| /* Thread management routine |
| * Copyright (C) 1998, 2000 Kunihiro Ishiguro <kunihiro@zebra.org> |
| * |
| * This file is part of GNU Zebra. |
| * |
| * GNU Zebra is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any |
| * later version. |
| * |
| * GNU Zebra is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with GNU Zebra; see the file COPYING. If not, write to the Free |
| * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| * 02111-1307, USA. |
| */ |
| |
| /* #define DEBUG */ |
| |
| #include <zebra.h> |
| #include <sys/resource.h> |
| |
| #include "thread.h" |
| #include "memory.h" |
| #include "log.h" |
| #include "hash.h" |
| #include "pqueue.h" |
| #include "command.h" |
| #include "sigevent.h" |
| |
| #if defined HAVE_SNMP && defined SNMP_AGENTX |
| #include <net-snmp/net-snmp-config.h> |
| #include <net-snmp/net-snmp-includes.h> |
| #include <net-snmp/agent/net-snmp-agent-includes.h> |
| #include <net-snmp/agent/snmp_vars.h> |
| |
| extern int agentx_enabled; |
| #endif |
| |
| #if defined(__APPLE__) |
| #include <mach/mach.h> |
| #include <mach/mach_time.h> |
| #endif |
| |
| /* Recent absolute time of day */ |
| struct timeval recent_time; |
| static struct timeval last_recent_time; |
| /* Relative time, since startup */ |
| static struct timeval relative_time; |
| static struct timeval relative_time_base; |
| /* init flag */ |
| static unsigned short timers_inited; |
| |
| static struct hash *cpu_record = NULL; |
| |
| /* Struct timeval's tv_usec one second value. */ |
| #define TIMER_SECOND_MICRO 1000000L |
| |
| /* Adjust so that tv_usec is in the range [0,TIMER_SECOND_MICRO). |
| And change negative values to 0. */ |
| static struct timeval |
| timeval_adjust (struct timeval a) |
| { |
| while (a.tv_usec >= TIMER_SECOND_MICRO) |
| { |
| a.tv_usec -= TIMER_SECOND_MICRO; |
| a.tv_sec++; |
| } |
| |
| while (a.tv_usec < 0) |
| { |
| a.tv_usec += TIMER_SECOND_MICRO; |
| a.tv_sec--; |
| } |
| |
| if (a.tv_sec < 0) |
| /* Change negative timeouts to 0. */ |
| a.tv_sec = a.tv_usec = 0; |
| |
| return a; |
| } |
| |
| static struct timeval |
| timeval_subtract (struct timeval a, struct timeval b) |
| { |
| struct timeval ret; |
| |
| ret.tv_usec = a.tv_usec - b.tv_usec; |
| ret.tv_sec = a.tv_sec - b.tv_sec; |
| |
| return timeval_adjust (ret); |
| } |
| |
| static long |
| timeval_cmp (struct timeval a, struct timeval b) |
| { |
| return (a.tv_sec == b.tv_sec |
| ? a.tv_usec - b.tv_usec : a.tv_sec - b.tv_sec); |
| } |
| |
| unsigned long |
| timeval_elapsed (struct timeval a, struct timeval b) |
| { |
| return (((a.tv_sec - b.tv_sec) * TIMER_SECOND_MICRO) |
| + (a.tv_usec - b.tv_usec)); |
| } |
| |
| #if !defined(HAVE_CLOCK_MONOTONIC) && !defined(__APPLE__) |
| static void |
| quagga_gettimeofday_relative_adjust (void) |
| { |
| struct timeval diff; |
| if (timeval_cmp (recent_time, last_recent_time) < 0) |
| { |
| relative_time.tv_sec++; |
| relative_time.tv_usec = 0; |
| } |
| else |
| { |
| diff = timeval_subtract (recent_time, last_recent_time); |
| relative_time.tv_sec += diff.tv_sec; |
| relative_time.tv_usec += diff.tv_usec; |
| relative_time = timeval_adjust (relative_time); |
| } |
| last_recent_time = recent_time; |
| } |
| #endif /* !HAVE_CLOCK_MONOTONIC && !__APPLE__ */ |
| |
| /* gettimeofday wrapper, to keep recent_time updated */ |
| static int |
| quagga_gettimeofday (struct timeval *tv) |
| { |
| int ret; |
| |
| assert (tv); |
| |
| if (!(ret = gettimeofday (&recent_time, NULL))) |
| { |
| /* init... */ |
| if (!timers_inited) |
| { |
| relative_time_base = last_recent_time = recent_time; |
| timers_inited = 1; |
| } |
| /* avoid copy if user passed recent_time pointer.. */ |
| if (tv != &recent_time) |
| *tv = recent_time; |
| return 0; |
| } |
| return ret; |
| } |
| |
| static int |
| quagga_get_relative (struct timeval *tv) |
| { |
| int ret; |
| |
| #ifdef HAVE_CLOCK_MONOTONIC |
| { |
| struct timespec tp; |
| if (!(ret = clock_gettime (CLOCK_MONOTONIC, &tp))) |
| { |
| relative_time.tv_sec = tp.tv_sec; |
| relative_time.tv_usec = tp.tv_nsec / 1000; |
| } |
| } |
| #elif defined(__APPLE__) |
| { |
| uint64_t ticks; |
| uint64_t useconds; |
| static mach_timebase_info_data_t timebase_info; |
| |
| ticks = mach_absolute_time(); |
| if (timebase_info.denom == 0) |
| mach_timebase_info(&timebase_info); |
| |
| useconds = ticks * timebase_info.numer / timebase_info.denom / 1000; |
| relative_time.tv_sec = useconds / 1000000; |
| relative_time.tv_usec = useconds % 1000000; |
| |
| return 0; |
| } |
| #else /* !HAVE_CLOCK_MONOTONIC && !__APPLE__ */ |
| if (!(ret = quagga_gettimeofday (&recent_time))) |
| quagga_gettimeofday_relative_adjust(); |
| #endif /* HAVE_CLOCK_MONOTONIC */ |
| |
| if (tv) |
| *tv = relative_time; |
| |
| return ret; |
| } |
| |
| /* Get absolute time stamp, but in terms of the internal timer |
| * Could be wrong, but at least won't go back. |
| */ |
| static void |
| quagga_real_stabilised (struct timeval *tv) |
| { |
| *tv = relative_time_base; |
| tv->tv_sec += relative_time.tv_sec; |
| tv->tv_usec += relative_time.tv_usec; |
| *tv = timeval_adjust (*tv); |
| } |
| |
| /* Exported Quagga timestamp function. |
| * Modelled on POSIX clock_gettime. |
| */ |
| int |
| quagga_gettime (enum quagga_clkid clkid, struct timeval *tv) |
| { |
| switch (clkid) |
| { |
| case QUAGGA_CLK_REALTIME: |
| return quagga_gettimeofday (tv); |
| case QUAGGA_CLK_MONOTONIC: |
| return quagga_get_relative (tv); |
| case QUAGGA_CLK_REALTIME_STABILISED: |
| quagga_real_stabilised (tv); |
| return 0; |
| default: |
| errno = EINVAL; |
| return -1; |
| } |
| } |
| |
| /* time_t value in terms of stabilised absolute time. |
| * replacement for POSIX time() |
| */ |
| time_t |
| quagga_time (time_t *t) |
| { |
| struct timeval tv; |
| quagga_real_stabilised (&tv); |
| if (t) |
| *t = tv.tv_sec; |
| return tv.tv_sec; |
| } |
| |
| /* Public export of recent_relative_time by value */ |
| struct timeval |
| recent_relative_time (void) |
| { |
| return relative_time; |
| } |
| |
| static unsigned int |
| cpu_record_hash_key (struct cpu_thread_history *a) |
| { |
| return (uintptr_t) a->func; |
| } |
| |
| static int |
| cpu_record_hash_cmp (const struct cpu_thread_history *a, |
| const struct cpu_thread_history *b) |
| { |
| return a->func == b->func; |
| } |
| |
| static void * |
| cpu_record_hash_alloc (struct cpu_thread_history *a) |
| { |
| struct cpu_thread_history *new; |
| new = XCALLOC (MTYPE_THREAD_STATS, sizeof (struct cpu_thread_history)); |
| new->func = a->func; |
| new->funcname = a->funcname; |
| return new; |
| } |
| |
| static void |
| cpu_record_hash_free (void *a) |
| { |
| struct cpu_thread_history *hist = a; |
| |
| XFREE (MTYPE_THREAD_STATS, hist); |
| } |
| |
| static void |
| vty_out_cpu_thread_history(struct vty* vty, |
| struct cpu_thread_history *a) |
| { |
| #ifdef HAVE_RUSAGE |
| vty_out(vty, "%7ld.%03ld %9d %8ld %9ld %8ld %9ld", |
| a->cpu.total/1000, a->cpu.total%1000, a->total_calls, |
| a->cpu.total/a->total_calls, a->cpu.max, |
| a->real.total/a->total_calls, a->real.max); |
| #else |
| vty_out(vty, "%7ld.%03ld %9d %8ld %9ld", |
| a->real.total/1000, a->real.total%1000, a->total_calls, |
| a->real.total/a->total_calls, a->real.max); |
| #endif |
| vty_out(vty, " %c%c%c%c%c%c %s%s", |
| a->types & (1 << THREAD_READ) ? 'R':' ', |
| a->types & (1 << THREAD_WRITE) ? 'W':' ', |
| a->types & (1 << THREAD_TIMER) ? 'T':' ', |
| a->types & (1 << THREAD_EVENT) ? 'E':' ', |
| a->types & (1 << THREAD_EXECUTE) ? 'X':' ', |
| a->types & (1 << THREAD_BACKGROUND) ? 'B' : ' ', |
| a->funcname, VTY_NEWLINE); |
| } |
| |
| static void |
| cpu_record_hash_print(struct hash_backet *bucket, |
| void *args[]) |
| { |
| struct cpu_thread_history *totals = args[0]; |
| struct vty *vty = args[1]; |
| thread_type *filter = args[2]; |
| struct cpu_thread_history *a = bucket->data; |
| |
| a = bucket->data; |
| if ( !(a->types & *filter) ) |
| return; |
| vty_out_cpu_thread_history(vty,a); |
| totals->total_calls += a->total_calls; |
| totals->real.total += a->real.total; |
| if (totals->real.max < a->real.max) |
| totals->real.max = a->real.max; |
| #ifdef HAVE_RUSAGE |
| totals->cpu.total += a->cpu.total; |
| if (totals->cpu.max < a->cpu.max) |
| totals->cpu.max = a->cpu.max; |
| #endif |
| } |
| |
| static void |
| cpu_record_print(struct vty *vty, thread_type filter) |
| { |
| struct cpu_thread_history tmp; |
| void *args[3] = {&tmp, vty, &filter}; |
| |
| memset(&tmp, 0, sizeof tmp); |
| tmp.funcname = "TOTAL"; |
| tmp.types = filter; |
| |
| #ifdef HAVE_RUSAGE |
| vty_out(vty, "%21s %18s %18s%s", |
| "", "CPU (user+system):", "Real (wall-clock):", VTY_NEWLINE); |
| #endif |
| vty_out(vty, "Runtime(ms) Invoked Avg uSec Max uSecs"); |
| #ifdef HAVE_RUSAGE |
| vty_out(vty, " Avg uSec Max uSecs"); |
| #endif |
| vty_out(vty, " Type Thread%s", VTY_NEWLINE); |
| hash_iterate(cpu_record, |
| (void(*)(struct hash_backet*,void*))cpu_record_hash_print, |
| args); |
| |
| if (tmp.total_calls > 0) |
| vty_out_cpu_thread_history(vty, &tmp); |
| } |
| |
| DEFUN(show_thread_cpu, |
| show_thread_cpu_cmd, |
| "show thread cpu [FILTER]", |
| SHOW_STR |
| "Thread information\n" |
| "Thread CPU usage\n" |
| "Display filter (rwtexb)\n") |
| { |
| int i = 0; |
| thread_type filter = (thread_type) -1U; |
| |
| if (argc > 0) |
| { |
| filter = 0; |
| while (argv[0][i] != '\0') |
| { |
| switch ( argv[0][i] ) |
| { |
| case 'r': |
| case 'R': |
| filter |= (1 << THREAD_READ); |
| break; |
| case 'w': |
| case 'W': |
| filter |= (1 << THREAD_WRITE); |
| break; |
| case 't': |
| case 'T': |
| filter |= (1 << THREAD_TIMER); |
| break; |
| case 'e': |
| case 'E': |
| filter |= (1 << THREAD_EVENT); |
| break; |
| case 'x': |
| case 'X': |
| filter |= (1 << THREAD_EXECUTE); |
| break; |
| case 'b': |
| case 'B': |
| filter |= (1 << THREAD_BACKGROUND); |
| break; |
| default: |
| break; |
| } |
| ++i; |
| } |
| if (filter == 0) |
| { |
| vty_out(vty, "Invalid filter \"%s\" specified," |
| " must contain at least one of 'RWTEXB'%s", |
| argv[0], VTY_NEWLINE); |
| return CMD_WARNING; |
| } |
| } |
| |
| cpu_record_print(vty, filter); |
| return CMD_SUCCESS; |
| } |
| |
| static void |
| cpu_record_hash_clear (struct hash_backet *bucket, |
| void *args) |
| { |
| thread_type *filter = args; |
| struct cpu_thread_history *a = bucket->data; |
| |
| a = bucket->data; |
| if ( !(a->types & *filter) ) |
| return; |
| |
| hash_release (cpu_record, bucket->data); |
| } |
| |
| static void |
| cpu_record_clear (thread_type filter) |
| { |
| thread_type *tmp = &filter; |
| hash_iterate (cpu_record, |
| (void (*) (struct hash_backet*,void*)) cpu_record_hash_clear, |
| tmp); |
| } |
| |
| DEFUN(clear_thread_cpu, |
| clear_thread_cpu_cmd, |
| "clear thread cpu [FILTER]", |
| "Clear stored data\n" |
| "Thread information\n" |
| "Thread CPU usage\n" |
| "Display filter (rwtexb)\n") |
| { |
| int i = 0; |
| thread_type filter = (thread_type) -1U; |
| |
| if (argc > 0) |
| { |
| filter = 0; |
| while (argv[0][i] != '\0') |
| { |
| switch ( argv[0][i] ) |
| { |
| case 'r': |
| case 'R': |
| filter |= (1 << THREAD_READ); |
| break; |
| case 'w': |
| case 'W': |
| filter |= (1 << THREAD_WRITE); |
| break; |
| case 't': |
| case 'T': |
| filter |= (1 << THREAD_TIMER); |
| break; |
| case 'e': |
| case 'E': |
| filter |= (1 << THREAD_EVENT); |
| break; |
| case 'x': |
| case 'X': |
| filter |= (1 << THREAD_EXECUTE); |
| break; |
| case 'b': |
| case 'B': |
| filter |= (1 << THREAD_BACKGROUND); |
| break; |
| default: |
| break; |
| } |
| ++i; |
| } |
| if (filter == 0) |
| { |
| vty_out(vty, "Invalid filter \"%s\" specified," |
| " must contain at least one of 'RWTEXB'%s", |
| argv[0], VTY_NEWLINE); |
| return CMD_WARNING; |
| } |
| } |
| |
| cpu_record_clear (filter); |
| return CMD_SUCCESS; |
| } |
| |
| static int |
| thread_timer_cmp(void *a, void *b) |
| { |
| struct thread *thread_a = a; |
| struct thread *thread_b = b; |
| |
| long cmp = timeval_cmp(thread_a->u.sands, thread_b->u.sands); |
| |
| if (cmp < 0) |
| return -1; |
| if (cmp > 0) |
| return 1; |
| return 0; |
| } |
| |
| static void |
| thread_timer_update(void *node, int actual_position) |
| { |
| struct thread *thread = node; |
| |
| thread->index = actual_position; |
| } |
| |
| /* Allocate new thread master. */ |
| struct thread_master * |
| thread_master_create () |
| { |
| struct thread_master *rv; |
| struct rlimit limit; |
| |
| getrlimit(RLIMIT_NOFILE, &limit); |
| |
| if (cpu_record == NULL) |
| cpu_record |
| = hash_create ((unsigned int (*) (void *))cpu_record_hash_key, |
| (int (*) (const void *, const void *))cpu_record_hash_cmp); |
| |
| rv = XCALLOC (MTYPE_THREAD_MASTER, sizeof (struct thread_master)); |
| if (rv == NULL) |
| { |
| return NULL; |
| } |
| |
| rv->fd_limit = (int)limit.rlim_cur; |
| rv->read = XCALLOC (MTYPE_THREAD, sizeof (struct thread *) * rv->fd_limit); |
| if (rv->read == NULL) |
| { |
| XFREE (MTYPE_THREAD_MASTER, rv); |
| return NULL; |
| } |
| |
| rv->write = XCALLOC (MTYPE_THREAD, sizeof (struct thread *) * rv->fd_limit); |
| if (rv->write == NULL) |
| { |
| XFREE (MTYPE_THREAD, rv->read); |
| XFREE (MTYPE_THREAD_MASTER, rv); |
| return NULL; |
| } |
| |
| /* Initialize the timer queues */ |
| rv->timer = pqueue_create(); |
| rv->background = pqueue_create(); |
| rv->timer->cmp = rv->background->cmp = thread_timer_cmp; |
| rv->timer->update = rv->background->update = thread_timer_update; |
| |
| return rv; |
| } |
| |
| /* Add a new thread to the list. */ |
| static void |
| thread_list_add (struct thread_list *list, struct thread *thread) |
| { |
| thread->next = NULL; |
| thread->prev = list->tail; |
| if (list->tail) |
| list->tail->next = thread; |
| else |
| list->head = thread; |
| list->tail = thread; |
| list->count++; |
| } |
| |
| /* Delete a thread from the list. */ |
| static struct thread * |
| thread_list_delete (struct thread_list *list, struct thread *thread) |
| { |
| if (thread->next) |
| thread->next->prev = thread->prev; |
| else |
| list->tail = thread->prev; |
| if (thread->prev) |
| thread->prev->next = thread->next; |
| else |
| list->head = thread->next; |
| thread->next = thread->prev = NULL; |
| list->count--; |
| return thread; |
| } |
| |
| static void |
| thread_delete_fd (struct thread **thread_array, struct thread *thread) |
| { |
| thread_array[thread->u.fd] = NULL; |
| } |
| |
| static void |
| thread_add_fd (struct thread **thread_array, struct thread *thread) |
| { |
| thread_array[thread->u.fd] = thread; |
| } |
| |
| /* Move thread to unuse list. */ |
| static void |
| thread_add_unuse (struct thread_master *m, struct thread *thread) |
| { |
| assert (m != NULL && thread != NULL); |
| assert (thread->next == NULL); |
| assert (thread->prev == NULL); |
| assert (thread->type == THREAD_UNUSED); |
| thread_list_add (&m->unuse, thread); |
| } |
| |
| /* Free all unused thread. */ |
| static void |
| thread_list_free (struct thread_master *m, struct thread_list *list) |
| { |
| struct thread *t; |
| struct thread *next; |
| |
| for (t = list->head; t; t = next) |
| { |
| next = t->next; |
| XFREE (MTYPE_THREAD, t); |
| list->count--; |
| m->alloc--; |
| } |
| } |
| |
| static void |
| thread_array_free (struct thread_master *m, struct thread **thread_array) |
| { |
| struct thread *t; |
| int index; |
| |
| for (index = 0; index < m->fd_limit; ++index) |
| { |
| t = thread_array[index]; |
| if (t) |
| { |
| thread_array[index] = NULL; |
| XFREE (MTYPE_THREAD, t); |
| m->alloc--; |
| } |
| } |
| XFREE (MTYPE_THREAD, thread_array); |
| } |
| |
| static void |
| thread_queue_free (struct thread_master *m, struct pqueue *queue) |
| { |
| int i; |
| |
| for (i = 0; i < queue->size; i++) |
| XFREE(MTYPE_THREAD, queue->array[i]); |
| |
| m->alloc -= queue->size; |
| pqueue_delete(queue); |
| } |
| |
| /* Stop thread scheduler. */ |
| void |
| thread_master_free (struct thread_master *m) |
| { |
| thread_array_free (m, m->read); |
| thread_array_free (m, m->write); |
| thread_queue_free (m, m->timer); |
| thread_list_free (m, &m->event); |
| thread_list_free (m, &m->ready); |
| thread_list_free (m, &m->unuse); |
| thread_queue_free (m, m->background); |
| |
| XFREE (MTYPE_THREAD_MASTER, m); |
| |
| if (cpu_record) |
| { |
| hash_clean (cpu_record, cpu_record_hash_free); |
| hash_free (cpu_record); |
| cpu_record = NULL; |
| } |
| } |
| |
| /* Thread list is empty or not. */ |
| static int |
| thread_empty (struct thread_list *list) |
| { |
| return list->head ? 0 : 1; |
| } |
| |
| /* Delete top of the list and return it. */ |
| static struct thread * |
| thread_trim_head (struct thread_list *list) |
| { |
| if (!thread_empty (list)) |
| return thread_list_delete (list, list->head); |
| return NULL; |
| } |
| |
| /* Return remain time in second. */ |
| unsigned long |
| thread_timer_remain_second (struct thread *thread) |
| { |
| quagga_get_relative (NULL); |
| |
| if (thread->u.sands.tv_sec - relative_time.tv_sec > 0) |
| return thread->u.sands.tv_sec - relative_time.tv_sec; |
| else |
| return 0; |
| } |
| |
| struct timeval |
| thread_timer_remain(struct thread *thread) |
| { |
| quagga_get_relative(NULL); |
| |
| return timeval_subtract(thread->u.sands, relative_time); |
| } |
| |
| #define debugargdef const char *funcname, const char *schedfrom, int fromln |
| #define debugargpass funcname, schedfrom, fromln |
| |
| /* Get new thread. */ |
| static struct thread * |
| thread_get (struct thread_master *m, u_char type, |
| int (*func) (struct thread *), void *arg, debugargdef) |
| { |
| struct thread *thread = thread_trim_head (&m->unuse); |
| |
| if (! thread) |
| { |
| thread = XCALLOC (MTYPE_THREAD, sizeof (struct thread)); |
| m->alloc++; |
| } |
| thread->type = type; |
| thread->add_type = type; |
| thread->master = m; |
| thread->func = func; |
| thread->arg = arg; |
| thread->index = -1; |
| |
| thread->funcname = funcname; |
| thread->schedfrom = schedfrom; |
| thread->schedfrom_line = fromln; |
| |
| return thread; |
| } |
| |
| #define fd_copy_fd_set(X) (X) |
| |
| static int |
| fd_select (int size, thread_fd_set *read, thread_fd_set *write, thread_fd_set *except, struct timeval *t) |
| { |
| return(select(size, read, write, except, t)); |
| } |
| |
| static int |
| fd_is_set (int fd, thread_fd_set *fdset) |
| { |
| return FD_ISSET (fd, fdset); |
| } |
| |
| static int |
| fd_clear_read_write (int fd, thread_fd_set *fdset) |
| { |
| if (!FD_ISSET (fd, fdset)) |
| return 0; |
| |
| FD_CLR (fd, fdset); |
| return 1; |
| } |
| |
| static struct thread * |
| funcname_thread_add_read_write (int dir, struct thread_master *m, |
| int (*func) (struct thread *), void *arg, int fd, |
| debugargdef) |
| { |
| struct thread *thread = NULL; |
| thread_fd_set *fdset = NULL; |
| |
| if (dir == THREAD_READ) |
| fdset = &m->readfd; |
| else |
| fdset = &m->writefd; |
| |
| if (FD_ISSET (fd, fdset)) |
| { |
| zlog (NULL, LOG_WARNING, "There is already %s fd [%d]", |
| (dir = THREAD_READ) ? "read" : "write", fd); |
| return NULL; |
| } |
| |
| FD_SET (fd, fdset); |
| |
| thread = thread_get (m, dir, func, arg, debugargpass); |
| thread->u.fd = fd; |
| if (dir == THREAD_READ) |
| thread_add_fd (m->read, thread); |
| else |
| thread_add_fd (m->write, thread); |
| |
| return thread; |
| } |
| |
| /* Add new read thread. */ |
| struct thread * |
| funcname_thread_add_read (struct thread_master *m, |
| int (*func) (struct thread *), void *arg, int fd, |
| debugargdef) |
| { |
| return funcname_thread_add_read_write (THREAD_READ, m, func, |
| arg, fd, debugargpass); |
| } |
| |
| /* Add new write thread. */ |
| struct thread * |
| funcname_thread_add_write (struct thread_master *m, |
| int (*func) (struct thread *), void *arg, int fd, |
| debugargdef) |
| { |
| return funcname_thread_add_read_write (THREAD_WRITE, m, func, |
| arg, fd, debugargpass); |
| } |
| |
| static struct thread * |
| funcname_thread_add_timer_timeval (struct thread_master *m, |
| int (*func) (struct thread *), |
| int type, |
| void *arg, |
| struct timeval *time_relative, |
| debugargdef) |
| { |
| struct thread *thread; |
| struct pqueue *queue; |
| struct timeval alarm_time; |
| |
| assert (m != NULL); |
| |
| assert (type == THREAD_TIMER || type == THREAD_BACKGROUND); |
| assert (time_relative); |
| |
| queue = ((type == THREAD_TIMER) ? m->timer : m->background); |
| thread = thread_get (m, type, func, arg, debugargpass); |
| |
| /* Do we need jitter here? */ |
| quagga_get_relative (NULL); |
| alarm_time.tv_sec = relative_time.tv_sec + time_relative->tv_sec; |
| alarm_time.tv_usec = relative_time.tv_usec + time_relative->tv_usec; |
| thread->u.sands = timeval_adjust(alarm_time); |
| |
| pqueue_enqueue(thread, queue); |
| return thread; |
| } |
| |
| |
| /* Add timer event thread. */ |
| struct thread * |
| funcname_thread_add_timer (struct thread_master *m, |
| int (*func) (struct thread *), |
| void *arg, long timer, |
| debugargdef) |
| { |
| struct timeval trel; |
| |
| assert (m != NULL); |
| |
| trel.tv_sec = timer; |
| trel.tv_usec = 0; |
| |
| return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER, arg, |
| &trel, debugargpass); |
| } |
| |
| /* Add timer event thread with "millisecond" resolution */ |
| struct thread * |
| funcname_thread_add_timer_msec (struct thread_master *m, |
| int (*func) (struct thread *), |
| void *arg, long timer, |
| debugargdef) |
| { |
| struct timeval trel; |
| |
| assert (m != NULL); |
| |
| trel.tv_sec = timer / 1000; |
| trel.tv_usec = 1000*(timer % 1000); |
| |
| return funcname_thread_add_timer_timeval (m, func, THREAD_TIMER, |
| arg, &trel, debugargpass); |
| } |
| |
| /* Add a background thread, with an optional millisec delay */ |
| struct thread * |
| funcname_thread_add_background (struct thread_master *m, |
| int (*func) (struct thread *), |
| void *arg, long delay, |
| debugargdef) |
| { |
| struct timeval trel; |
| |
| assert (m != NULL); |
| |
| if (delay) |
| { |
| trel.tv_sec = delay / 1000; |
| trel.tv_usec = 1000*(delay % 1000); |
| } |
| else |
| { |
| trel.tv_sec = 0; |
| trel.tv_usec = 0; |
| } |
| |
| return funcname_thread_add_timer_timeval (m, func, THREAD_BACKGROUND, |
| arg, &trel, debugargpass); |
| } |
| |
| /* Add simple event thread. */ |
| struct thread * |
| funcname_thread_add_event (struct thread_master *m, |
| int (*func) (struct thread *), void *arg, int val, |
| debugargdef) |
| { |
| struct thread *thread; |
| |
| assert (m != NULL); |
| |
| thread = thread_get (m, THREAD_EVENT, func, arg, debugargpass); |
| thread->u.val = val; |
| thread_list_add (&m->event, thread); |
| |
| return thread; |
| } |
| |
| /* Cancel thread from scheduler. */ |
| void |
| thread_cancel (struct thread *thread) |
| { |
| struct thread_list *list = NULL; |
| struct pqueue *queue = NULL; |
| struct thread **thread_array = NULL; |
| |
| switch (thread->type) |
| { |
| case THREAD_READ: |
| assert (fd_clear_read_write (thread->u.fd, &thread->master->readfd)); |
| thread_array = thread->master->read; |
| break; |
| case THREAD_WRITE: |
| assert (fd_clear_read_write (thread->u.fd, &thread->master->writefd)); |
| thread_array = thread->master->write; |
| break; |
| case THREAD_TIMER: |
| queue = thread->master->timer; |
| break; |
| case THREAD_EVENT: |
| list = &thread->master->event; |
| break; |
| case THREAD_READY: |
| list = &thread->master->ready; |
| break; |
| case THREAD_BACKGROUND: |
| queue = thread->master->background; |
| break; |
| default: |
| return; |
| break; |
| } |
| |
| if (queue) |
| { |
| assert(thread->index >= 0); |
| assert(thread == queue->array[thread->index]); |
| pqueue_remove_at(thread->index, queue); |
| } |
| else if (list) |
| { |
| thread_list_delete (list, thread); |
| } |
| else if (thread_array) |
| { |
| thread_delete_fd (thread_array, thread); |
| } |
| else |
| { |
| assert(!"Thread should be either in queue or list or array!"); |
| } |
| |
| thread->type = THREAD_UNUSED; |
| thread_add_unuse (thread->master, thread); |
| } |
| |
| /* Delete all events which has argument value arg. */ |
| unsigned int |
| thread_cancel_event (struct thread_master *m, void *arg) |
| { |
| unsigned int ret = 0; |
| struct thread *thread; |
| |
| thread = m->event.head; |
| while (thread) |
| { |
| struct thread *t; |
| |
| t = thread; |
| thread = t->next; |
| |
| if (t->arg == arg) |
| { |
| ret++; |
| thread_list_delete (&m->event, t); |
| t->type = THREAD_UNUSED; |
| thread_add_unuse (m, t); |
| } |
| } |
| |
| /* thread can be on the ready list too */ |
| thread = m->ready.head; |
| while (thread) |
| { |
| struct thread *t; |
| |
| t = thread; |
| thread = t->next; |
| |
| if (t->arg == arg) |
| { |
| ret++; |
| thread_list_delete (&m->ready, t); |
| t->type = THREAD_UNUSED; |
| thread_add_unuse (m, t); |
| } |
| } |
| return ret; |
| } |
| |
| static struct timeval * |
| thread_timer_wait (struct pqueue *queue, struct timeval *timer_val) |
| { |
| if (queue->size) |
| { |
| struct thread *next_timer = queue->array[0]; |
| *timer_val = timeval_subtract (next_timer->u.sands, relative_time); |
| return timer_val; |
| } |
| return NULL; |
| } |
| |
| static struct thread * |
| thread_run (struct thread_master *m, struct thread *thread, |
| struct thread *fetch) |
| { |
| *fetch = *thread; |
| thread->type = THREAD_UNUSED; |
| thread_add_unuse (m, thread); |
| return fetch; |
| } |
| |
| static int |
| thread_process_fd (struct thread **thread_array, thread_fd_set *fdset, |
| thread_fd_set *mfdset, int num, int fd_limit) |
| { |
| struct thread *thread; |
| int ready = 0, index; |
| |
| assert (thread_array); |
| |
| for (index = 0; index < fd_limit && ready < num; ++index) |
| { |
| thread = thread_array[index]; |
| if (thread && fd_is_set (THREAD_FD (thread), fdset)) |
| { |
| assert (fd_clear_read_write (THREAD_FD (thread), mfdset)); |
| thread_delete_fd (thread_array, thread); |
| thread_list_add (&thread->master->ready, thread); |
| thread->type = THREAD_READY; |
| ready++; |
| } |
| } |
| return num - ready; |
| } |
| |
| /* Add all timers that have popped to the ready list. */ |
| static unsigned int |
| thread_timer_process (struct pqueue *queue, struct timeval *timenow) |
| { |
| struct thread *thread; |
| unsigned int ready = 0; |
| |
| while (queue->size) |
| { |
| thread = queue->array[0]; |
| if (timeval_cmp (*timenow, thread->u.sands) < 0) |
| return ready; |
| pqueue_dequeue(queue); |
| thread->type = THREAD_READY; |
| thread_list_add (&thread->master->ready, thread); |
| ready++; |
| } |
| return ready; |
| } |
| |
| /* process a list en masse, e.g. for event thread lists */ |
| static unsigned int |
| thread_process (struct thread_list *list) |
| { |
| struct thread *thread; |
| struct thread *next; |
| unsigned int ready = 0; |
| |
| for (thread = list->head; thread; thread = next) |
| { |
| next = thread->next; |
| thread_list_delete (list, thread); |
| thread->type = THREAD_READY; |
| thread_list_add (&thread->master->ready, thread); |
| ready++; |
| } |
| return ready; |
| } |
| |
| |
| /* Fetch next ready thread. */ |
| struct thread * |
| thread_fetch (struct thread_master *m, struct thread *fetch) |
| { |
| struct thread *thread; |
| thread_fd_set readfd; |
| thread_fd_set writefd; |
| thread_fd_set exceptfd; |
| struct timeval timer_val = { .tv_sec = 0, .tv_usec = 0 }; |
| struct timeval timer_val_bg; |
| struct timeval *timer_wait = &timer_val; |
| struct timeval *timer_wait_bg; |
| |
| while (1) |
| { |
| int num = 0; |
| #if defined HAVE_SNMP && defined SNMP_AGENTX |
| struct timeval snmp_timer_wait; |
| int snmpblock = 0; |
| int fdsetsize; |
| #endif |
| |
| /* Signals pre-empt everything */ |
| quagga_sigevent_process (); |
| |
| /* Drain the ready queue of already scheduled jobs, before scheduling |
| * more. |
| */ |
| if ((thread = thread_trim_head (&m->ready)) != NULL) |
| return thread_run (m, thread, fetch); |
| |
| /* To be fair to all kinds of threads, and avoid starvation, we |
| * need to be careful to consider all thread types for scheduling |
| * in each quanta. I.e. we should not return early from here on. |
| */ |
| |
| /* Normal event are the next highest priority. */ |
| thread_process (&m->event); |
| |
| /* Structure copy. */ |
| readfd = fd_copy_fd_set(m->readfd); |
| writefd = fd_copy_fd_set(m->writefd); |
| exceptfd = fd_copy_fd_set(m->exceptfd); |
| |
| /* Calculate select wait timer if nothing else to do */ |
| if (m->ready.count == 0) |
| { |
| quagga_get_relative (NULL); |
| timer_wait = thread_timer_wait (m->timer, &timer_val); |
| timer_wait_bg = thread_timer_wait (m->background, &timer_val_bg); |
| |
| if (timer_wait_bg && |
| (!timer_wait || (timeval_cmp (*timer_wait, *timer_wait_bg) > 0))) |
| timer_wait = timer_wait_bg; |
| } |
| |
| #if defined HAVE_SNMP && defined SNMP_AGENTX |
| /* When SNMP is enabled, we may have to select() on additional |
| FD. snmp_select_info() will add them to `readfd'. The trick |
| with this function is its last argument. We need to set it to |
| 0 if timer_wait is not NULL and we need to use the provided |
| new timer only if it is still set to 0. */ |
| if (agentx_enabled) |
| { |
| fdsetsize = FD_SETSIZE; |
| snmpblock = 1; |
| if (timer_wait) |
| { |
| snmpblock = 0; |
| memcpy(&snmp_timer_wait, timer_wait, sizeof(struct timeval)); |
| } |
| snmp_select_info(&fdsetsize, &readfd, &snmp_timer_wait, &snmpblock); |
| if (snmpblock == 0) |
| timer_wait = &snmp_timer_wait; |
| } |
| #endif |
| num = fd_select (FD_SETSIZE, &readfd, &writefd, &exceptfd, timer_wait); |
| |
| /* Signals should get quick treatment */ |
| if (num < 0) |
| { |
| if (errno == EINTR) |
| continue; /* signal received - process it */ |
| zlog_warn ("select() error: %s", safe_strerror (errno)); |
| return NULL; |
| } |
| |
| #if defined HAVE_SNMP && defined SNMP_AGENTX |
| if (agentx_enabled) |
| { |
| if (num > 0) |
| snmp_read(&readfd); |
| else if (num == 0) |
| { |
| snmp_timeout(); |
| run_alarms(); |
| } |
| netsnmp_check_outstanding_agent_requests(); |
| } |
| #endif |
| |
| /* Check foreground timers. Historically, they have had higher |
| priority than I/O threads, so let's push them onto the ready |
| list in front of the I/O threads. */ |
| quagga_get_relative (NULL); |
| thread_timer_process (m->timer, &relative_time); |
| |
| /* Got IO, process it */ |
| if (num > 0) |
| { |
| /* Normal priority read thread. */ |
| num = thread_process_fd (m->read, &readfd, &m->readfd, num, m->fd_limit); |
| /* Write thread. */ |
| num = thread_process_fd (m->write, &writefd, &m->writefd, num, m->fd_limit); |
| } |
| |
| #if 0 |
| /* If any threads were made ready above (I/O or foreground timer), |
| perhaps we should avoid adding background timers to the ready |
| list at this time. If this is code is uncommented, then background |
| timer threads will not run unless there is nothing else to do. */ |
| if ((thread = thread_trim_head (&m->ready)) != NULL) |
| return thread_run (m, thread, fetch); |
| #endif |
| |
| /* Background timer/events, lowest priority */ |
| thread_timer_process (m->background, &relative_time); |
| |
| if ((thread = thread_trim_head (&m->ready)) != NULL) |
| return thread_run (m, thread, fetch); |
| } |
| } |
| |
| unsigned long |
| thread_consumed_time (RUSAGE_T *now, RUSAGE_T *start, unsigned long *cputime) |
| { |
| #ifdef HAVE_RUSAGE |
| /* This is 'user + sys' time. */ |
| *cputime = timeval_elapsed (now->cpu.ru_utime, start->cpu.ru_utime) + |
| timeval_elapsed (now->cpu.ru_stime, start->cpu.ru_stime); |
| #else |
| *cputime = 0; |
| #endif /* HAVE_RUSAGE */ |
| return timeval_elapsed (now->real, start->real); |
| } |
| |
| /* We should aim to yield after THREAD_YIELD_TIME_SLOT milliseconds. |
| Note: we are using real (wall clock) time for this calculation. |
| It could be argued that CPU time may make more sense in certain |
| contexts. The things to consider are whether the thread may have |
| blocked (in which case wall time increases, but CPU time does not), |
| or whether the system is heavily loaded with other processes competing |
| for CPU time. On balance, wall clock time seems to make sense. |
| Plus it has the added benefit that gettimeofday should be faster |
| than calling getrusage. */ |
| int |
| thread_should_yield (struct thread *thread) |
| { |
| quagga_get_relative (NULL); |
| return (timeval_elapsed(relative_time, thread->real) > |
| THREAD_YIELD_TIME_SLOT); |
| } |
| |
| void |
| thread_getrusage (RUSAGE_T *r) |
| { |
| quagga_get_relative (NULL); |
| #ifdef HAVE_RUSAGE |
| getrusage(RUSAGE_SELF, &(r->cpu)); |
| #endif |
| r->real = relative_time; |
| |
| #ifdef HAVE_CLOCK_MONOTONIC |
| /* quagga_get_relative() only updates recent_time if gettimeofday |
| * based, not when using CLOCK_MONOTONIC. As we export recent_time |
| * and guarantee to update it before threads are run... |
| */ |
| quagga_gettimeofday(&recent_time); |
| #endif /* HAVE_CLOCK_MONOTONIC */ |
| } |
| |
| struct thread *thread_current = NULL; |
| |
| /* We check thread consumed time. If the system has getrusage, we'll |
| use that to get in-depth stats on the performance of the thread in addition |
| to wall clock time stats from gettimeofday. */ |
| void |
| thread_call (struct thread *thread) |
| { |
| unsigned long realtime, cputime; |
| RUSAGE_T before, after; |
| |
| /* Cache a pointer to the relevant cpu history thread, if the thread |
| * does not have it yet. |
| * |
| * Callers submitting 'dummy threads' hence must take care that |
| * thread->cpu is NULL |
| */ |
| if (!thread->hist) |
| { |
| struct cpu_thread_history tmp; |
| |
| tmp.func = thread->func; |
| tmp.funcname = thread->funcname; |
| |
| thread->hist = hash_get (cpu_record, &tmp, |
| (void * (*) (void *))cpu_record_hash_alloc); |
| } |
| |
| GETRUSAGE (&before); |
| thread->real = before.real; |
| |
| thread_current = thread; |
| (*thread->func) (thread); |
| thread_current = NULL; |
| |
| GETRUSAGE (&after); |
| |
| realtime = thread_consumed_time (&after, &before, &cputime); |
| thread->hist->real.total += realtime; |
| if (thread->hist->real.max < realtime) |
| thread->hist->real.max = realtime; |
| #ifdef HAVE_RUSAGE |
| thread->hist->cpu.total += cputime; |
| if (thread->hist->cpu.max < cputime) |
| thread->hist->cpu.max = cputime; |
| #endif |
| |
| ++(thread->hist->total_calls); |
| thread->hist->types |= (1 << thread->add_type); |
| |
| #ifdef CONSUMED_TIME_CHECK |
| if (realtime > CONSUMED_TIME_CHECK) |
| { |
| /* |
| * We have a CPU Hog on our hands. |
| * Whinge about it now, so we're aware this is yet another task |
| * to fix. |
| */ |
| zlog_warn ("SLOW THREAD: task %s (%lx) ran for %lums (cpu time %lums)", |
| thread->funcname, |
| (unsigned long) thread->func, |
| realtime/1000, cputime/1000); |
| } |
| #endif /* CONSUMED_TIME_CHECK */ |
| } |
| |
| /* Execute thread */ |
| struct thread * |
| funcname_thread_execute (struct thread_master *m, |
| int (*func)(struct thread *), |
| void *arg, |
| int val, |
| debugargdef) |
| { |
| struct thread dummy; |
| |
| memset (&dummy, 0, sizeof (struct thread)); |
| |
| dummy.type = THREAD_EVENT; |
| dummy.add_type = THREAD_EXECUTE; |
| dummy.master = NULL; |
| dummy.func = func; |
| dummy.arg = arg; |
| dummy.u.val = val; |
| |
| dummy.funcname = funcname; |
| dummy.schedfrom = schedfrom; |
| dummy.schedfrom_line = fromln; |
| |
| thread_call (&dummy); |
| |
| return NULL; |
| } |