blob: 1e39d8a7a975fff9f0172aba0f23cf9c24599bad [file] [log] [blame]
/* Kernel routing table updates using netlink over GNU/Linux system.
* Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
*
* This file is part of GNU Zebra.
*
* GNU Zebra is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* GNU Zebra is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Zebra; see the file COPYING. If not, write to the Free
* Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <zebra.h>
/* Hack for GNU libc version 2. */
#ifndef MSG_TRUNC
#define MSG_TRUNC 0x20
#endif /* MSG_TRUNC */
#include "linklist.h"
#include "if.h"
#include "log.h"
#include "prefix.h"
#include "connected.h"
#include "table.h"
#include "rib.h"
#include "zebra/zserv.h"
#include "zebra/redistribute.h"
#include "zebra/interface.h"
#include "zebra/debug.h"
/* Socket interface to kernel */
struct nlsock
{
int sock;
int seq;
struct sockaddr_nl snl;
char *name;
} netlink = { -1, 0, {0}, "netlink-listen" }, /* kernel messages */
netlink_cmd = { -1, 0, {0}, "netlink-cmd" }, /* command channel */
netlink_addr = {-1, 0, {0}, "netlink-addr" }; /* address channel */
struct message nlmsg_str[] =
{
{RTM_NEWROUTE, "RTM_NEWROUTE"},
{RTM_DELROUTE, "RTM_DELROUTE"},
{RTM_GETROUTE, "RTM_GETROUTE"},
{RTM_NEWLINK, "RTM_NEWLINK"},
{RTM_DELLINK, "RTM_DELLINK"},
{RTM_GETLINK, "RTM_GETLINK"},
{RTM_NEWADDR, "RTM_NEWADDR"},
{RTM_DELADDR, "RTM_DELADDR"},
{RTM_GETADDR, "RTM_GETADDR"},
{0, NULL}
};
extern int rtm_table_default;
/* Make socket for Linux netlink interface. */
static int
netlink_socket (struct nlsock *nl, unsigned long groups)
{
int ret;
struct sockaddr_nl snl;
int sock;
int namelen;
sock = socket (AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
if (sock < 0)
{
zlog (NULL, LOG_ERR, "Can't open %s socket: %s", nl->name,
strerror (errno));
return -1;
}
ret = fcntl (sock, F_SETFL, O_NONBLOCK);
if (ret < 0)
{
zlog (NULL, LOG_ERR, "Can't set %s socket flags: %s", nl->name,
strerror (errno));
close (sock);
return -1;
}
memset (&snl, 0, sizeof snl);
snl.nl_family = AF_NETLINK;
snl.nl_groups = groups;
/* Bind the socket to the netlink structure for anything. */
ret = bind (sock, (struct sockaddr *) &snl, sizeof snl);
if (ret < 0)
{
zlog (NULL, LOG_ERR, "Can't bind %s socket to group 0x%x: %s",
nl->name, snl.nl_groups, strerror (errno));
close (sock);
return -1;
}
/* multiple netlink sockets will have different nl_pid */
namelen = sizeof snl;
ret = getsockname (sock, (struct sockaddr *) &snl, &namelen);
if (ret < 0 || namelen != sizeof snl)
{
zlog (NULL, LOG_ERR, "Can't get %s socket name: %s", nl->name,
strerror (errno));
close (sock);
return -1;
}
nl->snl = snl;
nl->sock = sock;
return ret;
}
/* Get type specified information from netlink. */
static int
netlink_request (int family, int type, struct nlsock *nl)
{
int ret;
struct sockaddr_nl snl;
struct
{
struct nlmsghdr nlh;
struct rtgenmsg g;
} req;
/* Check netlink socket. */
if (nl->sock < 0)
{
zlog (NULL, LOG_ERR, "%s socket isn't active.", nl->name);
return -1;
}
memset (&snl, 0, sizeof snl);
snl.nl_family = AF_NETLINK;
req.nlh.nlmsg_len = sizeof req;
req.nlh.nlmsg_type = type;
req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
req.nlh.nlmsg_pid = 0;
req.nlh.nlmsg_seq = ++nl->seq;
req.g.rtgen_family = family;
ret = sendto (nl->sock, (void*) &req, sizeof req, 0,
(struct sockaddr*) &snl, sizeof snl);
if (ret < 0)
{
zlog (NULL, LOG_ERR, "%s sendto failed: %s", nl->name, strerror (errno));
return -1;
}
return 0;
}
/* Receive message from netlink interface and pass those information
to the given function. */
static int
netlink_parse_info (int (*filter) (struct sockaddr_nl *, struct nlmsghdr *),
struct nlsock *nl)
{
int status;
int ret = 0;
int error;
while (1)
{
char buf[4096];
struct iovec iov = { buf, sizeof buf };
struct sockaddr_nl snl;
struct msghdr msg = { (void*)&snl, sizeof snl, &iov, 1, NULL, 0, 0};
struct nlmsghdr *h;
status = recvmsg (nl->sock, &msg, 0);
if (status < 0)
{
if (errno == EINTR)
continue;
if (errno == EWOULDBLOCK || errno == EAGAIN)
break;
zlog (NULL, LOG_ERR, "%s recvmsg overrun", nl->name);
continue;
}
if (status == 0)
{
zlog (NULL, LOG_ERR, "%s EOF", nl->name);
return -1;
}
if (msg.msg_namelen != sizeof snl)
{
zlog (NULL, LOG_ERR, "%s sender address length error: length %d",
nl->name, msg.msg_namelen);
return -1;
}
for (h = (struct nlmsghdr *) buf; NLMSG_OK (h, status);
h = NLMSG_NEXT (h, status))
{
/* Finish of reading. */
if (h->nlmsg_type == NLMSG_DONE)
return ret;
/* Error handling. */
if (h->nlmsg_type == NLMSG_ERROR)
{
struct nlmsgerr *err = (struct nlmsgerr *) NLMSG_DATA (h);
/* If the error field is zero, then this is an ACK */
if (err->error == 0)
{
if (IS_ZEBRA_DEBUG_KERNEL)
{
zlog_info("%s: %s ACK: type=%s(%u), seq=%u, pid=%d",
__FUNCTION__, nl->name,
lookup (nlmsg_str, err->msg.nlmsg_type),
err->msg.nlmsg_type, err->msg.nlmsg_seq,
err->msg.nlmsg_pid);
}
/* return if not a multipart message, otherwise continue */
if(!(h->nlmsg_flags & NLM_F_MULTI))
{
return 0;
}
continue;
}
if (h->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
{
zlog (NULL, LOG_ERR, "%s error: message truncated",
nl->name);
return -1;
}
zlog (NULL, LOG_ERR, "%s error: %s, type=%s(%u), seq=%u, pid=%d",
nl->name, strerror (-err->error),
lookup (nlmsg_str, err->msg.nlmsg_type),
err->msg.nlmsg_type, err->msg.nlmsg_seq,
err->msg.nlmsg_pid);
/*
ret = -1;
continue;
*/
return -1;
}
/* OK we got netlink message. */
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_info ("netlink_parse_info: %s type %s(%u), seq=%u, pid=%d",
nl->name,
lookup (nlmsg_str, h->nlmsg_type), h->nlmsg_type,
h->nlmsg_seq, h->nlmsg_pid);
/* skip unsolicited messages originating from command socket */
if (nl != &netlink_cmd && h->nlmsg_pid == netlink_cmd.snl.nl_pid)
{
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_info ("netlink_parse_info: %s packet comes from %s",
nl->name, netlink_cmd.name);
continue;
}
error = (*filter) (&snl, h);
if (error < 0)
{
zlog (NULL, LOG_ERR, "%s filter function error", nl->name);
ret = error;
}
}
/* After error care. */
if (msg.msg_flags & MSG_TRUNC)
{
zlog (NULL, LOG_ERR, "%s error: message truncated", nl->name);
continue;
}
if (status)
{
zlog (NULL, LOG_ERR, "%s error: data remnant size %d", nl->name,
status);
return -1;
}
}
return ret;
}
/* Utility function for parse rtattr. */
static void
netlink_parse_rtattr (struct rtattr **tb, int max, struct rtattr *rta, int len)
{
while (RTA_OK(rta, len))
{
if (rta->rta_type <= max)
tb[rta->rta_type] = rta;
rta = RTA_NEXT(rta,len);
}
}
/* Called from interface_lookup_netlink(). This function is only used
during bootstrap. */
int
netlink_interface (struct sockaddr_nl *snl, struct nlmsghdr *h)
{
int len;
struct ifinfomsg *ifi;
struct rtattr *tb[IFLA_MAX + 1];
struct interface *ifp;
char *name;
int i;
ifi = NLMSG_DATA (h);
if (h->nlmsg_type != RTM_NEWLINK)
return 0;
len = h->nlmsg_len - NLMSG_LENGTH (sizeof (struct ifinfomsg));
if (len < 0)
return -1;
/* Looking up interface name. */
memset (tb, 0, sizeof tb);
netlink_parse_rtattr (tb, IFLA_MAX, IFLA_RTA (ifi), len);
if (tb[IFLA_IFNAME] == NULL)
return -1;
name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
/* Add interface. */
ifp = if_get_by_name (name);
ifp->ifindex = ifi->ifi_index;
ifp->flags = ifi->ifi_flags & 0x0000fffff;
ifp->mtu = *(int *)RTA_DATA (tb[IFLA_MTU]);
ifp->metric = 1;
/* Hardware type and address. */
ifp->hw_type = ifi->ifi_type;
if (tb[IFLA_ADDRESS])
{
int hw_addr_len;
hw_addr_len = RTA_PAYLOAD(tb[IFLA_ADDRESS]);
if (hw_addr_len > INTERFACE_HWADDR_MAX)
zlog_warn ("Hardware address is too large: %d", hw_addr_len);
else
{
ifp->hw_addr_len = hw_addr_len;
memcpy (ifp->hw_addr, RTA_DATA(tb[IFLA_ADDRESS]), hw_addr_len);
for (i = 0; i < hw_addr_len; i++)
if (ifp->hw_addr[i] != 0)
break;
if (i == hw_addr_len)
ifp->hw_addr_len = 0;
else
ifp->hw_addr_len = hw_addr_len;
}
}
if_add_update (ifp);
return 0;
}
/* Lookup interface IPv4/IPv6 address. */
int
netlink_interface_addr (struct sockaddr_nl *snl, struct nlmsghdr *h)
{
int len;
struct ifaddrmsg *ifa;
struct rtattr *tb [IFA_MAX + 1];
struct interface *ifp;
void *addr = NULL;
void *broad = NULL;
u_char flags = 0;
char *label = NULL;
int peeronly = 0;
ifa = NLMSG_DATA (h);
if (ifa->ifa_family != AF_INET
#ifdef HAVE_IPV6
&& ifa->ifa_family != AF_INET6
#endif /* HAVE_IPV6 */
)
return 0;
if (h->nlmsg_type != RTM_NEWADDR && h->nlmsg_type != RTM_DELADDR)
return 0;
len = h->nlmsg_len - NLMSG_LENGTH(sizeof (struct ifaddrmsg));
if (len < 0)
return -1;
memset (tb, 0, sizeof tb);
netlink_parse_rtattr (tb, IFA_MAX, IFA_RTA (ifa), len);
ifp = if_lookup_by_index (ifa->ifa_index);
if (ifp == NULL)
{
zlog_err ("netlink_interface_addr can't find interface by index %d",
ifa->ifa_index);
return -1;
}
if (IS_ZEBRA_DEBUG_KERNEL) /* remove this line to see initial ifcfg */
{
char buf[BUFSIZ];
zlog_info ("netlink_interface_addr %s %s/%d:",
lookup (nlmsg_str, h->nlmsg_type),
ifp->name, ifa->ifa_prefixlen);
if (tb[IFA_LOCAL])
zlog_info (" IFA_LOCAL %s", inet_ntop (ifa->ifa_family,
RTA_DATA (tb[IFA_LOCAL]), buf, BUFSIZ));
if (tb[IFA_ADDRESS])
zlog_info (" IFA_ADDRESS %s", inet_ntop (ifa->ifa_family,
RTA_DATA (tb[IFA_ADDRESS]), buf, BUFSIZ));
if (tb[IFA_BROADCAST])
zlog_info (" IFA_BROADCAST %s", inet_ntop (ifa->ifa_family,
RTA_DATA (tb[IFA_BROADCAST]), buf, BUFSIZ));
if (tb[IFA_LABEL] && strcmp (ifp->name, RTA_DATA (tb[IFA_LABEL])))
zlog_info (" IFA_LABEL %s", RTA_DATA (tb[IFA_LABEL]));
}
/* peer or broadcast network? */
if (ifa->ifa_family == AF_INET)
peeronly = if_is_pointopoint (ifp) ||
ifa->ifa_prefixlen >= IPV4_MAX_PREFIXLEN - 1;
#ifdef HAVE_IPV6
if (ifa->ifa_family == AF_INET6)
peeronly = if_is_pointopoint (ifp) ||
ifa->ifa_prefixlen >= IPV6_MAX_PREFIXLEN - 1;
#endif /* HAVE_IPV6*/
/* network. prefixlen applies to IFA_ADDRESS rather than IFA_LOCAL */
if (tb[IFA_ADDRESS] && !peeronly)
addr = RTA_DATA (tb[IFA_ADDRESS]);
else if (tb[IFA_LOCAL])
addr = RTA_DATA (tb[IFA_LOCAL]);
else
addr = NULL;
/* broadcast/peer */
if (tb[IFA_BROADCAST])
broad = RTA_DATA (tb[IFA_BROADCAST]);
else if (tb[IFA_ADDRESS] && peeronly)
broad = RTA_DATA (tb[IFA_ADDRESS]); /* peer address specified */
else
broad = NULL;
/* Flags. */
if (ifa->ifa_flags & IFA_F_SECONDARY)
SET_FLAG (flags, ZEBRA_IFA_SECONDARY);
/* Label */
if (tb[IFA_LABEL])
label = (char *) RTA_DATA (tb[IFA_LABEL]);
if (ifp && label && strcmp (ifp->name, label) == 0)
label = NULL;
/* Register interface address to the interface. */
if (ifa->ifa_family == AF_INET)
{
if (h->nlmsg_type == RTM_NEWADDR)
connected_add_ipv4 (ifp, flags,
(struct in_addr *) addr, ifa->ifa_prefixlen,
(struct in_addr *) broad, label);
else
connected_delete_ipv4 (ifp, flags,
(struct in_addr *) addr, ifa->ifa_prefixlen,
(struct in_addr *) broad, label);
}
#ifdef HAVE_IPV6
if (ifa->ifa_family == AF_INET6)
{
if (h->nlmsg_type == RTM_NEWADDR)
connected_add_ipv6 (ifp,
(struct in6_addr *) addr, ifa->ifa_prefixlen,
(struct in6_addr *) broad);
else
connected_delete_ipv6 (ifp,
(struct in6_addr *) addr, ifa->ifa_prefixlen,
(struct in6_addr *) broad);
}
#endif /* HAVE_IPV6*/
return 0;
}
/* Looking up routing table by netlink interface. */
int
netlink_routing_table (struct sockaddr_nl *snl, struct nlmsghdr *h)
{
int len;
struct rtmsg *rtm;
struct rtattr *tb [RTA_MAX + 1];
u_char flags = 0;
char anyaddr[16] = {0};
int index;
int table;
void *dest;
void *gate;
rtm = NLMSG_DATA (h);
if (h->nlmsg_type != RTM_NEWROUTE)
return 0;
if (rtm->rtm_type != RTN_UNICAST)
return 0;
table = rtm->rtm_table;
#if 0 /* we weed them out later in rib_weed_tables () */
if (table != RT_TABLE_MAIN && table != rtm_table_default)
return 0;
#endif
len = h->nlmsg_len - NLMSG_LENGTH(sizeof (struct rtmsg));
if (len < 0)
return -1;
memset (tb, 0, sizeof tb);
netlink_parse_rtattr (tb, RTA_MAX, RTM_RTA (rtm), len);
if (rtm->rtm_flags & RTM_F_CLONED)
return 0;
if (rtm->rtm_protocol == RTPROT_REDIRECT)
return 0;
if (rtm->rtm_protocol == RTPROT_KERNEL)
return 0;
if (rtm->rtm_src_len != 0)
return 0;
/* Route which inserted by Zebra. */
if (rtm->rtm_protocol == RTPROT_ZEBRA)
flags |= ZEBRA_FLAG_SELFROUTE;
index = 0;
dest = NULL;
gate = NULL;
if (tb[RTA_OIF])
index = *(int *) RTA_DATA (tb[RTA_OIF]);
if (tb[RTA_DST])
dest = RTA_DATA (tb[RTA_DST]);
else
dest = anyaddr;
/* Multipath treatment is needed. */
if (tb[RTA_GATEWAY])
gate = RTA_DATA (tb[RTA_GATEWAY]);
if (rtm->rtm_family == AF_INET)
{
struct prefix_ipv4 p;
p.family = AF_INET;
memcpy (&p.prefix, dest, 4);
p.prefixlen = rtm->rtm_dst_len;
rib_add_ipv4 (ZEBRA_ROUTE_KERNEL, flags, &p, gate, index, table, 0, 0);
}
#ifdef HAVE_IPV6
if (rtm->rtm_family == AF_INET6)
{
struct prefix_ipv6 p;
p.family = AF_INET6;
memcpy (&p.prefix, dest, 16);
p.prefixlen = rtm->rtm_dst_len;
rib_add_ipv6 (ZEBRA_ROUTE_KERNEL, flags, &p, gate, index, table);
}
#endif /* HAVE_IPV6 */
return 0;
}
struct message rtproto_str [] =
{
{RTPROT_REDIRECT, "redirect"},
{RTPROT_KERNEL, "kernel"},
{RTPROT_BOOT, "boot"},
{RTPROT_STATIC, "static"},
{RTPROT_GATED, "GateD"},
{RTPROT_RA, "router advertisement"},
{RTPROT_MRT, "MRT"},
{RTPROT_ZEBRA, "Zebra"},
#ifdef RTPROT_BIRD
{RTPROT_BIRD, "BIRD"},
#endif /* RTPROT_BIRD */
{0, NULL}
};
/* Routing information change from the kernel. */
int
netlink_route_change (struct sockaddr_nl *snl, struct nlmsghdr *h)
{
int len;
struct rtmsg *rtm;
struct rtattr *tb [RTA_MAX + 1];
char anyaddr[16] = {0};
int index;
int table;
void *dest;
void *gate;
rtm = NLMSG_DATA (h);
if (! (h->nlmsg_type == RTM_NEWROUTE || h->nlmsg_type == RTM_DELROUTE))
{
/* If this is not route add/delete message print warning. */
zlog_warn ("Kernel message: %d\n", h->nlmsg_type);
return 0;
}
/* Connected route. */
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_info ("%s %s %s proto %s",
h->nlmsg_type == RTM_NEWROUTE ? "RTM_NEWROUTE" : "RTM_DELROUTE",
rtm->rtm_family == AF_INET ? "ipv4" : "ipv6",
rtm->rtm_type == RTN_UNICAST ? "unicast" : "multicast",
lookup (rtproto_str, rtm->rtm_protocol));
if (rtm->rtm_type != RTN_UNICAST)
{
return 0;
}
table = rtm->rtm_table;
if (table != RT_TABLE_MAIN && table != rtm_table_default)
{
return 0;
}
len = h->nlmsg_len - NLMSG_LENGTH(sizeof (struct rtmsg));
if (len < 0)
return -1;
memset (tb, 0, sizeof tb);
netlink_parse_rtattr (tb, RTA_MAX, RTM_RTA (rtm), len);
if (rtm->rtm_flags & RTM_F_CLONED)
return 0;
if (rtm->rtm_protocol == RTPROT_REDIRECT)
return 0;
if (rtm->rtm_protocol == RTPROT_KERNEL)
return 0;
if (rtm->rtm_protocol == RTPROT_ZEBRA && h->nlmsg_type == RTM_NEWROUTE)
return 0;
if (rtm->rtm_src_len != 0)
{
zlog_warn ("netlink_route_change(): no src len");
return 0;
}
index = 0;
dest = NULL;
gate = NULL;
if (tb[RTA_OIF])
index = *(int *) RTA_DATA (tb[RTA_OIF]);
if (tb[RTA_DST])
dest = RTA_DATA (tb[RTA_DST]);
else
dest = anyaddr;
if (tb[RTA_GATEWAY])
gate = RTA_DATA (tb[RTA_GATEWAY]);
if (rtm->rtm_family == AF_INET)
{
struct prefix_ipv4 p;
p.family = AF_INET;
memcpy (&p.prefix, dest, 4);
p.prefixlen = rtm->rtm_dst_len;
if (IS_ZEBRA_DEBUG_KERNEL)
{
if (h->nlmsg_type == RTM_NEWROUTE)
zlog_info ("RTM_NEWROUTE %s/%d",
inet_ntoa (p.prefix), p.prefixlen);
else
zlog_info ("RTM_DELROUTE %s/%d",
inet_ntoa (p.prefix), p.prefixlen);
}
if (h->nlmsg_type == RTM_NEWROUTE)
rib_add_ipv4 (ZEBRA_ROUTE_KERNEL, 0, &p, gate, index, table, 0, 0);
else
rib_delete_ipv4 (ZEBRA_ROUTE_KERNEL, 0, &p, gate, index, table);
}
#ifdef HAVE_IPV6
if (rtm->rtm_family == AF_INET6)
{
struct prefix_ipv6 p;
char buf[BUFSIZ];
p.family = AF_INET6;
memcpy (&p.prefix, dest, 16);
p.prefixlen = rtm->rtm_dst_len;
if (IS_ZEBRA_DEBUG_KERNEL)
{
if (h->nlmsg_type == RTM_NEWROUTE)
zlog_info ("RTM_NEWROUTE %s/%d",
inet_ntop (AF_INET6, &p.prefix, buf, BUFSIZ),
p.prefixlen);
else
zlog_info ("RTM_DELROUTE %s/%d",
inet_ntop (AF_INET6, &p.prefix, buf, BUFSIZ),
p.prefixlen);
}
if (h->nlmsg_type == RTM_NEWROUTE)
rib_add_ipv6 (ZEBRA_ROUTE_KERNEL, 0, &p, gate, index, 0);
else
rib_delete_ipv6 (ZEBRA_ROUTE_KERNEL, 0, &p, gate, index, 0);
}
#endif /* HAVE_IPV6 */
return 0;
}
int
netlink_link_change (struct sockaddr_nl *snl, struct nlmsghdr *h)
{
int len;
struct ifinfomsg *ifi;
struct rtattr *tb [IFLA_MAX + 1];
struct interface *ifp;
char *name;
ifi = NLMSG_DATA (h);
if (! (h->nlmsg_type == RTM_NEWLINK || h->nlmsg_type == RTM_DELLINK))
{
/* If this is not link add/delete message so print warning. */
zlog_warn ("netlink_link_change: wrong kernel message %d\n",
h->nlmsg_type);
return 0;
}
len = h->nlmsg_len - NLMSG_LENGTH (sizeof (struct ifinfomsg));
if (len < 0)
return -1;
/* Looking up interface name. */
memset (tb, 0, sizeof tb);
netlink_parse_rtattr (tb, IFLA_MAX, IFLA_RTA (ifi), len);
if (tb[IFLA_IFNAME] == NULL)
return -1;
name = (char *)RTA_DATA(tb[IFLA_IFNAME]);
/* Add interface. */
if (h->nlmsg_type == RTM_NEWLINK)
{
ifp = if_lookup_by_name (name);
if (ifp == NULL || ! CHECK_FLAG (ifp->status, ZEBRA_INTERFACE_ACTIVE))
{
if (ifp == NULL)
ifp = if_get_by_name (name);
ifp->ifindex = ifi->ifi_index;
ifp->flags = ifi->ifi_flags & 0x0000fffff;
ifp->mtu = *(int *)RTA_DATA (tb[IFLA_MTU]);
ifp->metric = 1;
/* If new link is added. */
if_add_update(ifp);
}
else
{
/* Interface status change. */
ifp->ifindex = ifi->ifi_index;
ifp->mtu = *(int *)RTA_DATA (tb[IFLA_MTU]);
ifp->metric = 1;
if (if_is_operative (ifp))
{
ifp->flags = ifi->ifi_flags & 0x0000fffff;
if (! if_is_operative (ifp))
if_down (ifp);
}
else
{
ifp->flags = ifi->ifi_flags & 0x0000fffff;
if (if_is_operative (ifp))
if_up (ifp);
}
}
}
else
{
/* RTM_DELLINK. */
ifp = if_lookup_by_name (name);
if (ifp == NULL)
{
zlog (NULL, LOG_WARNING, "interface %s is deleted but can't find",
name);
return 0;
}
if_delete_update (ifp);
}
return 0;
}
int
netlink_information_fetch (struct sockaddr_nl *snl, struct nlmsghdr *h)
{
switch (h->nlmsg_type)
{
case RTM_NEWROUTE:
return netlink_route_change (snl, h);
break;
case RTM_DELROUTE:
return netlink_route_change (snl, h);
break;
case RTM_NEWLINK:
return netlink_link_change (snl, h);
break;
case RTM_DELLINK:
return netlink_link_change (snl, h);
break;
case RTM_NEWADDR:
return netlink_interface_addr (snl, h);
break;
case RTM_DELADDR:
return netlink_interface_addr (snl, h);
break;
default:
zlog_warn ("Unknown netlink nlmsg_type %d\n", h->nlmsg_type);
break;
}
return 0;
}
/* Interface lookup by netlink socket. */
int
interface_lookup_netlink ()
{
int ret;
/* Get interface information. */
ret = netlink_request (AF_PACKET, RTM_GETLINK, &netlink_cmd);
if (ret < 0)
return ret;
ret = netlink_parse_info (netlink_interface, &netlink_cmd);
if (ret < 0)
return ret;
/* Get IPv4 address of the interfaces. */
ret = netlink_request (AF_INET, RTM_GETADDR, &netlink_cmd);
if (ret < 0)
return ret;
ret = netlink_parse_info (netlink_interface_addr, &netlink_cmd);
if (ret < 0)
return ret;
#ifdef HAVE_IPV6
/* Get IPv6 address of the interfaces. */
ret = netlink_request (AF_INET6, RTM_GETADDR, &netlink_cmd);
if (ret < 0)
return ret;
ret = netlink_parse_info (netlink_interface_addr, &netlink_cmd);
if (ret < 0)
return ret;
#endif /* HAVE_IPV6 */
return 0;
}
/* Routing table read function using netlink interface. Only called
bootstrap time. */
int
netlink_route_read ()
{
int ret;
/* Get IPv4 routing table. */
ret = netlink_request (AF_INET, RTM_GETROUTE, &netlink_cmd);
if (ret < 0)
return ret;
ret = netlink_parse_info (netlink_routing_table, &netlink_cmd);
if (ret < 0)
return ret;
#ifdef HAVE_IPV6
/* Get IPv6 routing table. */
ret = netlink_request (AF_INET6, RTM_GETROUTE, &netlink_cmd);
if (ret < 0)
return ret;
ret = netlink_parse_info (netlink_routing_table, &netlink_cmd);
if (ret < 0)
return ret;
#endif /* HAVE_IPV6 */
return 0;
}
/* Utility function comes from iproute2.
Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> */
int
addattr_l (struct nlmsghdr *n, int maxlen, int type, void *data, int alen)
{
int len;
struct rtattr *rta;
len = RTA_LENGTH(alen);
if (NLMSG_ALIGN(n->nlmsg_len) + len > maxlen)
return -1;
rta = (struct rtattr*) (((char*)n) + NLMSG_ALIGN (n->nlmsg_len));
rta->rta_type = type;
rta->rta_len = len;
memcpy (RTA_DATA(rta), data, alen);
n->nlmsg_len = NLMSG_ALIGN (n->nlmsg_len) + len;
return 0;
}
int
rta_addattr_l (struct rtattr *rta, int maxlen, int type, void *data, int alen)
{
int len;
struct rtattr *subrta;
len = RTA_LENGTH(alen);
if (RTA_ALIGN(rta->rta_len) + len > maxlen)
return -1;
subrta = (struct rtattr*) (((char*)rta) + RTA_ALIGN (rta->rta_len));
subrta->rta_type = type;
subrta->rta_len = len;
memcpy (RTA_DATA(subrta), data, alen);
rta->rta_len = NLMSG_ALIGN (rta->rta_len) + len;
return 0;
}
/* Utility function comes from iproute2.
Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> */
int
addattr32 (struct nlmsghdr *n, int maxlen, int type, int data)
{
int len;
struct rtattr *rta;
len = RTA_LENGTH(4);
if (NLMSG_ALIGN (n->nlmsg_len) + len > maxlen)
return -1;
rta = (struct rtattr*) (((char*)n) + NLMSG_ALIGN (n->nlmsg_len));
rta->rta_type = type;
rta->rta_len = len;
memcpy (RTA_DATA(rta), &data, 4);
n->nlmsg_len = NLMSG_ALIGN (n->nlmsg_len) + len;
return 0;
}
static int
netlink_talk_filter (struct sockaddr_nl *snl, struct nlmsghdr *h)
{
zlog_warn ("netlink_talk: ignoring message type 0x%04x", h->nlmsg_type);
return 0;
}
/* sendmsg() to netlink socket then recvmsg(). */
int
netlink_talk (struct nlmsghdr *n, struct nlsock *nl)
{
int status;
struct sockaddr_nl snl;
struct iovec iov = { (void*) n, n->nlmsg_len };
struct msghdr msg = {(void*) &snl, sizeof snl, &iov, 1, NULL, 0, 0};
int flags = 0;
memset (&snl, 0, sizeof snl);
snl.nl_family = AF_NETLINK;
n->nlmsg_seq = ++netlink_cmd.seq;
/* Request an acknowledgement by setting NLM_F_ACK */
n->nlmsg_flags |= NLM_F_ACK;
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_info ("netlink_talk: %s type %s(%u), seq=%u", netlink_cmd.name,
lookup (nlmsg_str, n->nlmsg_type), n->nlmsg_type,
n->nlmsg_seq);
/* Send message to netlink interface. */
status = sendmsg (nl->sock, &msg, 0);
if (status < 0)
{
zlog (NULL, LOG_ERR, "netlink_talk sendmsg() error: %s",
strerror (errno));
return -1;
}
/*
* Change socket flags for blocking I/O.
* This ensures we wait for a reply in netlink_parse_info().
*/
if((flags = fcntl(nl->sock, F_GETFL, 0)) < 0)
{
zlog (NULL, LOG_ERR, "%s:%i F_GETFL error: %s",
__FUNCTION__, __LINE__, strerror (errno));
}
flags &= ~O_NONBLOCK;
if(fcntl(nl->sock, F_SETFL, flags) < 0)
{
zlog (NULL, LOG_ERR, "%s:%i F_SETFL error: %s",
__FUNCTION__, __LINE__, strerror (errno));
}
/*
* Get reply from netlink socket.
* The reply should either be an acknowlegement or an error.
*/
status = netlink_parse_info (netlink_talk_filter, nl);
/* Restore socket flags for nonblocking I/O */
flags |= O_NONBLOCK;
if(fcntl(nl->sock, F_SETFL, flags) < 0)
{
zlog (NULL, LOG_ERR, "%s:%i F_SETFL error: %s",
__FUNCTION__, __LINE__, strerror (errno));
}
return status;
}
/* Routing table change via netlink interface. */
int
netlink_route (int cmd, int family, void *dest, int length, void *gate,
int index, int zebra_flags, int table)
{
int ret;
int bytelen;
struct sockaddr_nl snl;
int discard;
struct
{
struct nlmsghdr n;
struct rtmsg r;
char buf[1024];
} req;
memset (&req, 0, sizeof req);
bytelen = (family == AF_INET ? 4 : 16);
req.n.nlmsg_len = NLMSG_LENGTH (sizeof (struct rtmsg));
req.n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
req.n.nlmsg_type = cmd;
req.r.rtm_family = family;
req.r.rtm_table = table;
req.r.rtm_dst_len = length;
if (zebra_flags & ZEBRA_FLAG_BLACKHOLE)
discard = 1;
else
discard = 0;
if (cmd == RTM_NEWROUTE)
{
req.r.rtm_protocol = RTPROT_ZEBRA;
req.r.rtm_scope = RT_SCOPE_UNIVERSE;
if (discard)
req.r.rtm_type = RTN_BLACKHOLE;
else
req.r.rtm_type = RTN_UNICAST;
}
if (dest)
addattr_l (&req.n, sizeof req, RTA_DST, dest, bytelen);
if (! discard)
{
if (gate)
addattr_l (&req.n, sizeof req, RTA_GATEWAY, gate, bytelen);
if (index > 0)
addattr32 (&req.n, sizeof req, RTA_OIF, index);
}
/* Destination netlink address. */
memset (&snl, 0, sizeof snl);
snl.nl_family = AF_NETLINK;
/* Talk to netlink socket. */
ret = netlink_talk (&req.n, &netlink);
if (ret < 0)
return -1;
return 0;
}
/* Routing table change via netlink interface. */
int
netlink_route_multipath (int cmd, struct prefix *p, struct rib *rib,
int family)
{
int bytelen;
struct sockaddr_nl snl;
struct nexthop *nexthop = NULL;
int nexthop_num = 0;
struct nlsock *nl;
int discard;
struct
{
struct nlmsghdr n;
struct rtmsg r;
char buf[1024];
} req;
memset (&req, 0, sizeof req);
bytelen = (family == AF_INET ? 4 : 16);
req.n.nlmsg_len = NLMSG_LENGTH (sizeof (struct rtmsg));
req.n.nlmsg_flags = NLM_F_CREATE | NLM_F_REQUEST;
req.n.nlmsg_type = cmd;
req.r.rtm_family = family;
req.r.rtm_table = rib->table;
req.r.rtm_dst_len = p->prefixlen;
if (rib->flags & ZEBRA_FLAG_BLACKHOLE)
discard = 1;
else
discard = 0;
if (cmd == RTM_NEWROUTE)
{
req.r.rtm_protocol = RTPROT_ZEBRA;
req.r.rtm_scope = RT_SCOPE_UNIVERSE;
if (discard)
req.r.rtm_type = RTN_BLACKHOLE;
else
req.r.rtm_type = RTN_UNICAST;
}
addattr_l (&req.n, sizeof req, RTA_DST, &p->u.prefix, bytelen);
/* Metric. */
addattr32 (&req.n, sizeof req, RTA_PRIORITY, rib->metric);
if (discard)
{
if (cmd == RTM_NEWROUTE)
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next)
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
goto skip;
}
/* Multipath case. */
if (rib->nexthop_active_num == 1 || MULTIPATH_NUM == 1)
{
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next)
{
if ((cmd == RTM_NEWROUTE
&& CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE))
|| (cmd == RTM_DELROUTE
&& CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB)))
{
if (CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
{
if (nexthop->rtype == NEXTHOP_TYPE_IPV4
|| nexthop->rtype == NEXTHOP_TYPE_IPV4_IFINDEX)
addattr_l (&req.n, sizeof req, RTA_GATEWAY,
&nexthop->rgate.ipv4, bytelen);
#ifdef HAVE_IPV6
if (nexthop->rtype == NEXTHOP_TYPE_IPV6
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFINDEX
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFNAME)
addattr_l (&req.n, sizeof req, RTA_GATEWAY,
&nexthop->rgate.ipv6, bytelen);
#endif /* HAVE_IPV6 */
if (nexthop->rtype == NEXTHOP_TYPE_IFINDEX
|| nexthop->rtype == NEXTHOP_TYPE_IFNAME
|| nexthop->rtype == NEXTHOP_TYPE_IPV4_IFINDEX
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFINDEX
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFNAME)
addattr32 (&req.n, sizeof req, RTA_OIF,
nexthop->rifindex);
}
else
{
if (nexthop->type == NEXTHOP_TYPE_IPV4
|| nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX)
addattr_l (&req.n, sizeof req, RTA_GATEWAY,
&nexthop->gate.ipv4, bytelen);
#ifdef HAVE_IPV6
if (nexthop->type == NEXTHOP_TYPE_IPV6
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFNAME
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX)
addattr_l (&req.n, sizeof req, RTA_GATEWAY,
&nexthop->gate.ipv6, bytelen);
#endif /* HAVE_IPV6 */
if (nexthop->type == NEXTHOP_TYPE_IFINDEX
|| nexthop->type == NEXTHOP_TYPE_IFNAME
|| nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFNAME)
addattr32 (&req.n, sizeof req, RTA_OIF, nexthop->ifindex);
}
if (cmd == RTM_NEWROUTE)
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
nexthop_num++;
break;
}
}
}
else
{
char buf[1024];
struct rtattr *rta = (void *) buf;
struct rtnexthop *rtnh;
rta->rta_type = RTA_MULTIPATH;
rta->rta_len = RTA_LENGTH(0);
rtnh = RTA_DATA(rta);
nexthop_num = 0;
for (nexthop = rib->nexthop;
nexthop && (MULTIPATH_NUM == 0 || nexthop_num < MULTIPATH_NUM);
nexthop = nexthop->next)
{
if ((cmd == RTM_NEWROUTE
&& CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE))
|| (cmd == RTM_DELROUTE
&& CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB)))
{
nexthop_num++;
rtnh->rtnh_len = sizeof (*rtnh);
rtnh->rtnh_flags = 0;
rtnh->rtnh_hops = 0;
rta->rta_len += rtnh->rtnh_len;
if (CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
{
if (nexthop->rtype == NEXTHOP_TYPE_IPV4
|| nexthop->rtype == NEXTHOP_TYPE_IPV4_IFINDEX)
{
rta_addattr_l (rta, 4096, RTA_GATEWAY,
&nexthop->rgate.ipv4, bytelen);
rtnh->rtnh_len += sizeof (struct rtattr) + 4;
}
#ifdef HAVE_IPV6
if (nexthop->rtype == NEXTHOP_TYPE_IPV6
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFNAME
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFINDEX)
rta_addattr_l (rta, 4096, RTA_GATEWAY,
&nexthop->rgate.ipv6, bytelen);
#endif /* HAVE_IPV6 */
/* ifindex */
if (nexthop->rtype == NEXTHOP_TYPE_IFINDEX
|| nexthop->rtype == NEXTHOP_TYPE_IFNAME
|| nexthop->rtype == NEXTHOP_TYPE_IPV4_IFINDEX
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFINDEX
|| nexthop->rtype == NEXTHOP_TYPE_IPV6_IFNAME)
rtnh->rtnh_ifindex = nexthop->rifindex;
else
rtnh->rtnh_ifindex = 0;
}
else
{
if (nexthop->type == NEXTHOP_TYPE_IPV4
|| nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX)
{
rta_addattr_l (rta, 4096, RTA_GATEWAY,
&nexthop->gate.ipv4, bytelen);
rtnh->rtnh_len += sizeof (struct rtattr) + 4;
}
#ifdef HAVE_IPV6
if (nexthop->type == NEXTHOP_TYPE_IPV6
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFNAME
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX)
rta_addattr_l (rta, 4096, RTA_GATEWAY,
&nexthop->gate.ipv6, bytelen);
#endif /* HAVE_IPV6 */
/* ifindex */
if (nexthop->type == NEXTHOP_TYPE_IFINDEX
|| nexthop->type == NEXTHOP_TYPE_IFNAME
|| nexthop->type == NEXTHOP_TYPE_IPV4_IFINDEX
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFNAME
|| nexthop->type == NEXTHOP_TYPE_IPV6_IFINDEX)
rtnh->rtnh_ifindex = nexthop->ifindex;
else
rtnh->rtnh_ifindex = 0;
}
rtnh = RTNH_NEXT(rtnh);
if (cmd == RTM_NEWROUTE)
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
}
}
if (rta->rta_len > RTA_LENGTH (0))
addattr_l (&req.n, 1024, RTA_MULTIPATH, RTA_DATA(rta),
RTA_PAYLOAD(rta));
}
/* If there is no useful nexthop then return. */
if (nexthop_num == 0)
{
if (IS_ZEBRA_DEBUG_KERNEL)
zlog_info ("netlink_route_multipath(): No useful nexthop.");
return 0;
}
skip:
/* Destination netlink address. */
memset (&snl, 0, sizeof snl);
snl.nl_family = AF_NETLINK;
if (family == AF_INET)
nl = &netlink_cmd;
else
nl = &netlink;
/* Talk to netlink socket. */
return netlink_talk (&req.n, nl);
}
int
kernel_add_ipv4 (struct prefix *p, struct rib *rib)
{
return netlink_route_multipath (RTM_NEWROUTE, p, rib, AF_INET);
}
int
kernel_delete_ipv4 (struct prefix *p, struct rib *rib)
{
return netlink_route_multipath (RTM_DELROUTE, p, rib, AF_INET);
}
#ifdef HAVE_IPV6
int
kernel_add_ipv6 (struct prefix *p, struct rib *rib)
{
return netlink_route_multipath (RTM_NEWROUTE, p, rib, AF_INET6);
}
int
kernel_delete_ipv6 (struct prefix *p, struct rib *rib)
{
return netlink_route_multipath (RTM_DELROUTE, p, rib, AF_INET6);
}
/* Delete IPv6 route from the kernel. */
int
kernel_delete_ipv6_old (struct prefix_ipv6 *dest, struct in6_addr *gate,
int index, int flags, int table)
{
return netlink_route (RTM_DELROUTE, AF_INET6, &dest->prefix, dest->prefixlen,
gate, index, flags, table);
}
#endif /* HAVE_IPV6 */
/* Interface address modification. */
int
netlink_address (int cmd, int family, struct interface *ifp,
struct connected *ifc)
{
int bytelen;
struct prefix *p;
struct
{
struct nlmsghdr n;
struct ifaddrmsg ifa;
char buf[1024];
} req;
p = ifc->address;
memset (&req, 0, sizeof req);
bytelen = (family == AF_INET ? 4 : 16);
req.n.nlmsg_len = NLMSG_LENGTH (sizeof(struct ifaddrmsg));
req.n.nlmsg_flags = NLM_F_REQUEST;
req.n.nlmsg_type = cmd;
req.ifa.ifa_family = family;
req.ifa.ifa_index = ifp->ifindex;
req.ifa.ifa_prefixlen = p->prefixlen;
addattr_l (&req.n, sizeof req, IFA_LOCAL, &p->u.prefix, bytelen);
if (family == AF_INET && cmd == RTM_NEWADDR)
{
if (if_is_broadcast (ifp) && ifc->destination)
{
p = ifc->destination;
addattr_l(&req.n, sizeof req, IFA_BROADCAST, &p->u.prefix, bytelen);
}
}
if (CHECK_FLAG (ifc->flags, ZEBRA_IFA_SECONDARY))
SET_FLAG (req.ifa.ifa_flags, IFA_F_SECONDARY);
if (ifc->label)
addattr_l (&req.n, sizeof req, IFA_LABEL, ifc->label,
strlen (ifc->label) + 1);
return netlink_talk (&req.n, &netlink_cmd);
}
int
kernel_address_add_ipv4 (struct interface *ifp, struct connected *ifc)
{
return netlink_address (RTM_NEWADDR, AF_INET, ifp, ifc);
}
int
kernel_address_delete_ipv4 (struct interface *ifp, struct connected *ifc)
{
return netlink_address (RTM_DELADDR, AF_INET, ifp, ifc);
}
#include "thread.h"
extern struct thread_master *master;
/* Kernel route reflection. */
int
kernel_read (struct thread *thread)
{
int ret;
int sock;
sock = THREAD_FD (thread);
ret = netlink_parse_info (netlink_information_fetch, &netlink);
thread_add_read (master, kernel_read, NULL, netlink.sock);
return 0;
}
/* Exported interface function. This function simply calls
netlink_socket (). */
void
kernel_init ()
{
unsigned long groups;
groups = RTMGRP_LINK|RTMGRP_IPV4_ROUTE|RTMGRP_IPV4_IFADDR;
#ifdef HAVE_IPV6
groups |= RTMGRP_IPV6_ROUTE|RTMGRP_IPV6_IFADDR;
#endif /* HAVE_IPV6 */
netlink_socket (&netlink, groups);
netlink_socket (&netlink_cmd, 0);
/* Register kernel socket. */
if (netlink.sock > 0)
thread_add_read (master, kernel_read, NULL, netlink.sock);
}