811740" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="513" name="bottleneck4_1/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="514" name="data_add_2429724302" type="Const" version="opset1">
<data element_type="f32" offset="877276" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="515" name="bottleneck4_1/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_1/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="516" name="bottleneck4_1/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_1/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="517" name="bottleneck4_1/fn/weights3078840664" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="518" name="bottleneck4_1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_1/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="519" name="bottleneck4_2/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="878300" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="520" name="bottleneck4_2/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="521" name="data_add_2430524310" type="Const" version="opset1">
<data element_type="f32" offset="943836" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="522" name="bottleneck4_2/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="523" name="bottleneck4_2/dim_red/fn/weights3080440121" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="524" name="bottleneck4_2/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_2/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="525" name="bottleneck4_2/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="944092" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="526" name="bottleneck4_2/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="527" name="data_add_2431324318" type="Const" version="opset1">
<data element_type="f32" offset="946396" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="528" name="bottleneck4_2/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="529" name="bottleneck4_2/inner/dw1/fn/weights3078440649" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="530" name="bottleneck4_2/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_2/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="531" name="bottleneck4_2/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="946652" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="532" name="bottleneck4_2/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="533" name="data_add_2432124326" type="Const" version="opset1">
<data element_type="f32" offset="1012188" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="534" name="bottleneck4_2/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_2/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="535" name="bottleneck4_2/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_2/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="536" name="bottleneck4_2/fn/weights3084440229" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="537" name="bottleneck4_2/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_2/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="538" name="bottleneck4_3/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1013212" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="539" name="bottleneck4_3/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="540" name="data_add_2432924334" type="Const" version="opset1">
<data element_type="f32" offset="1078748" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="541" name="bottleneck4_3/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="542" name="bottleneck4_3/dim_red/fn/weights3112440511" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="543" name="bottleneck4_3/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_3/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="544" name="bottleneck4_3/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1079004" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="545" name="bottleneck4_3/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="546" name="data_add_2433724342" type="Const" version="opset1">
<data element_type="f32" offset="1081308" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="547" name="bottleneck4_3/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="548" name="bottleneck4_3/inner/dw1/fn/weights3108840466" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="549" name="bottleneck4_3/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_3/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="550" name="bottleneck4_3/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1081564" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="551" name="bottleneck4_3/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="552" name="data_add_2434524350" type="Const" version="opset1">
<data element_type="f32" offset="1147100" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="553" name="bottleneck4_3/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_3/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="554" name="bottleneck4_3/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_3/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="555" name="bottleneck4_3/fn/weights3088440685" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="556" name="bottleneck4_3/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_3/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="557" name="bottleneck4_4/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1148124" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="558" name="bottleneck4_4/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="559" name="data_add_2435324358" type="Const" version="opset1">
<data element_type="f32" offset="1213660" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="560" name="bottleneck4_4/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="561" name="bottleneck4_4/dim_red/fn/weights3116439731" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="562" name="bottleneck4_4/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_4/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="563" name="bottleneck4_4/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1213916" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="564" name="bottleneck4_4/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="565" name="data_add_2436124366" type="Const" version="opset1">
<data element_type="f32" offset="1216220" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="566" name="bottleneck4_4/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="567" name="bottleneck4_4/inner/dw1/fn/weights3076040484" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="568" name="bottleneck4_4/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_4/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="569" name="bottleneck4_4/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1216476" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="570" name="bottleneck4_4/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="571" name="data_add_2436924374" type="Const" version="opset1">
<data element_type="f32" offset="1282012" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="572" name="bottleneck4_4/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_4/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="573" name="bottleneck4_4/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_4/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="574" name="bottleneck4_4/fn/weights3098839926" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="575" name="bottleneck4_4/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_4/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="576" name="bottleneck4_5/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1283036" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="577" name="bottleneck4_5/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="578" name="data_add_2437724382" type="Const" version="opset1">
<data element_type="f32" offset="1348572" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="579" name="bottleneck4_5/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_5/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="580" name="bottleneck4_5/dim_red/fn/weights3117240481" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="581" name="bottleneck4_5/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_5/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="582" name="bottleneck4_5/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1348828" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="583" name="bottleneck4_5/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="584" name="data_add_2438524390" type="Const" version="opset1">
<data element_type="f32" offset="1351132" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="585" name="bottleneck4_5/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_5/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="586" name="bottleneck4_5/inner/dw1/fn/weights3076439938" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="587" name="bottleneck4_5/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_5/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="588" name="bottleneck4_5/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1351388" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="589" name="bottleneck4_5/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="590" name="data_add_2439324398" type="Const" version="opset1">
<data element_type="f32" offset="1416924" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="591" name="bottleneck4_5/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_5/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="592" name="bottleneck4_5/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_5/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="593" name="bottleneck4_5/fn/weights3084840586" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="594" name="bottleneck4_5/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_5/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="595" name="bottleneck4_6/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1417948" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="596" name="bottleneck4_6/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="597" name="data_add_2440124406" type="Const" version="opset1">
<data element_type="f32" offset="1483484" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="598" name="bottleneck4_6/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_6/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="599" name="bottleneck4_6/dim_red/fn/weights3096839815" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="600" name="bottleneck4_6/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_6/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="601" name="bottleneck4_6/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1483740" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="602" name="bottleneck4_6/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="603" name="data_add_2440924414" type="Const" version="opset1">
<data element_type="f32" offset="1486044" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="604" name="bottleneck4_6/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_6/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="605" name="bottleneck4_6/inner/dw1/fn/weights3109240031" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="606" name="bottleneck4_6/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_6/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="607" name="bottleneck4_6/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1486300" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="608" name="bottleneck4_6/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="609" name="data_add_2441724422" type="Const" version="opset1">
<data element_type="f32" offset="1551836" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="610" name="bottleneck4_6/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_6/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="611" name="bottleneck4_6/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_6/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="612" name="bottleneck4_6/fn/weights3111640460" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="613" name="bottleneck4_6/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_6/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="614" name="bottleneck4_7/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1552860" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="615" name="bottleneck4_7/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="616" name="data_add_2442524430" type="Const" version="opset1">
<data element_type="f32" offset="1618396" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="617" name="bottleneck4_7/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_7/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="618" name="bottleneck4_7/dim_red/fn/weights3095240595" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="619" name="bottleneck4_7/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_7/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="620" name="bottleneck4_7/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1618652" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="621" name="bottleneck4_7/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="622" name="data_add_2443324438" type="Const" version="opset1">
<data element_type="f32" offset="1620956" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="623" name="bottleneck4_7/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_7/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="624" name="bottleneck4_7/inner/dw1/fn/weights3101240547" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="625" name="bottleneck4_7/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_7/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="626" name="bottleneck4_7/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1621212" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="627" name="bottleneck4_7/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="628" name="data_add_2444124446" type="Const" version="opset1">
<data element_type="f32" offset="1686748" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="629" name="bottleneck4_7/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_7/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="630" name="bottleneck4_7/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_7/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="631" name="bottleneck4_7/fn/weights3118840052" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="632" name="bottleneck4_7/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_7/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="633" name="bottleneck4_8/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1687772" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="634" name="bottleneck4_8/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="635" name="data_add_2444924454" type="Const" version="opset1">
<data element_type="f32" offset="1753308" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="636" name="bottleneck4_8/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_8/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="637" name="bottleneck4_8/dim_red/fn/weights3091640496" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="638" name="bottleneck4_8/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_8/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="639" name="bottleneck4_8/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1753564" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="640" name="bottleneck4_8/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="641" name="data_add_2445724462" type="Const" version="opset1">
<data element_type="f32" offset="1755868" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="642" name="bottleneck4_8/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_8/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="643" name="bottleneck4_8/inner/dw1/fn/weights3094039866" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="644" name="bottleneck4_8/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_8/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="645" name="bottleneck4_8/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1756124" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="646" name="bottleneck4_8/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="647" name="data_add_2446524470" type="Const" version="opset1">
<data element_type="f32" offset="1821660" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="648" name="bottleneck4_8/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_8/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="649" name="bottleneck4_8/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_8/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="650" name="bottleneck4_8/fn/weights3089640028" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="651" name="bottleneck4_8/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_8/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="652" name="bottleneck4_9/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1822684" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="653" name="bottleneck4_9/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="654" name="data_add_2447324478" type="Const" version="opset1">
<data element_type="f32" offset="1888220" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="655" name="bottleneck4_9/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_9/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="656" name="bottleneck4_9/dim_red/fn/weights3105240346" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="657" name="bottleneck4_9/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_9/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="658" name="bottleneck4_9/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1888476" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="659" name="bottleneck4_9/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="660" name="data_add_2448124486" type="Const" version="opset1">
<data element_type="f32" offset="1890780" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="661" name="bottleneck4_9/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_9/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="662" name="bottleneck4_9/inner/dw1/fn/weights3099240472" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="663" name="bottleneck4_9/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_9/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="664" name="bottleneck4_9/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1891036" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="665" name="bottleneck4_9/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="666" name="data_add_2448924494" type="Const" version="opset1">
<data element_type="f32" offset="1956572" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="667" name="bottleneck4_9/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_9/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="668" name="bottleneck4_9/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_9/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="669" name="bottleneck4_9/fn/weights3092040463" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="670" name="bottleneck4_9/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_9/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="671" name="bottleneck4_10/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="1957596" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="672" name="bottleneck4_10/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="673" name="data_add_2449724502" type="Const" version="opset1">
<data element_type="f32" offset="2023132" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="674" name="bottleneck4_10/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_10/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="675" name="bottleneck4_10/dim_red/fn/weights3086840214" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="676" name="bottleneck4_10/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_10/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="677" name="bottleneck4_10/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="2023388" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="678" name="bottleneck4_10/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="679" name="data_add_2450524510" type="Const" version="opset1">
<data element_type="f32" offset="2025692" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="680" name="bottleneck4_10/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_10/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="681" name="bottleneck4_10/inner/dw1/fn/weights3111240634" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="682" name="bottleneck4_10/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_10/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="683" name="bottleneck4_10/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="2025948" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="684" name="bottleneck4_10/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="685" name="data_add_2451324518" type="Const" version="opset1">
<data element_type="f32" offset="2091484" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="686" name="bottleneck4_10/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_10/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="687" name="bottleneck4_10/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_10/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="688" name="bottleneck4_10/fn/weights3089240424" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="689" name="bottleneck4_10/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_10/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="690" name="bottleneck4_11/dim_red/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="2092508" shape="64, 256, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="691" name="bottleneck4_11/dim_red/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="692" name="data_add_2452124526" type="Const" version="opset1">
<data element_type="f32" offset="2158044" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="693" name="bottleneck4_11/dim_red/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_11/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="694" name="bottleneck4_11/dim_red/fn/weights3104040334" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="695" name="bottleneck4_11/dim_red/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_11/dim_red/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="696" name="bottleneck4_11/inner/dw1/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="2158300" shape="64, 1, 1, 3, 3" size="2304"/>
<output>
<port id="0" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="697" name="bottleneck4_11/inner/dw1/conv" type="GroupConvolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="698" name="data_add_2452924534" type="Const" version="opset1">
<data element_type="f32" offset="2160604" shape="1, 64, 1, 1" size="256"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="699" name="bottleneck4_11/inner/dw1/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_11/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="700" name="bottleneck4_11/inner/dw1/fn/weights3114040292" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="701" name="bottleneck4_11/inner/dw1/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_11/inner/dw1/conv" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="702" name="bottleneck4_11/dim_inc/bn/mean/Fused_Mul__copy" type="Const" version="opset1">
<data element_type="f32" offset="2160860" shape="256, 64, 1, 1" size="65536"/>
<output>
<port id="0" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="703" name="bottleneck4_11/dim_inc/conv" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="0, 0" pads_end="0, 0" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>64</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>256</dim>
<dim>64</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="704" name="data_add_2453724542" type="Const" version="opset1">
<data element_type="f32" offset="2226396" shape="1, 256, 1, 1" size="1024"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="705" name="bottleneck4_11/dim_inc/bn/variance/Fused_Add_" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_11/dim_inc/conv" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="706" name="bottleneck4_11/add" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="2" names="bottleneck4_11/add" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="707" name="bottleneck4_11/fn/weights3094440475" type="Const" version="opset1">
<data element_type="f32" offset="4664" shape="1" size="4"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="708" name="bottleneck4_11/fn" type="PReLU" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="bb_16xout_pd" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="709" name="1046" type="Const" version="opset1">
<data element_type="f32" offset="2227420" shape="48, 256, 3, 3" size="442368"/>
<output>
<port id="0" precision="FP32">
<dim>48</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="710" name="mbox_loc1/out/conv/WithoutBiases" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>48</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="711" name="mbox_loc1/out/conv/Dims13831" type="Const" version="opset1">
<data element_type="f32" offset="2669788" shape="1, 48, 1, 1" size="192"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="712" name="mbox_loc1/out/conv" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="mbox_loc1/out/conv" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="713" name="1296" type="Const" version="opset1">
<data element_type="i64" offset="2669980" shape="4" size="32"/>
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="714" name="mbox_loc1/out/conv/perm" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>48</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" names="mbox_loc1/out/conv/perm" precision="FP32">
<dim>1</dim>
<dim>20</dim>
<dim>34</dim>
<dim>48</dim>
</port>
</output>
</layer>
<layer id="715" name="1308/shapes_concat" type="Const" version="opset1">
<data element_type="i64" offset="2670012" shape="2" size="16"/>
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="716" name="mbox_loc1/out/conv/flat" type="Reshape" version="opset1">
<data special_zero="true"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>20</dim>
<dim>34</dim>
<dim>48</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" names="mbox_loc1/out/conv/flat" precision="FP32">
<dim>1</dim>
<dim>32640</dim>
</port>
</output>
</layer>
<layer id="717" name="1004" type="Const" version="opset1">
<data element_type="f32" offset="2670028" shape="24, 256, 3, 3" size="221184"/>
<output>
<port id="0" precision="FP32">
<dim>24</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="718" name="mbox_conf1/out/conv/WithoutBiases" type="Convolution" version="opset1">
<data auto_pad="explicit" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" strides="1, 1"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>24</dim>
<dim>256</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="719" name="mbox_conf1/out/conv/Dims13825" type="Const" version="opset1">
<data element_type="f32" offset="2891212" shape="1, 24, 1, 1" size="96"/>
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="720" name="mbox_conf1/out/conv" type="Add" version="opset1">
<data auto_broadcast="numpy"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="mbox_conf1/out/conv" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</output>
</layer>
<layer id="721" name="1297" type="Const" version="opset1">
<data element_type="i64" offset="2669980" shape="4" size="32"/>
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="722" name="mbox_conf1/out/conv/perm" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>24</dim>
<dim>20</dim>
<dim>34</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" names="mbox_conf1/out/conv/perm" precision="FP32">
<dim>1</dim>
<dim>20</dim>
<dim>34</dim>
<dim>24</dim>
</port>
</output>
</layer>
<layer id="723" name="1303/shapes_concat" type="Const" version="opset1">
<data element_type="i64" offset="2670012" shape="2" size="16"/>
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="724" name="mbox_conf1/out/conv/flat" type="Reshape" version="opset1">
<data special_zero="true"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>20</dim>
<dim>34</dim>
<dim>24</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" names="mbox_conf1/out/conv/flat" precision="FP32">
<dim>1</dim>
<dim>16320</dim>
</port>
</output>
</layer>
<layer id="725" name="1295" type="Const" version="opset1">
<data element_type="i64" offset="2891308" shape="3" size="24"/>
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="726" name="mbox_conf1/out/conv/flat/reshape" type="Reshape" version="opset1">
<data special_zero="true"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>16320</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" names="mbox_conf1/out/conv/flat/reshape" precision="FP32">
<dim>1</dim>
<dim>8160</dim>
<dim>2</dim>
</port>
</output>
</layer>
<layer id="727" name="mbox_conf1/out/conv/flat/softmax" type="SoftMax" version="opset1">
<data axis="2"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8160</dim>
<dim>2</dim>
</port>
</input>
<output>
<port id="1" names="mbox_conf1/out/conv/flat/softmax" precision="FP32">
<dim>1</dim>
<dim>8160</dim>
<dim>2</dim>
</port>
</output>
</layer>
<layer id="728" name="1298/shapes_concat" type="Const" version="opset1">
<data element_type="i64" offset="2670012" shape="2" size="16"/>
<output>
<port id="0" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="729" name="mbox_conf1/out/conv/flat/softmax/flat" type="Reshape" version="opset1">
<data special_zero="true"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>8160</dim>
<dim>2</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" names="mbox_conf1/out/conv/flat/softmax/flat" precision="FP32">
<dim>1</dim>
<dim>16320</dim>
</port>
</output>
</layer>
<layer id="730" name="mbox1/priorbox/0_port" type="ShapeOf" version="opset3">
<data output_type="i64"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>256</dim>
<dim>20</dim>
<dim>34</dim>
</port>
</input>
<output>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="731" name="mbox1/priorbox/ss_begin2978640640" type="Const" version="opset1">
<data element_type="i64" offset="2891332" shape="1" size="8"/>
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="732" name="mbox1/priorbox/ss_end2978740277" type="Const" version="opset1">
<data element_type="i64" offset="2891340" shape="1" size="8"/>
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="733" name="mbox1/priorbox/ss_stride2978839821" type="Const" version="opset1">
<data element_type="i64" offset="2891348" shape="1" size="8"/>
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="734" name="mbox1/priorbox/ss_0_port" type="StridedSlice" version="opset1">
<data begin_mask="0" ellipsis_mask="0" end_mask="1" new_axis_mask="0" shrink_axis_mask="0"/>
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="735" name="mbox1/priorbox/1_port" type="ShapeOf" version="opset3">
<data output_type="i64"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>3</dim>
<dim>320</dim>
<dim>544</dim>
</port>
</input>
<output>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="736" name="mbox1/priorbox/ss_begin2978639851" type="Const" version="opset1">
<data element_type="i64" offset="2891332" shape="1" size="8"/>
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="737" name="mbox1/priorbox/ss_end2978739902" type="Const" version="opset1">
<data element_type="i64" offset="2891340" shape="1" size="8"/>
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="738" name="mbox1/priorbox/ss_stride2978839968" type="Const" version="opset1">
<data element_type="i64" offset="2891348" shape="1" size="8"/>
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="739" name="mbox1/priorbox/ss_1_port" type="StridedSlice" version="opset1">
<data begin_mask="0" ellipsis_mask="0" end_mask="1" new_axis_mask="0" shrink_axis_mask="0"/>
<input>
<port id="0" precision="I64">
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
<port id="2" precision="I64">
<dim>1</dim>
</port>
<port id="3" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="4" precision="I64">
<dim>2</dim>
</port>
</output>
</layer>
<layer id="740" name="mbox1/priorbox/naked_not_unsqueezed" type="PriorBoxClustered" version="opset1">
<data clip="false" height="34.07, 47.11, 54.22, 65.78, 75.56, 80.89, 89.78, 99.26, 115.56, 163.26, 194.07, 197.33" offset="0.5" step="0" step_h="16" step_w="16" variance="0.1, 0.1, 0.2, 0.2" width="11.33, 17, 20.68, 23.52, 28.05, 37.4, 30.03, 35.7, 44.2, 55.25, 78.12, 135.15"/>
<input>
<port id="0" precision="I64">
<dim>2</dim>
</port>
<port id="1" precision="I64">
<dim>2</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>2</dim>
<dim>32640</dim>
</port>
</output>
</layer>
<layer id="741" name="mbox1/priorbox/unsqueeze/value2979640376" type="Const" version="opset1">
<data element_type="i64" offset="2891356" shape="1" size="8"/>
<output>
<port id="0" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>
<layer id="742" name="mbox1/priorbox" type="Unsqueeze" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>2</dim>
<dim>32640</dim>
</port>
<port id="1" precision="I64">
<dim>1</dim>
</port>
</input>
<output>
<port id="2" names="mbox1/priorbox" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>32640</dim>
</port>
</output>
</layer>
<layer id="743" name="detection_out" type="DetectionOutput" version="opset1">
<data background_label_id="0" clip_after_nms="false" clip_before_nms="false" code_type="caffe.PriorBoxParameter.CENTER_SIZE" confidence_threshold="0.0099999997764825821" decrease_label_id="false" input_height="1" input_width="1" keep_top_k="200" nms_threshold="0.44999998807907104" normalized="true" num_classes="2" objectness_score="0" share_location="true" top_k="400" variance_encoded_in_target="false"/>
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>32640</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>16320</dim>
</port>
<port id="2" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>32640</dim>
</port>
</input>
<output>
<port id="3" names="detection_out" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>200</dim>
<dim>7</dim>
</port>
</output>
</layer>
<layer id="744" name="detection_out/sink_port_0" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>200</dim>
<dim>7</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="735" to-port="0"/>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0"/>
<edge from-layer="1" from-port="0" to-layer="2" to-port="1"/>
<edge from-layer="2" from-port="2" to-layer="4" to-port="0"/>
<edge from-layer="3" from-port="0" to-layer="4" to-port="1"/>
<edge from-layer="4" from-port="2" to-layer="6" to-port="0"/>
<edge from-layer="5" from-port="0" to-layer="6" to-port="1"/>
<edge from-layer="6" from-port="2" to-layer="8" to-port="0"/>
<edge from-layer="7" from-port="0" to-layer="8" to-port="1"/>
<edge from-layer="8" from-port="2" to-layer="9" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="11" to-port="0"/>
<edge from-layer="9" from-port="1" to-layer="26" to-port="0"/>
<edge from-layer="10" from-port="0" to-layer="11" to-port="1"/>
<edge from-layer="11" from-port="2" to-layer="13" to-port="0"/>
<edge from-layer="12" from-port="0" to-layer="13" to-port="1"/>
<edge from-layer="13" from-port="2" to-layer="15" to-port="0"/>
<edge from-layer="14" from-port="0" to-layer="15" to-port="1"/>
<edge from-layer="15" from-port="2" to-layer="17" to-port="0"/>
<edge from-layer="16" from-port="0" to-layer="17" to-port="1"/>
<edge from-layer="17" from-port="2" to-layer="19" to-port="0"/>
<edge from-layer="18" from-port="0" to-layer="19" to-port="1"/>
<edge from-layer="19" from-port="2" to-layer="21" to-port="0"/>
<edge from-layer="20" from-port="0" to-layer="21" to-port="1"/>
<edge from-layer="21" from-port="2" to-layer="23" to-port="0"/>
<edge from-layer="22" from-port="0" to-layer="23" to-port="1"/>
<edge from-layer="23" from-port="2" to-layer="25" to-port="0"/>
<edge from-layer="24" from-port="0" to-layer="25" to-port="1"/>
<edge from-layer="25" from-port="2" to-layer="26" to-port="1"/>
<edge from-layer="26" from-port="2" to-layer="28" to-port="0"/>
<edge from-layer="27" from-port="0" to-layer="28" to-port="1"/>
<edge from-layer="28" from-port="2" to-layer="30" to-port="0"/>
<edge from-layer="28" from-port="2" to-layer="45" to-port="0"/>
<edge from-layer="29" from-port="0" to-layer="30" to-port="1"/>
<edge from-layer="30" from-port="2" to-layer="32" to-port="0"/>
<edge from-layer="31" from-port="0" to-layer="32" to-port="1"/>
<edge from-layer="32" from-port="2" to-layer="34" to-port="0"/>
<edge from-layer="33" from-port="0" to-layer="34" to-port="1"/>
<edge from-layer="34" from-port="2" to-layer="36" to-port="0"/>
<edge from-layer="35" from-port="0" to-layer="36" to-port="1"/>
<edge from-layer="36" from-port="2" to-layer="38" to-port="0"/>
<edge from-layer="37" from-port="0" to-layer="38" to-port="1"/>
<edge from-layer="38" from-port="2" to-layer="40" to-port="0"/>
<edge from-layer="39" from-port="0" to-layer="40" to-port="1"/>
<edge from-layer="40" from-port="2" to-layer="42" to-port="0"/>
<edge from-layer="41" from-port="0" to-layer="42" to-port="1"/>
<edge from-layer="42" from-port="2" to-layer="44" to-port="0"/>
<edge from-layer="43" from-port="0" to-layer="44" to-port="1"/>
<edge from-layer="44" from-port="2" to-layer="45" to-port="1"/>
<edge from-layer="45" from-port="2" to-layer="47" to-port="0"/>
<edge from-layer="46" from-port="0" to-layer="47" to-port="1"/>
<edge from-layer="47" from-port="2" to-layer="49" to-port="0"/>
<edge from-layer="47" from-port="2" to-layer="64" to-port="0"/>
<edge from-layer="48" from-port="0" to-layer="49" to-port="1"/>
<edge from-layer="49" from-port="2" to-layer="51" to-port="0"/>
<edge from-layer="50" from-port="0" to-layer="51" to-port="1"/>
<edge from-layer="51" from-port="2" to-layer="53" to-port="0"/>
<edge from-layer="52" from-port="0" to-layer="53" to-port="1"/>
<edge from-layer="53" from-port="2" to-layer="55" to-port="0"/>
<edge from-layer="54" from-port="0" to-layer="55" to-port="1"/>
<edge from-layer="55" from-port="2" to-layer="57" to-port="0"/>
<edge from-layer="56" from-port="0" to-layer="57" to-port="1"/>
<edge from-layer="57" from-port="2" to-layer="59" to-port="0"/>
<edge from-layer="58" from-port="0" to-layer="59" to-port="1"/>
<edge from-layer="59" from-port="2" to-layer="61" to-port="0"/>
<edge from-layer="60" from-port="0" to-layer="61" to-port="1"/>
<edge from-layer="61" from-port="2" to-layer="63" to-port="0"/>
<edge from-layer="62" from-port="0" to-layer="63" to-port="1"/>
<edge from-layer="63" from-port="2" to-layer="64" to-port="1"/>
<edge from-layer="64" from-port="2" to-layer="66" to-port="0"/>
<edge from-layer="65" from-port="0" to-layer="66" to-port="1"/>
<edge from-layer="66" from-port="2" to-layer="68" to-port="0"/>
<edge from-layer="66" from-port="2" to-layer="83" to-port="0"/>
<edge from-layer="67" from-port="0" to-layer="68" to-port="1"/>
<edge from-layer="68" from-port="2" to-layer="70" to-port="0"/>
<edge from-layer="69" from-port="0" to-layer="70" to-port="1"/>
<edge from-layer="70" from-port="2" to-layer="72" to-port="0"/>
<edge from-layer="71" from-port="0" to-layer="72" to-port="1"/>
<edge from-layer="72" from-port="2" to-layer="74" to-port="0"/>
<edge from-layer="73" from-port="0" to-layer="74" to-port="1"/>
<edge from-layer="74" from-port="2" to-layer="76" to-port="0"/>
<edge from-layer="75" from-port="0" to-layer="76" to-port="1"/>
<edge from-layer="76" from-port="2" to-layer="78" to-port="0"/>
<edge from-layer="77" from-port="0" to-layer="78" to-port="1"/>
<edge from-layer="78" from-port="2" to-layer="80" to-port="0"/>
<edge from-layer="79" from-port="0" to-layer="80" to-port="1"/>
<edge from-layer="80" from-port="2" to-layer="82" to-port="0"/>
<edge from-layer="81" from-port="0" to-layer="82" to-port="1"/>
<edge from-layer="82" from-port="2" to-layer="83" to-port="1"/>
<edge from-layer="83" from-port="2" to-layer="85" to-port="0"/>
<edge from-layer="84" from-port="0" to-layer="85" to-port="1"/>
<edge from-layer="85" from-port="2" to-layer="86" to-port="0"/>
<edge from-layer="85" from-port="2" to-layer="92" to-port="0"/>
<edge from-layer="86" from-port="1" to-layer="88" to-port="0"/>
<edge from-layer="87" from-port="0" to-layer="88" to-port="1"/>
<edge from-layer="88" from-port="2" to-layer="90" to-port="0"/>
<edge from-layer="89" from-port="0" to-layer="90" to-port="1"/>
<edge from-layer="90" from-port="2" to-layer="107" to-port="0"/>
<edge from-layer="91" from-port="0" to-layer="92" to-port="1"/>
<edge from-layer="92" from-port="2" to-layer="94" to-port="0"/>
<edge from-layer="93" from-port="0" to-layer="94" to-port="1"/>
<edge from-layer="94" from-port="2" to-layer="96" to-port="0"/>
<edge from-layer="95" from-port="0" to-layer="96" to-port="1"/>
<edge from-layer="96" from-port="2" to-layer="98" to-port="0"/>
<edge from-layer="97" from-port="0" to-layer="98" to-port="1"/>
<edge from-layer="98" from-port="2" to-layer="100" to-port="0"/>
<edge from-layer="99" from-port="0" to-layer="100" to-port="1"/>
<edge from-layer="100" from-port="2" to-layer="102" to-port="0"/>
<edge from-layer="101" from-port="0" to-layer="102" to-port="1"/>
<edge from-layer="102" from-port="2" to-layer="104" to-port="0"/>
<edge from-layer="103" from-port="0" to-layer="104" to-port="1"/>
<edge from-layer="104" from-port="2" to-layer="106" to-port="0"/>
<edge from-layer="105" from-port="0" to-layer="106" to-port="1"/>
<edge from-layer="106" from-port="2" to-layer="107" to-port="1"/>
<edge from-layer="107" from-port="2" to-layer="109" to-port="0"/>
<edge from-layer="108" from-port="0" to-layer="109" to-port="1"/>
<edge from-layer="109" from-port="2" to-layer="126" to-port="0"/>
<edge from-layer="109" from-port="2" to-layer="111" to-port="0"/>
<edge from-layer="110" from-port="0" to-layer="111" to-port="1"/>
<edge from-layer="111" from-port="2" to-layer="113" to-port="0"/>
<edge from-layer="112" from-port="0" to-layer="113" to-port="1"/>
<edge from-layer="113" from-port="2" to-layer="115" to-port="0"/>
<edge from-layer="114" from-port="0" to-layer="115" to-port="1"/>
<edge from-layer="115" from-port="2" to-layer="117" to-port="0"/>
<edge from-layer="116" from-port="0" to-layer="117" to-port="1"/>
<edge from-layer="117" from-port="2" to-layer="119" to-port="0"/>
<edge from-layer="118" from-port="0" to-layer="119" to-port="1"/>
<edge from-layer="119" from-port="2" to-layer="121" to-port="0"/>
<edge from-layer="120" from-port="0" to-layer="121" to-port="1"/>
<edge from-layer="121" from-port="2" to-layer="123" to-port="0"/>
<edge from-layer="122" from-port="0" to-layer="123" to-port="1"/>
<edge from-layer="123" from-port="2" to-layer="125" to-port="0"/>
<edge from-layer="124" from-port="0" to-layer="125" to-port="1"/>
<edge from-layer="125" from-port="2" to-layer="126" to-port="1"/>
<edge from-layer="126" from-port="2" to-layer="128" to-port="0"/>
<edge from-layer="127" from-port="0" to-layer="128" to-port="1"/>
<edge from-layer="128" from-port="2" to-layer="130" to-port="0"/>
<edge from-layer="128" from-port="2" to-layer="145" to-port="0"/>
<edge from-layer="129" from-port="0" to-layer="130" to-port="1"/>
<edge from-layer="130" from-port="2" to-layer="132" to-port="0"/>
<edge from-layer="131" from-port="0" to-layer="132" to-port="1"/>
<edge from-layer="132" from-port="2" to-layer="134" to-port="0"/>
<edge from-layer="133" from-port="0" to-layer="134" to-port="1"/>
<edge from-layer="134" from-port="2" to-layer="136" to-port="0"/>
<edge from-layer="135" from-port="0" to-layer="136" to-port="1"/>
<edge from-layer="136" from-port="2" to-layer="138" to-port="0"/>
<edge from-layer="137" from-port="0" to-layer="138" to-port="1"/>
<edge from-layer="138" from-port="2" to-layer="140" to-port="0"/>
<edge from-layer="139" from-port="0" to-layer="140" to-port="1"/>
<edge from-layer="140" from-port="2" to-layer="142" to-port="0"/>
<edge from-layer="141" from-port="0" to-layer="142" to-port="1"/>
<edge from-layer="142" from-port="2" to-layer="144" to-port="0"/>
<edge from-layer="143" from-port="0" to-layer="144" to-port="1"/>
<edge from-layer="144" from-port="2" to-layer="145" to-port="1"/>
<edge from-layer="145" from-port="2" to-layer="147" to-port="0"/>
<edge from-layer="146" from-port="0" to-layer="147" to-port="1"/>
<edge from-layer="147" from-port="2" to-layer="149" to-port="0"/>
<edge from-layer="147" from-port="2" to-layer="164" to-port="0"/>
<edge from-layer="148" from-port="0" to-layer="149" to-port="1"/>
<edge from-layer="149" from-port="2" to-layer="151" to-port="0"/>
<edge from-layer="150" from-port="0" to-layer="151" to-port="1"/>
<edge from-layer="151" from-port="2" to-layer="153" to-port="0"/>
<edge from-layer="152" from-port="0" to-layer="153" to-port="1"/>
<edge from-layer="153" from-port="2" to-layer="155" to-port="0"/>
<edge from-layer="154" from-port="0" to-layer="155" to-port="1"/>
<edge from-layer="155" from-port="2" to-layer="157" to-port="0"/>
<edge from-layer="156" from-port="0" to-layer="157" to-port="1"/>
<edge from-layer="157" from-port="2" to-layer="159" to-port="0"/>
<edge from-layer="158" from-port="0" to-layer="159" to-port="1"/>
<edge from-layer="159" from-port="2" to-layer="161" to-port="0"/>
<edge from-layer="160" from-port="0" to-layer="161" to-port="1"/>
<edge from-layer="161" from-port="2" to-layer="163" to-port="0"/>
<edge from-layer="162" from-port="0" to-layer="163" to-port="1"/>
<edge from-layer="163" from-port="2" to-layer="164" to-port="1"/>
<edge from-layer="164" from-port="2" to-layer="166" to-port="0"/>
<edge from-layer="165" from-port="0" to-layer="166" to-port="1"/>
<edge from-layer="166" from-port="2" to-layer="168" to-port="0"/>
<edge from-layer="166" from-port="2" to-layer="183" to-port="0"/>
<edge from-layer="167" from-port="0" to-layer="168" to-port="1"/>
<edge from-layer="168" from-port="2" to-layer="170" to-port="0"/>
<edge from-layer="169" from-port="0" to-layer="170" to-port="1"/>
<edge from-layer="170" from-port="2" to-layer="172" to-port="0"/>
<edge from-layer="171" from-port="0" to-layer="172" to-port="1"/>
<edge from-layer="172" from-port="2" to-layer="174" to-port="0"/>
<edge from-layer="173" from-port="0" to-layer="174" to-port="1"/>
<edge from-layer="174" from-port="2" to-layer="176" to-port="0"/>
<edge from-layer="175" from-port="0" to-layer="176" to-port="1"/>
<edge from-layer="176" from-port="2" to-layer="178" to-port="0"/>
<edge from-layer="177" from-port="0" to-layer="178" to-port="1"/>
<edge from-layer="178" from-port="2" to-layer="180" to-port="0"/>
<edge from-layer="179" from-port="0" to-layer="180" to-port="1"/>
<edge from-layer="180" from-port="2" to-layer="182" to-port="0"/>
<edge from-layer="181" from-port="0" to-layer="182" to-port="1"/>
<edge from-layer="182" from-port="2" to-layer="183" to-port="1"/>
<edge from-layer="183" from-port="2" to-layer="185" to-port="0"/>
<edge from-layer="184" from-port="0" to-layer="185" to-port="1"/>
<edge from-layer="185" from-port="2" to-layer="187" to-port="0"/>
<edge from-layer="185" from-port="2" to-layer="202" to-port="0"/>
<edge from-layer="186" from-port="0" to-layer="187" to-port="1"/>
<edge from-layer="187" from-port="2" to-layer="189" to-port="0"/>
<edge from-layer="188" from-port="0" to-layer="189" to-port="1"/>
<edge from-layer="189" from-port="2" to-layer="191" to-port="0"/>
<edge from-layer="190" from-port="0" to-layer="191" to-port="1"/>
<edge from-layer="191" from-port="2" to-layer="193" to-port="0"/>
<edge from-layer="192" from-port="0" to-layer="193" to-port="1"/>
<edge from-layer="193" from-port="2" to-layer="195" to-port="0"/>
<edge from-layer="194" from-port="0" to-layer="195" to-port="1"/>
<edge from-layer="195" from-port="2" to-layer="197" to-port="0"/>
<edge from-layer="196" from-port="0" to-layer="197" to-port="1"/>
<edge from-layer="197" from-port="2" to-layer="199" to-port="0"/>
<edge from-layer="198" from-port="0" to-layer="199" to-port="1"/>
<edge from-layer="199" from-port="2" to-layer="201" to-port="0"/>
<edge from-layer="200" from-port="0" to-layer="201" to-port="1"/>
<edge from-layer="201" from-port="2" to-layer="202" to-port="1"/>
<edge from-layer="202" from-port="2" to-layer="204" to-port="0"/>
<edge from-layer="203" from-port="0" to-layer="204" to-port="1"/>
<edge from-layer="204" from-port="2" to-layer="221" to-port="0"/>
<edge from-layer="204" from-port="2" to-layer="206" to-port="0"/>
<edge from-layer="205" from-port="0" to-layer="206" to-port="1"/>
<edge from-layer="206" from-port="2" to-layer="208" to-port="0"/>
<edge from-layer="207" from-port="0" to-layer="208" to-port="1"/>
<edge from-layer="208" from-port="2" to-layer="210" to-port="0"/>
<edge from-layer="209" from-port="0" to-layer="210" to-port="1"/>
<edge from-layer="210" from-port="2" to-layer="212" to-port="0"/>
<edge from-layer="211" from-port="0" to-layer="212" to-port="1"/>
<edge from-layer="212" from-port="2" to-layer="214" to-port="0"/>
<edge from-layer="213" from-port="0" to-layer="214" to-port="1"/>
<edge from-layer="214" from-port="2" to-layer="216" to-port="0"/>
<edge from-layer="215" from-port="0" to-layer="216" to-port="1"/>
<edge from-layer="216" from-port="2" to-layer="218" to-port="0"/>
<edge from-layer="217" from-port="0" to-layer="218" to-port="1"/>
<edge from-layer="218" from-port="2" to-layer="220" to-port="0"/>
<edge from-layer="219" from-port="0" to-layer="220" to-port="1"/>
<edge from-layer="220" from-port="2" to-layer="221" to-port="1"/>
<edge from-layer="221" from-port="2" to-layer="223" to-port="0"/>
<edge from-layer="222" from-port="0" to-layer="223" to-port="1"/>
<edge from-layer="223" from-port="2" to-layer="225" to-port="0"/>
<edge from-layer="223" from-port="2" to-layer="240" to-port="0"/>
<edge from-layer="224" from-port="0" to-layer="225" to-port="1"/>
<edge from-layer="225" from-port="2" to-layer="227" to-port="0"/>
<edge from-layer="226" from-port="0" to-layer="227" to-port="1"/>
<edge from-layer="227" from-port="2" to-layer="229" to-port="0"/>
<edge from-layer="228" from-port="0" to-layer="229" to-port="1"/>
<edge from-layer="229" from-port="2" to-layer="231" to-port="0"/>
<edge from-layer="230" from-port="0" to-layer="231" to-port="1"/>
<edge from-layer="231" from-port="2" to-layer="233" to-port="0"/>
<edge from-layer="232" from-port="0" to-layer="233" to-port="1"/>
<edge from-layer="233" from-port="2" to-layer="235" to-port="0"/>
<edge from-layer="234" from-port="0" to-layer="235" to-port="1"/>
<edge from-layer="235" from-port="2" to-layer="237" to-port="0"/>
<edge from-layer="236" from-port="0" to-layer="237" to-port="1"/>
<edge from-layer="237" from-port="2" to-layer="239" to-port="0"/>
<edge from-layer="238" from-port="0" to-layer="239" to-port="1"/>
<edge from-layer="239" from-port="2" to-layer="240" to-port="1"/>
<edge from-layer="240" from-port="2" to-layer="242" to-port="0"/>
<edge from-layer="241" from-port="0" to-layer="242" to-port="1"/>
<edge from-layer="242" from-port="2" to-layer="244" to-port="0"/>
<edge from-layer="242" from-port="2" to-layer="259" to-port="0"/>
<edge from-layer="243" from-port="0" to-layer="244" to-port="1"/>
<edge from-layer="244" from-port="2" to-layer="246" to-port="0"/>
<edge from-layer="245" from-port="0" to-layer="246" to-port="1"/>
<edge from-layer="246" from-port="2" to-layer="248" to-port="0"/>
<edge from-layer="247" from-port="0" to-layer="248" to-port="1"/>
<edge from-layer="248" from-port="2" to-layer="250" to-port="0"/>
<edge from-layer="249" from-port="0" to-layer="250" to-port="1"/>
<edge from-layer="250" from-port="2" to-layer="252" to-port="0"/>
<edge from-layer="251" from-port="0" to-layer="252" to-port="1"/>
<edge from-layer="252" from-port="2" to-layer="254" to-port="0"/>
<edge from-layer="253" from-port="0" to-layer="254" to-port="1"/>
<edge from-layer="254" from-port="2" to-layer="256" to-port="0"/>
<edge from-layer="255" from-port="0" to-layer="256" to-port="1"/>
<edge from-layer="256" from-port="2" to-layer="258" to-port="0"/>
<edge from-layer="257" from-port="0" to-layer="258" to-port="1"/>
<edge from-layer="258" from-port="2" to-layer="259" to-port="1"/>
<edge from-layer="259" from-port="2" to-layer="261" to-port="0"/>
<edge from-layer="260" from-port="0" to-layer="261" to-port="1"/>
<edge from-layer="261" from-port="2" to-layer="262" to-port="0"/>
<edge from-layer="261" from-port="2" to-layer="268" to-port="0"/>
<edge from-layer="262" from-port="1" to-layer="264" to-port="0"/>
<edge from-layer="263" from-port="0" to-layer="264" to-port="1"/>
<edge from-layer="264" from-port="2" to-layer="266" to-port="0"/>
<edge from-layer="265" from-port="0" to-layer="266" to-port="1"/>
<edge from-layer="266" from-port="2" to-layer="283" to-port="0"/>
<edge from-layer="267" from-port="0" to-layer="268" to-port="1"/>
<edge from-layer="268" from-port="2" to-layer="270" to-port="0"/>
<edge from-layer="269" from-port="0" to-layer="270" to-port="1"/>
<edge from-layer="270" from-port="2" to-layer="272" to-port="0"/>
<edge from-layer="271" from-port="0" to-layer="272" to-port="1"/>
<edge from-layer="272" from-port="2" to-layer="274" to-port="0"/>
<edge from-layer="273" from-port="0" to-layer="274" to-port="1"/>
<edge from-layer="274" from-port="2" to-layer="276" to-port="0"/>
<edge from-layer="275" from-port="0" to-layer="276" to-port="1"/>
<edge from-layer="276" from-port="2" to-layer="278" to-port="0"/>
<edge from-layer="277" from-port="0" to-layer="278" to-port="1"/>
<edge from-layer="278" from-port="2" to-layer="280" to-port="0"/>
<edge from-layer="279" from-port="0" to-layer="280" to-port="1"/>
<edge from-layer="280" from-port="2" to-layer="282" to-port="0"/>
<edge from-layer="281" from-port="0" to-layer="282" to-port="1"/>
<edge from-layer="282" from-port="2" to-layer="283" to-port="1"/>
<edge from-layer="283" from-port="2" to-layer="285" to-port="0"/>
<edge from-layer="284" from-port="0" to-layer="285" to-port="1"/>
<edge from-layer="285" from-port="2" to-layer="302" to-port="0"/>
<edge from-layer="285" from-port="2" to-layer="287" to-port="0"/>
<edge from-layer="286" from-port="0" to-layer="287" to-port="1"/>
<edge from-layer="287" from-port="2" to-layer="289" to-port="0"/>
<edge from-layer="288" from-port="0" to-layer="289" to-port="1"/>
<edge from-layer="289" from-port="2" to-layer="291" to-port="0"/>
<edge from-layer="290" from-port="0" to-layer="291" to-port="1"/>
<edge from-layer="291" from-port="2" to-layer="293" to-port="0"/>
<edge from-layer="292" from-port="0" to-layer="293" to-port="1"/>
<edge from-layer="293" from-port="2" to-layer="295" to-port="0"/>
<edge from-layer="294" from-port="0" to-layer="295" to-port="1"/>
<edge from-layer="295" from-port="2" to-layer="297" to-port="0"/>
<edge from-layer="296" from-port="0" to-layer="297" to-port="1"/>
<edge from-layer="297" from-port="2" to-layer="299" to-port="0"/>
<edge from-layer="298" from-port="0" to-layer="299" to-port="1"/>
<edge from-layer="299" from-port="2" to-layer="301" to-port="0"/>
<edge from-layer="300" from-port="0" to-layer="301" to-port="1"/>
<edge from-layer="301" from-port="2" to-layer="302" to-port="1"/>
<edge from-layer="302" from-port="2" to-layer="304" to-port="0"/>
<edge from-layer="303" from-port="0" to-layer="304" to-port="1"/>
<edge from-layer="304" from-port="2" to-layer="306" to-port="0"/>
<edge from-layer="304" from-port="2" to-layer="321" to-port="0"/>
<edge from-layer="305" from-port="0" to-layer="306" to-port="1"/>
<edge from-layer="306" from-port="2" to-layer="308" to-port="0"/>
<edge from-layer="307" from-port="0" to-layer="308" to-port="1"/>
<edge from-layer="308" from-port="2" to-layer="310" to-port="0"/>
<edge from-layer="309" from-port="0" to-layer="310" to-port="1"/>
<edge from-layer="310" from-port="2" to-layer="312" to-port="0"/>
<edge from-layer="311" from-port="0" to-layer="312" to-port="1"/>
<edge from-layer="312" from-port="2" to-layer="314" to-port="0"/>
<edge from-layer="313" from-port="0" to-layer="314" to-port="1"/>
<edge from-layer="314" from-port="2" to-layer="316" to-port="0"/>
<edge from-layer="315" from-port="0" to-layer="316" to-port="1"/>
<edge from-layer="316" from-port="2" to-layer="318" to-port="0"/>
<edge from-layer="317" from-port="0" to-layer="318" to-port="1"/>
<edge from-layer="318" from-port="2" to-layer="320" to-port="0"/>
<edge from-layer="319" from-port="0" to-layer="320" to-port="1"/>
<edge from-layer="320" from-port="2" to-layer="321" to-port="1"/>
<edge from-layer="321" from-port="2" to-layer="323" to-port="0"/>
<edge from-layer="322" from-port="0" to-layer="323" to-port="1"/>
<edge from-layer="323" from-port="2" to-layer="325" to-port="0"/>
<edge from-layer="323" from-port="2" to-layer="340" to-port="0"/>
<edge from-layer="324" from-port="0" to-layer="325" to-port="1"/>
<edge from-layer="325" from-port="2" to-layer="327" to-port="0"/>
<edge from-layer="326" from-port="0" to-layer="327" to-port="1"/>
<edge from-layer="327" from-port="2" to-layer="329" to-port="0"/>
<edge from-layer="328" from-port="0" to-layer="329" to-port="1"/>
<edge from-layer="329" from-port="2" to-layer="331" to-port="0"/>
<edge from-layer="330" from-port="0" to-layer="331" to-port="1"/>
<edge from-layer="331" from-port="2" to-layer="333" to-port="0"/>
<edge from-layer="332" from-port="0" to-layer="333" to-port="1"/>
<edge from-layer="333" from-port="2" to-layer="335" to-port="0"/>
<edge from-layer="334" from-port="0" to-layer="335" to-port="1"/>
<edge from-layer="335" from-port="2" to-layer="337" to-port="0"/>
<edge from-layer="336" from-port="0" to-layer="337" to-port="1"/>
<edge from-layer="337" from-port="2" to-layer="339" to-port="0"/>
<edge from-layer="338" from-port="0" to-layer="339" to-port="1"/>
<edge from-layer="339" from-port="2" to-layer="340" to-port="1"/>
<edge from-layer="340" from-port="2" to-layer="342" to-port="0"/>
<edge from-layer="341" from-port="0" to-layer="342" to-port="1"/>
<edge from-layer="342" from-port="2" to-layer="359" to-port="0"/>
<edge from-layer="342" from-port="2" to-layer="344" to-port="0"/>
<edge from-layer="343" from-port="0" to-layer="344" to-port="1"/>
<edge from-layer="344" from-port="2" to-layer="346" to-port="0"/>
<edge from-layer="345" from-port="0" to-layer="346" to-port="1"/>
<edge from-layer="346" from-port="2" to-layer="348" to-port="0"/>
<edge from-layer="347" from-port="0" to-layer="348" to-port="1"/>
<edge from-layer="348" from-port="2" to-layer="350" to-port="0"/>
<edge from-layer="349" from-port="0" to-layer="350" to-port="1"/>
<edge from-layer="350" from-port="2" to-layer="352" to-port="0"/>
<edge from-layer="351" from-port="0" to-layer="352" to-port="1"/>
<edge from-layer="352" from-port="2" to-layer="354" to-port="0"/>
<edge from-layer="353" from-port="0" to-layer="354" to-port="1"/>
<edge from-layer="354" from-port="2" to-layer="356" to-port="0"/>
<edge from-layer="355" from-port="0" to-layer="356" to-port="1"/>
<edge from-layer="356" from-port="2" to-layer="358" to-port="0"/>
<edge from-layer="357" from-port="0" to-layer="358" to-port="1"/>
<edge from-layer="358" from-port="2" to-layer="359" to-port="1"/>
<edge from-layer="359" from-port="2" to-layer="361" to-port="0"/>
<edge from-layer="360" from-port="0" to-layer="361" to-port="1"/>
<edge from-layer="361" from-port="2" to-layer="378" to-port="0"/>
<edge from-layer="361" from-port="2" to-layer="363" to-port="0"/>
<edge from-layer="362" from-port="0" to-layer="363" to-port="1"/>
<edge from-layer="363" from-port="2" to-layer="365" to-port="0"/>
<edge from-layer="364" from-port="0" to-layer="365" to-port="1"/>
<edge from-layer="365" from-port="2" to-layer="367" to-port="0"/>
<edge from-layer="366" from-port="0" to-layer="367" to-port="1"/>
<edge from-layer="367" from-port="2" to-layer="369" to-port="0"/>
<edge from-layer="368" from-port="0" to-layer="369" to-port="1"/>
<edge from-layer="369" from-port="2" to-layer="371" to-port="0"/>
<edge from-layer="370" from-port="0" to-layer="371" to-port="1"/>
<edge from-layer="371" from-port="2" to-layer="373" to-port="0"/>
<edge from-layer="372" from-port="0" to-layer="373" to-port="1"/>
<edge from-layer="373" from-port="2" to-layer="375" to-port="0"/>
<edge from-layer="374" from-port="0" to-layer="375" to-port="1"/>
<edge from-layer="375" from-port="2" to-layer="377" to-port="0"/>
<edge from-layer="376" from-port="0" to-layer="377" to-port="1"/>
<edge from-layer="377" from-port="2" to-layer="378" to-port="1"/>
<edge from-layer="378" from-port="2" to-layer="380" to-port="0"/>
<edge from-layer="379" from-port="0" to-layer="380" to-port="1"/>
<edge from-layer="380" from-port="2" to-layer="397" to-port="0"/>
<edge from-layer="380" from-port="2" to-layer="382" to-port="0"/>
<edge from-layer="381" from-port="0" to-layer="382" to-port="1"/>
<edge from-layer="382" from-port="2" to-layer="384" to-port="0"/>
<edge from-layer="383" from-port="0" to-layer="384" to-port="1"/>
<edge from-layer="384" from-port="2" to-layer="386" to-port="0"/>
<edge from-layer="385" from-port="0" to-layer="386" to-port="1"/>
<edge from-layer="386" from-port="2" to-layer="388" to-port="0"/>
<edge from-layer="387" from-port="0" to-layer="388" to-port="1"/>
<edge from-layer="388" from-port="2" to-layer="390" to-port="0"/>
<edge from-layer="389" from-port="0" to-layer="390" to-port="1"/>
<edge from-layer="390" from-port="2" to-layer="392" to-port="0"/>
<edge from-layer="391" from-port="0" to-layer="392" to-port="1"/>
<edge from-layer="392" from-port="2" to-layer="394" to-port="0"/>
<edge from-layer="393" from-port="0" to-layer="394" to-port="1"/>
<edge from-layer="394" from-port="2" to-layer="396" to-port="0"/>
<edge from-layer="395" from-port="0" to-layer="396" to-port="1"/>
<edge from-layer="396" from-port="2" to-layer="397" to-port="1"/>
<edge from-layer="397" from-port="2" to-layer="399" to-port="0"/>
<edge from-layer="398" from-port="0" to-layer="399" to-port="1"/>
<edge from-layer="399" from-port="2" to-layer="401" to-port="0"/>
<edge from-layer="399" from-port="2" to-layer="416" to-port="0"/>
<edge from-layer="400" from-port="0" to-layer="401" to-port="1"/>
<edge from-layer="401" from-port="2" to-layer="403" to-port="0"/>
<edge from-layer="402" from-port="0" to-layer="403" to-port="1"/>
<edge from-layer="403" from-port="2" to-layer="405" to-port="0"/>
<edge from-layer="404" from-port="0" to-layer="405" to-port="1"/>
<edge from-layer="405" from-port="2" to-layer="407" to-port="0"/>
<edge from-layer="406" from-port="0" to-layer="407" to-port="1"/>
<edge from-layer="407" from-port="2" to-layer="409" to-port="0"/>
<edge from-layer="408" from-port="0" to-layer="409" to-port="1"/>
<edge from-layer="409" from-port="2" to-layer="411" to-port="0"/>
<edge from-layer="410" from-port="0" to-layer="411" to-port="1"/>
<edge from-layer="411" from-port="2" to-layer="413" to-port="0"/>
<edge from-layer="412" from-port="0" to-layer="413" to-port="1"/>
<edge from-layer="413" from-port="2" to-layer="415" to-port="0"/>
<edge from-layer="414" from-port="0" to-layer="415" to-port="1"/>
<edge from-layer="415" from-port="2" to-layer="416" to-port="1"/>
<edge from-layer="416" from-port="2" to-layer="418" to-port="0"/>
<edge from-layer="417" from-port="0" to-layer="418" to-port="1"/>
<edge from-layer="418" from-port="2" to-layer="420" to-port="0"/>
<edge from-layer="418" from-port="2" to-layer="435" to-port="0"/>
<edge from-layer="419" from-port="0" to-layer="420" to-port="1"/>
<edge from-layer="420" from-port="2" to-layer="422" to-port="0"/>
<edge from-layer="421" from-port="0" to-layer="422" to-port="1"/>
<edge from-layer="422" from-port="2" to-layer="424" to-port="0"/>
<edge from-layer="423" from-port="0" to-layer="424" to-port="1"/>
<edge from-layer="424" from-port="2" to-layer="426" to-port="0"/>
<edge from-layer="425" from-port="0" to-layer="426" to-port="1"/>
<edge from-layer="426" from-port="2" to-layer="428" to-port="0"/>
<edge from-layer="427" from-port="0" to-layer="428" to-port="1"/>
<edge from-layer="428" from-port="2" to-layer="430" to-port="0"/>
<edge from-layer="429" from-port="0" to-layer="430" to-port="1"/>
<edge from-layer="430" from-port="2" to-layer="432" to-port="0"/>
<edge from-layer="431" from-port="0" to-layer="432" to-port="1"/>
<edge from-layer="432" from-port="2" to-layer="434" to-port="0"/>
<edge from-layer="433" from-port="0" to-layer="434" to-port="1"/>
<edge from-layer="434" from-port="2" to-layer="435" to-port="1"/>
<edge from-layer="435" from-port="2" to-layer="437" to-port="0"/>
<edge from-layer="436" from-port="0" to-layer="437" to-port="1"/>
<edge from-layer="437" from-port="2" to-layer="454" to-port="0"/>
<edge from-layer="437" from-port="2" to-layer="439" to-port="0"/>
<edge from-layer="438" from-port="0" to-layer="439" to-port="1"/>
<edge from-layer="439" from-port="2" to-layer="441" to-port="0"/>
<edge from-layer="440" from-port="0" to-layer="441" to-port="1"/>
<edge from-layer="441" from-port="2" to-layer="443" to-port="0"/>
<edge from-layer="442" from-port="0" to-layer="443" to-port="1"/>
<edge from-layer="443" from-port="2" to-layer="445" to-port="0"/>
<edge from-layer="444" from-port="0" to-layer="445" to-port="1"/>
<edge from-layer="445" from-port="2" to-layer="447" to-port="0"/>
<edge from-layer="446" from-port="0" to-layer="447" to-port="1"/>
<edge from-layer="447" from-port="2" to-layer="449" to-port="0"/>
<edge from-layer="448" from-port="0" to-layer="449" to-port="1"/>
<edge from-layer="449" from-port="2" to-layer="451" to-port="0"/>
<edge from-layer="450" from-port="0" to-layer="451" to-port="1"/>
<edge from-layer="451" from-port="2" to-layer="453" to-port="0"/>
<edge from-layer="452" from-port="0" to-layer="453" to-port="1"/>
<edge from-layer="453" from-port="2" to-layer="454" to-port="1"/>
<edge from-layer="454" from-port="2" to-layer="456" to-port="0"/>
<edge from-layer="455" from-port="0" to-layer="456" to-port="1"/>
<edge from-layer="456" from-port="2" to-layer="473" to-port="0"/>
<edge from-layer="456" from-port="2" to-layer="458" to-port="0"/>
<edge from-layer="457" from-port="0" to-layer="458" to-port="1"/>
<edge from-layer="458" from-port="2" to-layer="460" to-port="0"/>
<edge from-layer="459" from-port="0" to-layer="460" to-port="1"/>
<edge from-layer="460" from-port="2" to-layer="462" to-port="0"/>
<edge from-layer="461" from-port="0" to-layer="462" to-port="1"/>
<edge from-layer="462" from-port="2" to-layer="464" to-port="0"/>
<edge from-layer="463" from-port="0" to-layer="464" to-port="1"/>
<edge from-layer="464" from-port="2" to-layer="466" to-port="0"/>
<edge from-layer="465" from-port="0" to-layer="466" to-port="1"/>
<edge from-layer="466" from-port="2" to-layer="468" to-port="0"/>
<edge from-layer="467" from-port="0" to-layer="468" to-port="1"/>
<edge from-layer="468" from-port="2" to-layer="470" to-port="0"/>
<edge from-layer="469" from-port="0" to-layer="470" to-port="1"/>
<edge from-layer="470" from-port="2" to-layer="472" to-port="0"/>
<edge from-layer="471" from-port="0" to-layer="472" to-port="1"/>
<edge from-layer="472" from-port="2" to-layer="473" to-port="1"/>
<edge from-layer="473" from-port="2" to-layer="475" to-port="0"/>
<edge from-layer="474" from-port="0" to-layer="475" to-port="1"/>
<edge from-layer="475" from-port="2" to-layer="476" to-port="0"/>
<edge from-layer="475" from-port="2" to-layer="482" to-port="0"/>
<edge from-layer="476" from-port="1" to-layer="478" to-port="0"/>
<edge from-layer="477" from-port="0" to-layer="478" to-port="1"/>
<edge from-layer="478" from-port="2" to-layer="480" to-port="0"/>
<edge from-layer="479" from-port="0" to-layer="480" to-port="1"/>
<edge from-layer="480" from-port="2" to-layer="497" to-port="0"/>
<edge from-layer="481" from-port="0" to-layer="482" to-port="1"/>
<edge from-layer="482" from-port="2" to-layer="484" to-port="0"/>
<edge from-layer="483" from-port="0" to-layer="484" to-port="1"/>
<edge from-layer="484" from-port="2" to-layer="486" to-port="0"/>
<edge from-layer="485" from-port="0" to-layer="486" to-port="1"/>
<edge from-layer="486" from-port="2" to-layer="488" to-port="0"/>
<edge from-layer="487" from-port="0" to-layer="488" to-port="1"/>
<edge from-layer="488" from-port="2" to-layer="490" to-port="0"/>
<edge from-layer="489" from-port="0" to-layer="490" to-port="1"/>
<edge from-layer="490" from-port="2" to-layer="492" to-port="0"/>
<edge from-layer="491" from-port="0" to-layer="492" to-port="1"/>
<edge from-layer="492" from-port="2" to-layer="494" to-port="0"/>
<edge from-layer="493" from-port="0" to-layer="494" to-port="1"/>
<edge from-layer="494" from-port="2" to-layer="496" to-port="0"/>
<edge from-layer="495" from-port="0" to-layer="496" to-port="1"/>
<edge from-layer="496" from-port="2" to-layer="497" to-port="1"/>
<edge from-layer="497" from-port="2" to-layer="499" to-port="0"/>
<edge from-layer="498" from-port="0" to-layer="499" to-port="1"/>
<edge from-layer="499" from-port="2" to-layer="501" to-port="0"/>
<edge from-layer="499" from-port="2" to-layer="516" to-port="0"/>
<edge from-layer="500" from-port="0" to-layer="501" to-port="1"/>
<edge from-layer="501" from-port="2" to-layer="503" to-port="0"/>
<edge from-layer="502" from-port="0" to-layer="503" to-port="1"/>
<edge from-layer="503" from-port="2" to-layer="505" to-port="0"/>
<edge from-layer="504" from-port="0" to-layer="505" to-port="1"/>
<edge from-layer="505" from-port="2" to-layer="507" to-port="0"/>
<edge from-layer="506" from-port="0" to-layer="507" to-port="1"/>
<edge from-layer="507" from-port="2" to-layer="509" to-port="0"/>
<edge from-layer="508" from-port="0" to-layer="509" to-port="1"/>
<edge from-layer="509" from-port="2" to-layer="511" to-port="0"/>
<edge from-layer="510" from-port="0" to-layer="511" to-port="1"/>
<edge from-layer="511" from-port="2" to-layer="513" to-port="0"/>
<edge from-layer="512" from-port="0" to-layer="513" to-port="1"/>
<edge from-layer="513" from-port="2" to-layer="515" to-port="0"/>
<edge from-layer="514" from-port="0" to-layer="515" to-port="1"/>
<edge from-layer="515" from-port="2" to-layer="516" to-port="1"/>
<edge from-layer="516" from-port="2" to-layer="518" to-port="0"/>
<edge from-layer="517" from-port="0" to-layer="518" to-port="1"/>
<edge from-layer="518" from-port="2" to-layer="520" to-port="0"/>
<edge from-layer="518" from-port="2" to-layer="535" to-port="0"/>
<edge from-layer="519" from-port="0" to-layer="520" to-port="1"/>
<edge from-layer="520" from-port="2" to-layer="522" to-port="0"/>
<edge from-layer="521" from-port="0" to-layer="522" to-port="1"/>
<edge from-layer="522" from-port="2" to-layer="524" to-port="0"/>
<edge from-layer="523" from-port="0" to-layer="524" to-port="1"/>
<edge from-layer="524" from-port="2" to-layer="526" to-port="0"/>
<edge from-layer="525" from-port="0" to-layer="526" to-port="1"/>
<edge from-layer="526" from-port="2" to-layer="528" to-port="0"/>
<edge from-layer="527" from-port="0" to-layer="528" to-port="1"/>
<edge from-layer="528" from-port="2" to-layer="530" to-port="0"/>
<edge from-layer="529" from-port="0" to-layer="530" to-port="1"/>
<edge from-layer="530" from-port="2" to-layer="532" to-port="0"/>
<edge from-layer="531" from-port="0" to-layer="532" to-port="1"/>
<edge from-layer="532" from-port="2" to-layer="534" to-port="0"/>
<edge from-layer="533" from-port="0" to-layer="534" to-port="1"/>
<edge from-layer="534" from-port="2" to-layer="535" to-port="1"/>
<edge from-layer="535" from-port="2" to-layer="537" to-port="0"/>
<edge from-layer="536" from-port="0" to-layer="537" to-port="1"/>
<edge from-layer="537" from-port="2" to-layer="539" to-port="0"/>
<edge from-layer="537" from-port="2" to-layer="554" to-port="0"/>
<edge from-layer="538" from-port="0" to-layer="539" to-port="1"/>
<edge from-layer="539" from-port="2" to-layer="541" to-port="0"/>
<edge from-layer="540" from-port="0" to-layer="541" to-port="1"/>
<edge from-layer="541" from-port="2" to-layer="543" to-port="0"/>
<edge from-layer="542" from-port="0" to-layer="543" to-port="1"/>
<edge from-layer="543" from-port="2" to-layer="545" to-port="0"/>
<edge from-layer="544" from-port="0" to-layer="545" to-port="1"/>
<edge from-layer="545" from-port="2" to-layer="547" to-port="0"/>
<edge from-layer="546" from-port="0" to-layer="547" to-port="1"/>
<edge from-layer="547" from-port="2" to-layer="549" to-port="0"/>
<edge from-layer="548" from-port="0" to-layer="549" to-port="1"/>
<edge from-layer="549" from-port="2" to-layer="551" to-port="0"/>
<edge from-layer="550" from-port="0" to-layer="551" to-port="1"/>
<edge from-layer="551" from-port="2" to-layer="553" to-port="0"/>
<edge from-layer="552" from-port="0" to-layer="553" to-port="1"/>
<edge from-layer="553" from-port="2" to-layer="554" to-port="1"/>
<edge from-layer="554" from-port="2" to-layer="556" to-port="0"/>
<edge from-layer="555" from-port="0" to-layer="556" to-port="1"/>
<edge from-layer="556" from-port="2" to-layer="558" to-port="0"/>
<edge from-layer="556" from-port="2" to-layer="573" to-port="0"/>
<edge from-layer="557" from-port="0" to-layer="558" to-port="1"/>
<edge from-layer="558" from-port="2" to-layer="560" to-port="0"/>
<edge from-layer="559" from-port="0" to-layer="560" to-port="1"/>
<edge from-layer="560" from-port="2" to-layer="562" to-port="0"/>
<edge from-layer="561" from-port="0" to-layer="562" to-port="1"/>
<edge from-layer="562" from-port="2" to-layer="564" to-port="0"/>
<edge from-layer="563" from-port="0" to-layer="564" to-port="1"/>
<edge from-layer="564" from-port="2" to-layer="566" to-port="0"/>
<edge from-layer="565" from-port="0" to-layer="566" to-port="1"/>
<edge from-layer="566" from-port="2" to-layer="568" to-port="0"/>
<edge from-layer="567" from-port="0" to-layer="568" to-port="1"/>
<edge from-layer="568" from-port="2" to-layer="570" to-port="0"/>
<edge from-layer="569" from-port="0" to-layer="570" to-port="1"/>
<edge from-layer="570" from-port="2" to-layer="572" to-port="0"/>
<edge from-layer="571" from-port="0" to-layer="572" to-port="1"/>
<edge from-layer="572" from-port="2" to-layer="573" to-port="1"/>
<edge from-layer="573" from-port="2" to-layer="575" to-port="0"/>
<edge from-layer="574" from-port="0" to-layer="575" to-port="1"/>
<edge from-layer="575" from-port="2" to-layer="592" to-port="0"/>
<edge from-layer="575" from-port="2" to-layer="577" to-port="0"/>
<edge from-layer="576" from-port="0" to-layer="577" to-port="1"/>
<edge from-layer="577" from-port="2" to-layer="579" to-port="0"/>
<edge from-layer="578" from-port="0" to-layer="579" to-port="1"/>
<edge from-layer="579" from-port="2" to-layer="581" to-port="0"/>
<edge from-layer="580" from-port="0" to-layer="581" to-port="1"/>
<edge from-layer="581" from-port="2" to-layer="583" to-port="0"/>
<edge from-layer="582" from-port="0" to-layer="583" to-port="1"/>
<edge from-layer="583" from-port="2" to-layer="585" to-port="0"/>
<edge from-layer="584" from-port="0" to-layer="585" to-port="1"/>
<edge from-layer="585" from-port="2" to-layer="587" to-port="0"/>
<edge from-layer="586" from-port="0" to-layer="587" to-port="1"/>
<edge from-layer="587" from-port="2" to-layer="589" to-port="0"/>
<edge from-layer="588" from-port="0" to-layer="589" to-port="1"/>
<edge from-layer="589" from-port="2" to-layer="591" to-port="0"/>
<edge from-layer="590" from-port="0" to-layer="591" to-port="1"/>
<edge from-layer="591" from-port="2" to-layer="592" to-port="1"/>
<edge from-layer="592" from-port="2" to-layer="594" to-port="0"/>
<edge from-layer="593" from-port="0" to-layer="594" to-port="1"/>
<edge from-layer="594" from-port="2" to-layer="611" to-port="0"/>
<edge from-layer="594" from-port="2" to-layer="596" to-port="0"/>
<edge from-layer="595" from-port="0" to-layer="596" to-port="1"/>
<edge from-layer="596" from-port="2" to-layer="598" to-port="0"/>
<edge from-layer="597" from-port="0" to-layer="598" to-port="1"/>
<edge from-layer="598" from-port="2" to-layer="600" to-port="0"/>
<edge from-layer="599" from-port="0" to-layer="600" to-port="1"/>
<edge from-layer="600" from-port="2" to-layer="602" to-port="0"/>
<edge from-layer="601" from-port="0" to-layer="602" to-port="1"/>
<edge from-layer="602" from-port="2" to-layer="604" to-port="0"/>
<edge from-layer="603" from-port="0" to-layer="604" to-port="1"/>
<edge from-layer="604" from-port="2" to-layer="606" to-port="0"/>
<edge from-layer="605" from-port="0" to-layer="606" to-port="1"/>
<edge from-layer="606" from-port="2" to-layer="608" to-port="0"/>
<edge from-layer="607" from-port="0" to-layer="608" to-port="1"/>
<edge from-layer="608" from-port="2" to-layer="610" to-port="0"/>
<edge from-layer="609" from-port="0" to-layer="610" to-port="1"/>
<edge from-layer="610" from-port="2" to-layer="611" to-port="1"/>
<edge from-layer="611" from-port="2" to-layer="613" to-port="0"/>
<edge from-layer="612" from-port="0" to-layer="613" to-port="1"/>
<edge from-layer="613" from-port="2" to-layer="615" to-port="0"/>
<edge from-layer="613" from-port="2" to-layer="630" to-port="0"/>
<edge from-layer="614" from-port="0" to-layer="615" to-port="1"/>
<edge from-layer="615" from-port="2" to-layer="617" to-port="0"/>
<edge from-layer="616" from-port="0" to-layer="617" to-port="1"/>
<edge from-layer="617" from-port="2" to-layer="619" to-port="0"/>
<edge from-layer="618" from-port="0" to-layer="619" to-port="1"/>
<edge from-layer="619" from-port="2" to-layer="621" to-port="0"/>
<edge from-layer="620" from-port="0" to-layer="621" to-port="1"/>
<edge from-layer="621" from-port="2" to-layer="623" to-port="0"/>
<edge from-layer="622" from-port="0" to-layer="623" to-port="1"/>
<edge from-layer="623" from-port="2" to-layer="625" to-port="0"/>
<edge from-layer="624" from-port="0" to-layer="625" to-port="1"/>
<edge from-layer="625" from-port="2" to-layer="627" to-port="0"/>
<edge from-layer="626" from-port="0" to-layer="627" to-port="1"/>
<edge from-layer="627" from-port="2" to-layer="629" to-port="0"/>
<edge from-layer="628" from-port="0" to-layer="629" to-port="1"/>
<edge from-layer="629" from-port="2" to-layer="630" to-port="1"/>
<edge from-layer="630" from-port="2" to-layer="632" to-port="0"/>
<edge from-layer="631" from-port="0" to-layer="632" to-port="1"/>
<edge from-layer="632" from-port="2" to-layer="649" to-port="0"/>
<edge from-layer="632" from-port="2" to-layer="634" to-port="0"/>
<edge from-layer="633" from-port="0" to-layer="634" to-port="1"/>
<edge from-layer="634" from-port="2" to-layer="636" to-port="0"/>
<edge from-layer="635" from-port="0" to-layer="636" to-port="1"/>
<edge from-layer="636" from-port="2" to-layer="638" to-port="0"/>
<edge from-layer="637" from-port="0" to-layer="638" to-port="1"/>
<edge from-layer="638" from-port="2" to-layer="640" to-port="0"/>
<edge from-layer="639" from-port="0" to-layer="640" to-port="1"/>
<edge from-layer="640" from-port="2" to-layer="642" to-port="0"/>
<edge from-layer="641" from-port="0" to-layer="642" to-port="1"/>
<edge from-layer="642" from-port="2" to-layer="644" to-port="0"/>
<edge from-layer="643" from-port="0" to-layer="644" to-port="1"/>
<edge from-layer="644" from-port="2" to-layer="646" to-port="0"/>
<edge from-layer="645" from-port="0" to-layer="646" to-port="1"/>
<edge from-layer="646" from-port="2" to-layer="648" to-port="0"/>
<edge from-layer="647" from-port="0" to-layer="648" to-port="1"/>
<edge from-layer="648" from-port="2" to-layer="649" to-port="1"/>
<edge from-layer="649" from-port="2" to-layer="651" to-port="0"/>
<edge from-layer="650" from-port="0" to-layer="651" to-port="1"/>
<edge from-layer="651" from-port="2" to-layer="653" to-port="0"/>
<edge from-layer="651" from-port="2" to-layer="668" to-port="0"/>
<edge from-layer="652" from-port="0" to-layer="653" to-port="1"/>
<edge from-layer="653" from-port="2" to-layer="655" to-port="0"/>
<edge from-layer="654" from-port="0" to-layer="655" to-port="1"/>
<edge from-layer="655" from-port="2" to-layer="657" to-port="0"/>
<edge from-layer="656" from-port="0" to-layer="657" to-port="1"/>
<edge from-layer="657" from-port="2" to-layer="659" to-port="0"/>
<edge from-layer="658" from-port="0" to-layer="659" to-port="1"/>
<edge from-layer="659" from-port="2" to-layer="661" to-port="0"/>
<edge from-layer="660" from-port="0" to-layer="661" to-port="1"/>
<edge from-layer="661" from-port="2" to-layer="663" to-port="0"/>
<edge from-layer="662" from-port="0" to-layer="663" to-port="1"/>
<edge from-layer="663" from-port="2" to-layer="665" to-port="0"/>
<edge from-layer="664" from-port="0" to-layer="665" to-port="1"/>
<edge from-layer="665" from-port="2" to-layer="667" to-port="0"/>
<edge from-layer="666" from-port="0" to-layer="667" to-port="1"/>
<edge from-layer="667" from-port="2" to-layer="668" to-port="1"/>
<edge from-layer="668" from-port="2" to-layer="670" to-port="0"/>
<edge from-layer="669" from-port="0" to-layer="670" to-port="1"/>
<edge from-layer="670" from-port="2" to-layer="672" to-port="0"/>
<edge from-layer="670" from-port="2" to-layer="687" to-port="0"/>
<edge from-layer="671" from-port="0" to-layer="672" to-port="1"/>
<edge from-layer="672" from-port="2" to-layer="674" to-port="0"/>
<edge from-layer="673" from-port="0" to-layer="674" to-port="1"/>
<edge from-layer="674" from-port="2" to-layer="676" to-port="0"/>
<edge from-layer="675" from-port="0" to-layer="676" to-port="1"/>
<edge from-layer="676" from-port="2" to-layer="678" to-port="0"/>
<edge from-layer="677" from-port="0" to-layer="678" to-port="1"/>
<edge from-layer="678" from-port="2" to-layer="680" to-port="0"/>
<edge from-layer="679" from-port="0" to-layer="680" to-port="1"/>
<edge from-layer="680" from-port="2" to-layer="682" to-port="0"/>
<edge from-layer="681" from-port="0" to-layer="682" to-port="1"/>
<edge from-layer="682" from-port="2" to-layer="684" to-port="0"/>
<edge from-layer="683" from-port="0" to-layer="684" to-port="1"/>
<edge from-layer="684" from-port="2" to-layer="686" to-port="0"/>
<edge from-layer="685" from-port="0" to-layer="686" to-port="1"/>
<edge from-layer="686" from-port="2" to-layer="687" to-port="1"/>
<edge from-layer="687" from-port="2" to-layer="689" to-port="0"/>
<edge from-layer="688" from-port="0" to-layer="689" to-port="1"/>
<edge from-layer="689" from-port="2" to-layer="706" to-port="0"/>
<edge from-layer="689" from-port="2" to-layer="691" to-port="0"/>
<edge from-layer="690" from-port="0" to-layer="691" to-port="1"/>
<edge from-layer="691" from-port="2" to-layer="693" to-port="0"/>
<edge from-layer="692" from-port="0" to-layer="693" to-port="1"/>
<edge from-layer="693" from-port="2" to-layer="695" to-port="0"/>
<edge from-layer="694" from-port="0" to-layer="695" to-port="1"/>
<edge from-layer="695" from-port="2" to-layer="697" to-port="0"/>
<edge from-layer="696" from-port="0" to-layer="697" to-port="1"/>
<edge from-layer="697" from-port="2" to-layer="699" to-port="0"/>
<edge from-layer="698" from-port="0" to-layer="699" to-port="1"/>
<edge from-layer="699" from-port="2" to-layer="701" to-port="0"/>
<edge from-layer="700" from-port="0" to-layer="701" to-port="1"/>
<edge from-layer="701" from-port="2" to-layer="703" to-port="0"/>
<edge from-layer="702" from-port="0" to-layer="703" to-port="1"/>
<edge from-layer="703" from-port="2" to-layer="705" to-port="0"/>
<edge from-layer="704" from-port="0" to-layer="705" to-port="1"/>
<edge from-layer="705" from-port="2" to-layer="706" to-port="1"/>
<edge from-layer="706" from-port="2" to-layer="708" to-port="0"/>
<edge from-layer="707" from-port="0" to-layer="708" to-port="1"/>
<edge from-layer="708" from-port="2" to-layer="730" to-port="0"/>
<edge from-layer="708" from-port="2" to-layer="718" to-port="0"/>
<edge from-layer="708" from-port="2" to-layer="710" to-port="0"/>
<edge from-layer="709" from-port="0" to-layer="710" to-port="1"/>
<edge from-layer="710" from-port="2" to-layer="712" to-port="0"/>
<edge from-layer="711" from-port="0" to-layer="712" to-port="1"/>
<edge from-layer="712" from-port="2" to-layer="714" to-port="0"/>
<edge from-layer="713" from-port="0" to-layer="714" to-port="1"/>
<edge from-layer="714" from-port="2" to-layer="716" to-port="0"/>
<edge from-layer="715" from-port="0" to-layer="716" to-port="1"/>
<edge from-layer="716" from-port="2" to-layer="743" to-port="0"/>
<edge from-layer="717" from-port="0" to-layer="718" to-port="1"/>
<edge from-layer="718" from-port="2" to-layer="720" to-port="0"/>
<edge from-layer="719" from-port="0" to-layer="720" to-port="1"/>
<edge from-layer="720" from-port="2" to-layer="722" to-port="0"/>
<edge from-layer="721" from-port="0" to-layer="722" to-port="1"/>
<edge from-layer="722" from-port="2" to-layer="724" to-port="0"/>
<edge from-layer="723" from-port="0" to-layer="724" to-port="1"/>
<edge from-layer="724" from-port="2" to-layer="726" to-port="0"/>
<edge from-layer="725" from-port="0" to-layer="726" to-port="1"/>
<edge from-layer="726" from-port="2" to-layer="727" to-port="0"/>
<edge from-layer="727" from-port="1" to-layer="729" to-port="0"/>
<edge from-layer="728" from-port="0" to-layer="729" to-port="1"/>
<edge from-layer="729" from-port="2" to-layer="743" to-port="1"/>
<edge from-layer="730" from-port="1" to-layer="734" to-port="0"/>
<edge from-layer="731" from-port="0" to-layer="734" to-port="1"/>
<edge from-layer="732" from-port="0" to-layer="734" to-port="2"/>
<edge from-layer="733" from-port="0" to-layer="734" to-port="3"/>
<edge from-layer="734" from-port="4" to-layer="740" to-port="0"/>
<edge from-layer="735" from-port="1" to-layer="739" to-port="0"/>
<edge from-layer="736" from-port="0" to-layer="739" to-port="1"/>
<edge from-layer="737" from-port="0" to-layer="739" to-port="2"/>
<edge from-layer="738" from-port="0" to-layer="739" to-port="3"/>
<edge from-layer="739" from-port="4" to-layer="740" to-port="1"/>
<edge from-layer="740" from-port="2" to-layer="742" to-port="0"/>
<edge from-layer="741" from-port="0" to-layer="742" to-port="1"/>
<edge from-layer="742" from-port="2" to-layer="743" to-port="2"/>
<edge from-layer="743" from-port="3" to-layer="744" to-port="0"/>
</edges>
<meta_data>
<MO_version value="2021.4.0-3827-c5b65f2cb1d-releases/2021/4"/>
<cli_parameters>
<caffe_parser_path value="DIR"/>
<data_type value="FP32"/>
<disable_nhwc_to_nchw value="False"/>
<disable_omitting_optional value="False"/>
<disable_resnet_optimization value="False"/>
<disable_weights_compression value="False"/>
<enable_concat_optimization value="False"/>
<enable_flattening_nested_params value="False"/>
<enable_ssd_gluoncv value="False"/>
<extensions value="DIR"/>
<framework value="caffe"/>
<freeze_placeholder_with_value value="{}"/>
<generate_deprecated_IR_V7 value="False"/>
<input value="data"/>
<input_model value="DIR/rmnet_lrelu_pd_ssd.caffemodel"/>
<input_model_is_text value="False"/>
<input_proto value="DIR/rmnet_lrelu_pd_ssd.prototxt"/>
<input_shape value="[1,3,320,544]"/>
<k value="DIR/CustomLayersMapping.xml"/>
<keep_shape_ops value="True"/>
<legacy_ir_generation value="False"/>
<legacy_mxnet_model value="False"/>
<log_level value="ERROR"/>
<mean_scale_values value="{}"/>
<mean_values value="()"/>
<model_name value="person-detection-retail-0013"/>
<output value="['detection_out']"/>
<output_dir value="DIR"/>
<placeholder_data_types value="{}"/>
<placeholder_shapes value="{'data': array([ 1, 3, 320, 544])}"/>
<progress value="False"/>
<remove_memory value="False"/>
<remove_output_softmax value="False"/>
<reverse_input_channels value="False"/>
<save_params_from_nd value="False"/>
<scale_values value="()"/>
<silent value="False"/>
<static_shape value="False"/>
<stream_output value="False"/>
<transform value=""/>
<unset unset_cli_parameters="batch, counts, disable_fusing, disable_gfusing, finegrain_fusing, input_checkpoint, input_meta_graph, input_symbol, mean_file, mean_file_offsets, move_to_preprocess, nd_prefix_name, pretrained_model_name, saved_model_dir, saved_model_tags, scale, tensorboard_logdir, tensorflow_custom_layer_libraries, tensorflow_custom_operations_config_update, tensorflow_object_detection_api_pipeline_config, tensorflow_use_custom_operations_config, transformations_config"/>
</cli_parameters>
</meta_data>
</net>