| /* OSPF SPF calculation. |
| Copyright (C) 1999, 2000 Kunihiro Ishiguro, Toshiaki Takada |
| |
| This file is part of GNU Zebra. |
| |
| GNU Zebra is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the |
| Free Software Foundation; either version 2, or (at your option) any |
| later version. |
| |
| GNU Zebra is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GNU Zebra; see the file COPYING. If not, write to the Free |
| Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| 02111-1307, USA. */ |
| |
| #include <zebra.h> |
| |
| #include "thread.h" |
| #include "memory.h" |
| #include "hash.h" |
| #include "linklist.h" |
| #include "prefix.h" |
| #include "if.h" |
| #include "table.h" |
| #include "log.h" |
| #include "sockunion.h" /* for inet_ntop () */ |
| #include "pqueue.h" |
| |
| #include "ospfd/ospfd.h" |
| #include "ospfd/ospf_interface.h" |
| #include "ospfd/ospf_ism.h" |
| #include "ospfd/ospf_asbr.h" |
| #include "ospfd/ospf_lsa.h" |
| #include "ospfd/ospf_lsdb.h" |
| #include "ospfd/ospf_neighbor.h" |
| #include "ospfd/ospf_nsm.h" |
| #include "ospfd/ospf_spf.h" |
| #include "ospfd/ospf_route.h" |
| #include "ospfd/ospf_ia.h" |
| #include "ospfd/ospf_ase.h" |
| #include "ospfd/ospf_abr.h" |
| #include "ospfd/ospf_dump.h" |
| |
| static void ospf_vertex_free (void *); |
| /* List of allocated vertices, to simplify cleanup of SPF. |
| * Not thread-safe obviously. If it ever needs to be, it'd have to be |
| * dynamically allocated at begin of ospf_spf_calculate |
| */ |
| static struct list vertex_list = { .del = ospf_vertex_free }; |
| |
| /* Heap related functions, for the managment of the candidates, to |
| * be used with pqueue. */ |
| static int |
| cmp (void * node1 , void * node2) |
| { |
| struct vertex * v1 = (struct vertex *) node1; |
| struct vertex * v2 = (struct vertex *) node2; |
| if (v1 != NULL && v2 != NULL ) |
| { |
| /* network vertices must be chosen before router vertices of same |
| * cost in order to find all shortest paths |
| */ |
| if ( ((v1->distance - v2->distance) == 0) |
| && (v1->type != v2->type)) |
| { |
| switch (v1->type) |
| { |
| case OSPF_VERTEX_NETWORK: |
| return -1; |
| case OSPF_VERTEX_ROUTER: |
| return 1; |
| } |
| } |
| else |
| return (v1->distance - v2->distance); |
| } |
| return 0; |
| } |
| |
| static void |
| update_stat (void *node , int position) |
| { |
| struct vertex *v = node; |
| |
| /* Set the status of the vertex, when its position changes. */ |
| *(v->stat) = position; |
| } |
| |
| static struct vertex_nexthop * |
| vertex_nexthop_new (void) |
| { |
| return XCALLOC (MTYPE_OSPF_NEXTHOP, sizeof (struct vertex_nexthop)); |
| } |
| |
| static void |
| vertex_nexthop_free (struct vertex_nexthop *nh) |
| { |
| XFREE (MTYPE_OSPF_NEXTHOP, nh); |
| } |
| |
| /* Free the canonical nexthop objects for an area, ie the nexthop objects |
| * attached to the first-hop router vertices, and any intervening network |
| * vertices. |
| */ |
| static void |
| ospf_canonical_nexthops_free (struct vertex *root) |
| { |
| struct listnode *node, *nnode; |
| struct vertex *child; |
| |
| for (ALL_LIST_ELEMENTS (root->children, node, nnode, child)) |
| { |
| struct listnode *n2, *nn2; |
| struct vertex_parent *vp; |
| |
| /* router vertices through an attached network each |
| * have a distinct (canonical / not inherited) nexthop |
| * which must be freed. |
| * |
| * A network vertex can only have router vertices as its |
| * children, so only one level of recursion is possible. |
| */ |
| if (child->type == OSPF_VERTEX_NETWORK) |
| ospf_canonical_nexthops_free (child); |
| |
| /* Free child nexthops pointing back to this root vertex */ |
| for (ALL_LIST_ELEMENTS (child->parents, n2, nn2, vp)) |
| if (vp->parent == root && vp->nexthop) |
| vertex_nexthop_free (vp->nexthop); |
| } |
| } |
| |
| /* TODO: Parent list should be excised, in favour of maintaining only |
| * vertex_nexthop, with refcounts. |
| */ |
| static struct vertex_parent * |
| vertex_parent_new (struct vertex *v, int backlink, struct vertex_nexthop *hop) |
| { |
| struct vertex_parent *new; |
| |
| new = XMALLOC (MTYPE_OSPF_VERTEX_PARENT, sizeof (struct vertex_parent)); |
| |
| if (new == NULL) |
| return NULL; |
| |
| new->parent = v; |
| new->backlink = backlink; |
| new->nexthop = hop; |
| return new; |
| } |
| |
| static void |
| vertex_parent_free (void *p) |
| { |
| XFREE (MTYPE_OSPF_VERTEX_PARENT, p); |
| } |
| |
| static struct vertex * |
| ospf_vertex_new (struct ospf_lsa *lsa) |
| { |
| struct vertex *new; |
| |
| new = XCALLOC (MTYPE_OSPF_VERTEX, sizeof (struct vertex)); |
| |
| new->flags = 0; |
| new->stat = &(lsa->stat); |
| new->type = lsa->data->type; |
| new->id = lsa->data->id; |
| new->lsa = lsa->data; |
| new->distance = 0; |
| new->children = list_new (); |
| new->parents = list_new (); |
| new->parents->del = vertex_parent_free; |
| |
| listnode_add (&vertex_list, new); |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("%s: Created %s vertex %s", __func__, |
| new->type == OSPF_VERTEX_ROUTER ? "Router" : "Network", |
| inet_ntoa (new->lsa->id)); |
| return new; |
| } |
| |
| static void |
| ospf_vertex_free (void *data) |
| { |
| struct vertex *v = data; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("%s: Free %s vertex %s", __func__, |
| v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network", |
| inet_ntoa (v->lsa->id)); |
| |
| /* There should be no parents potentially holding references to this vertex |
| * Children however may still be there, but presumably referenced by other |
| * vertices |
| */ |
| //assert (listcount (v->parents) == 0); |
| |
| if (v->children) |
| list_delete (v->children); |
| v->children = NULL; |
| |
| if (v->parents) |
| list_delete (v->parents); |
| v->parents = NULL; |
| |
| v->lsa = NULL; |
| |
| XFREE (MTYPE_OSPF_VERTEX, v); |
| } |
| |
| static void |
| ospf_vertex_dump(const char *msg, struct vertex *v, |
| int print_parents, int print_children) |
| { |
| if ( ! IS_DEBUG_OSPF_EVENT) |
| return; |
| |
| zlog_debug("%s %s vertex %s distance %u flags %u", |
| msg, |
| v->type == OSPF_VERTEX_ROUTER ? "Router" : "Network", |
| inet_ntoa(v->lsa->id), |
| v->distance, |
| (unsigned int)v->flags); |
| |
| if (print_parents) |
| { |
| struct listnode *node; |
| struct vertex_parent *vp; |
| |
| for (ALL_LIST_ELEMENTS_RO (v->parents, node, vp)) |
| { |
| char buf1[BUFSIZ]; |
| |
| if (vp) |
| { |
| zlog_debug ("parent %s backlink %d nexthop %s interface %s", |
| inet_ntoa(vp->parent->lsa->id), vp->backlink, |
| inet_ntop(AF_INET, &vp->nexthop->router, buf1, BUFSIZ), |
| vp->nexthop->oi ? IF_NAME(vp->nexthop->oi) : "NULL"); |
| } |
| } |
| } |
| |
| if (print_children) |
| { |
| struct listnode *cnode; |
| struct vertex *cv; |
| |
| for (ALL_LIST_ELEMENTS_RO (v->children, cnode, cv)) |
| ospf_vertex_dump(" child:", cv, 0, 0); |
| } |
| } |
| |
| |
| /* Add a vertex to the list of children in each of its parents. */ |
| static void |
| ospf_vertex_add_parent (struct vertex *v) |
| { |
| struct vertex_parent *vp; |
| struct listnode *node; |
| |
| assert (v && v->parents); |
| |
| for (ALL_LIST_ELEMENTS_RO (v->parents, node, vp)) |
| { |
| assert (vp->parent && vp->parent->children); |
| |
| /* No need to add two links from the same parent. */ |
| if (listnode_lookup (vp->parent->children, v) == NULL) |
| listnode_add (vp->parent->children, v); |
| } |
| } |
| |
| static void |
| ospf_spf_init (struct ospf_area *area) |
| { |
| struct vertex *v; |
| |
| /* Create root node. */ |
| v = ospf_vertex_new (area->router_lsa_self); |
| |
| area->spf = v; |
| |
| /* Reset ABR and ASBR router counts. */ |
| area->abr_count = 0; |
| area->asbr_count = 0; |
| } |
| |
| /* return index of link back to V from W, or -1 if no link found */ |
| static int |
| ospf_lsa_has_link (struct lsa_header *w, struct lsa_header *v) |
| { |
| unsigned int i, length; |
| struct router_lsa *rl; |
| struct network_lsa *nl; |
| |
| /* In case of W is Network LSA. */ |
| if (w->type == OSPF_NETWORK_LSA) |
| { |
| if (v->type == OSPF_NETWORK_LSA) |
| return -1; |
| |
| nl = (struct network_lsa *) w; |
| length = (ntohs (w->length) - OSPF_LSA_HEADER_SIZE - 4) / 4; |
| |
| for (i = 0; i < length; i++) |
| if (IPV4_ADDR_SAME (&nl->routers[i], &v->id)) |
| return i; |
| return -1; |
| } |
| |
| /* In case of W is Router LSA. */ |
| if (w->type == OSPF_ROUTER_LSA) |
| { |
| rl = (struct router_lsa *) w; |
| |
| length = ntohs (w->length); |
| |
| for (i = 0; |
| i < ntohs (rl->links) && length >= sizeof (struct router_lsa); |
| i++, length -= 12) |
| { |
| switch (rl->link[i].type) |
| { |
| case LSA_LINK_TYPE_POINTOPOINT: |
| case LSA_LINK_TYPE_VIRTUALLINK: |
| /* Router LSA ID. */ |
| if (v->type == OSPF_ROUTER_LSA && |
| IPV4_ADDR_SAME (&rl->link[i].link_id, &v->id)) |
| { |
| return i; |
| } |
| break; |
| case LSA_LINK_TYPE_TRANSIT: |
| /* Network LSA ID. */ |
| if (v->type == OSPF_NETWORK_LSA && |
| IPV4_ADDR_SAME (&rl->link[i].link_id, &v->id)) |
| { |
| return i; |
| } |
| break; |
| case LSA_LINK_TYPE_STUB: |
| /* Stub can't lead anywhere, carry on */ |
| continue; |
| default: |
| break; |
| } |
| } |
| } |
| return -1; |
| } |
| |
| #define ROUTER_LSA_MIN_SIZE 12 |
| #define ROUTER_LSA_TOS_SIZE 4 |
| |
| /* Find the next link after prev_link from v to w. If prev_link is |
| * NULL, return the first link from v to w. Ignore stub and virtual links; |
| * these link types will never be returned. |
| */ |
| static struct router_lsa_link * |
| ospf_get_next_link (struct vertex *v, struct vertex *w, |
| struct router_lsa_link *prev_link) |
| { |
| u_char *p; |
| u_char *lim; |
| struct router_lsa_link *l; |
| |
| if (prev_link == NULL) |
| p = ((u_char *) v->lsa) + OSPF_LSA_HEADER_SIZE + 4; |
| else |
| { |
| p = (u_char *) prev_link; |
| p += (ROUTER_LSA_MIN_SIZE + |
| (prev_link->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); |
| } |
| |
| lim = ((u_char *) v->lsa) + ntohs (v->lsa->length); |
| |
| while (p < lim) |
| { |
| l = (struct router_lsa_link *) p; |
| |
| p += (ROUTER_LSA_MIN_SIZE + (l->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); |
| |
| if (l->m[0].type == LSA_LINK_TYPE_STUB) |
| continue; |
| |
| /* Defer NH calculation via VLs until summaries from |
| transit areas area confidered */ |
| |
| if (l->m[0].type == LSA_LINK_TYPE_VIRTUALLINK) |
| continue; |
| |
| if (IPV4_ADDR_SAME (&l->link_id, &w->id)) |
| return l; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Consider supplied next-hop for inclusion to the supplied list of |
| * equal-cost next-hops, adjust list as neccessary. |
| * |
| * (Discussed on GNU Zebra list 27 May 2003, [zebra 19184]) |
| * |
| * Note that below is a bit of a hack, and limits ECMP to paths that go to |
| * same nexthop. Where as paths via inequal output_cost interfaces could |
| * still quite easily be ECMP due to remote cost differences. |
| * |
| * TODO: It really should be done by way of recording currently valid |
| * backlinks and determining the appropriate nexthops from the list of |
| * backlinks, or even simpler, just flushing nexthop list if we find a lower |
| * cost path to a candidate vertex in SPF, maybe. |
| */ |
| static void |
| ospf_spf_add_parent (struct vertex *v, struct vertex *w, |
| struct vertex_nexthop *newhop) |
| { |
| struct vertex_parent *vp; |
| |
| /* we must have a newhop.. */ |
| assert (v && w && newhop); |
| |
| /* new parent is <= existing parents, add it */ |
| vp = vertex_parent_new (v, ospf_lsa_has_link (w->lsa, v->lsa), newhop); |
| listnode_add (w->parents, vp); |
| |
| return; |
| } |
| |
| static void |
| ospf_spf_flush_parents (struct vertex *w) |
| { |
| struct vertex_parent *vp; |
| struct listnode *ln, *nn; |
| |
| /* delete the existing nexthops */ |
| for (ALL_LIST_ELEMENTS (w->parents, ln, nn, vp)) |
| { |
| list_delete_node (w->parents, ln); |
| vertex_parent_free (vp); |
| } |
| } |
| |
| /* 16.1.1. Calculate nexthop from root through V (parent) to |
| * vertex W (destination). |
| * |
| * The link must be supplied if V is the root vertex. In all other cases |
| * it may be NULL. |
| */ |
| static void |
| ospf_nexthop_calculation (struct ospf_area *area, struct vertex *v, |
| struct vertex *w, struct router_lsa_link *l) |
| { |
| struct listnode *node, *nnode; |
| struct vertex_nexthop *nh; |
| struct vertex_parent *vp; |
| struct ospf_interface *oi = NULL; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| { |
| zlog_debug ("ospf_nexthop_calculation(): Start"); |
| ospf_vertex_dump("V (parent):", v, 1, 1); |
| ospf_vertex_dump("W (dest) :", w, 1, 1); |
| } |
| |
| if (v == area->spf) |
| { |
| /* 16.1.1 para 4. In the first case, the parent vertex (V) is the |
| root (the calculating router itself). This means that the |
| destination is either a directly connected network or directly |
| connected router. The outgoing interface in this case is simply |
| the OSPF interface connecting to the destination network/router. |
| */ |
| |
| if (w->type == OSPF_VERTEX_ROUTER) |
| { |
| /* l is a link from v to w |
| * l2 will be link from w to v |
| */ |
| struct router_lsa_link *l2 = NULL; |
| |
| /* we *must* be supplied with the link data */ |
| assert (l != NULL); |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| { |
| char buf1[BUFSIZ]; |
| char buf2[BUFSIZ]; |
| |
| zlog_debug("ospf_nexthop_calculation(): considering link " |
| "type %d link_id %s link_data %s", |
| l->m[0].type, |
| inet_ntop (AF_INET, &l->link_id, buf1, BUFSIZ), |
| inet_ntop (AF_INET, &l->link_data, buf2, BUFSIZ)); |
| } |
| |
| if (l->m[0].type == LSA_LINK_TYPE_POINTOPOINT) |
| { |
| /* If the destination is a router which connects to |
| the calculating router via a Point-to-MultiPoint |
| network, the destination's next hop IP address(es) |
| can be determined by examining the destination's |
| router-LSA: each link pointing back to the |
| calculating router and having a Link Data field |
| belonging to the Point-to-MultiPoint network |
| provides an IP address of the next hop router. |
| |
| At this point l is a link from V to W, and V is the |
| root ("us"). Find the local interface associated |
| with l (its address is in l->link_data). If it |
| is a point-to-multipoint interface, then look through |
| the links in the opposite direction (W to V). If |
| any of them have an address that lands within the |
| subnet declared by the PtMP link, then that link |
| is a constituent of the PtMP link, and its address is |
| a nexthop address for V. |
| */ |
| oi = ospf_if_is_configured (area->ospf, &l->link_data); |
| if (oi && oi->type == OSPF_IFTYPE_POINTOMULTIPOINT) |
| { |
| struct prefix_ipv4 la; |
| |
| la.family = AF_INET; |
| la.prefixlen = oi->address->prefixlen; |
| |
| /* V links to W on PtMP interface |
| - find the interface address on W */ |
| while ((l2 = ospf_get_next_link (w, v, l2))) |
| { |
| la.prefix = l2->link_data; |
| |
| if (prefix_cmp ((struct prefix *) &la, |
| oi->address) == 0) |
| /* link_data is on our PtMP network */ |
| break; |
| } |
| } /* end l is on point-to-multipoint link */ |
| else |
| { |
| /* l is a regular point-to-point link. |
| Look for a link from W to V. |
| */ |
| while ((l2 = ospf_get_next_link (w, v, l2))) |
| { |
| oi = ospf_if_is_configured (area->ospf, |
| &(l2->link_data)); |
| |
| if (oi == NULL) |
| continue; |
| |
| if (!IPV4_ADDR_SAME (&oi->address->u.prefix4, |
| &l->link_data)) |
| continue; |
| |
| break; |
| } |
| } |
| |
| if (oi && l2) |
| { |
| /* found all necessary info to build nexthop */ |
| nh = vertex_nexthop_new (); |
| nh->oi = oi; |
| nh->router = l2->link_data; |
| ospf_spf_add_parent (v, w, nh); |
| } |
| else |
| zlog_info("ospf_nexthop_calculation(): " |
| "could not determine nexthop for link"); |
| } /* end point-to-point link from V to W */ |
| else if (l->m[0].type == LSA_LINK_TYPE_VIRTUALLINK) |
| { |
| struct ospf_vl_data *vl_data; |
| |
| /* VLink implementation limitations: |
| * a) vl_data can only reference one nexthop, so no ECMP |
| * to backbone through VLinks. Though transit-area |
| * summaries may be considered, and those can be ECMP. |
| * b) We can only use /one/ VLink, even if multiple ones |
| * exist this router through multiple transit-areas. |
| */ |
| vl_data = ospf_vl_lookup (area->ospf, NULL, l->link_id); |
| |
| if (vl_data |
| && CHECK_FLAG (vl_data->flags, OSPF_VL_FLAG_APPROVED)) |
| { |
| nh = vertex_nexthop_new (); |
| nh->oi = vl_data->nexthop.oi; |
| nh->router = vl_data->nexthop.router; |
| ospf_spf_add_parent (v, w, nh); |
| } |
| else |
| zlog_info("ospf_nexthop_calculation(): " |
| "vl_data for VL link not found"); |
| } /* end virtual-link from V to W */ |
| return; |
| } /* end W is a Router vertex */ |
| else |
| { |
| assert(w->type == OSPF_VERTEX_NETWORK); |
| oi = ospf_if_is_configured (area->ospf, &(l->link_data)); |
| if (oi) |
| { |
| nh = vertex_nexthop_new (); |
| nh->oi = oi; |
| nh->router.s_addr = 0; |
| ospf_spf_add_parent (v, w, nh); |
| return; |
| } |
| } |
| zlog_info("ospf_nexthop_calculation(): " |
| "Unknown attached link"); |
| return; |
| } /* end V is the root */ |
| /* Check if W's parent is a network connected to root. */ |
| else if (v->type == OSPF_VERTEX_NETWORK) |
| { |
| /* See if any of V's parents are the root. */ |
| for (ALL_LIST_ELEMENTS (v->parents, node, nnode, vp)) |
| { |
| if (vp->parent == area->spf) /* connects to root? */ |
| { |
| /* 16.1.1 para 5. ...the parent vertex is a network that |
| * directly connects the calculating router to the destination |
| * router. The list of next hops is then determined by |
| * examining the destination's router-LSA... |
| */ |
| |
| assert(w->type == OSPF_VERTEX_ROUTER); |
| while ((l = ospf_get_next_link (w, v, l))) |
| { |
| /* ...For each link in the router-LSA that points back to the |
| * parent network, the link's Link Data field provides the IP |
| * address of a next hop router. The outgoing interface to |
| * use can then be derived from the next hop IP address (or |
| * it can be inherited from the parent network). |
| */ |
| nh = vertex_nexthop_new (); |
| nh->oi = vp->nexthop->oi; |
| nh->router = l->link_data; |
| ospf_spf_add_parent (v, w, nh); |
| } |
| return; |
| } |
| } |
| } |
| |
| /* 16.1.1 para 4. If there is at least one intervening router in the |
| * current shortest path between the destination and the root, the |
| * destination simply inherits the set of next hops from the |
| * parent. |
| */ |
| for (ALL_LIST_ELEMENTS (v->parents, node, nnode, vp)) |
| ospf_spf_add_parent (v, w, vp->nexthop); |
| |
| return; |
| } |
| |
| /* RFC2328 Section 16.1 (2). |
| * v is on the SPF tree. Examine the links in v's LSA. Update the list |
| * of candidates with any vertices not already on the list. If a lower-cost |
| * path is found to a vertex already on the candidate list, store the new cost. |
| */ |
| static void |
| ospf_spf_next (struct vertex *v, struct ospf_area *area, |
| struct pqueue * candidate) |
| { |
| struct ospf_lsa *w_lsa = NULL; |
| u_char *p; |
| u_char *lim; |
| struct router_lsa_link *l = NULL; |
| struct in_addr *r; |
| int type = 0; |
| |
| /* If this is a router-LSA, and bit V of the router-LSA (see Section |
| A.4.2:RFC2328) is set, set Area A's TransitCapability to TRUE. */ |
| if (v->type == OSPF_VERTEX_ROUTER) |
| { |
| if (IS_ROUTER_LSA_VIRTUAL ((struct router_lsa *) v->lsa)) |
| area->transit = OSPF_TRANSIT_TRUE; |
| } |
| |
| p = ((u_char *) v->lsa) + OSPF_LSA_HEADER_SIZE + 4; |
| lim = ((u_char *) v->lsa) + ntohs (v->lsa->length); |
| |
| while (p < lim) |
| { |
| struct vertex *w; |
| unsigned int distance; |
| |
| /* In case of V is Router-LSA. */ |
| if (v->lsa->type == OSPF_ROUTER_LSA) |
| { |
| l = (struct router_lsa_link *) p; |
| |
| p += (ROUTER_LSA_MIN_SIZE + |
| (l->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); |
| |
| /* (a) If this is a link to a stub network, examine the next |
| link in V's LSA. Links to stub networks will be |
| considered in the second stage of the shortest path |
| calculation. */ |
| if ((type = l->m[0].type) == LSA_LINK_TYPE_STUB) |
| continue; |
| |
| /* (b) Otherwise, W is a transit vertex (router or transit |
| network). Look up the vertex W's LSA (router-LSA or |
| network-LSA) in Area A's link state database. */ |
| switch (type) |
| { |
| case LSA_LINK_TYPE_POINTOPOINT: |
| case LSA_LINK_TYPE_VIRTUALLINK: |
| if (type == LSA_LINK_TYPE_VIRTUALLINK) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("looking up LSA through VL: %s", |
| inet_ntoa (l->link_id)); |
| } |
| |
| w_lsa = ospf_lsa_lookup (area, OSPF_ROUTER_LSA, l->link_id, |
| l->link_id); |
| if (w_lsa) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("found Router LSA %s", inet_ntoa (l->link_id)); |
| } |
| break; |
| case LSA_LINK_TYPE_TRANSIT: |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("Looking up Network LSA, ID: %s", |
| inet_ntoa (l->link_id)); |
| w_lsa = ospf_lsa_lookup_by_id (area, OSPF_NETWORK_LSA, |
| l->link_id); |
| if (w_lsa) |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("found the LSA"); |
| break; |
| default: |
| zlog_warn ("Invalid LSA link type %d", type); |
| continue; |
| } |
| } |
| else |
| { |
| /* In case of V is Network-LSA. */ |
| r = (struct in_addr *) p; |
| p += sizeof (struct in_addr); |
| |
| /* Lookup the vertex W's LSA. */ |
| w_lsa = ospf_lsa_lookup_by_id (area, OSPF_ROUTER_LSA, *r); |
| } |
| |
| /* (b cont.) If the LSA does not exist, or its LS age is equal |
| to MaxAge, or it does not have a link back to vertex V, |
| examine the next link in V's LSA.[23] */ |
| if (w_lsa == NULL) |
| continue; |
| |
| if (IS_LSA_MAXAGE (w_lsa)) |
| continue; |
| |
| if (ospf_lsa_has_link (w_lsa->data, v->lsa) < 0 ) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("The LSA doesn't have a link back"); |
| continue; |
| } |
| |
| /* (c) If vertex W is already on the shortest-path tree, examine |
| the next link in the LSA. */ |
| if (w_lsa->stat == LSA_SPF_IN_SPFTREE) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("The LSA is already in SPF"); |
| continue; |
| } |
| |
| /* (d) Calculate the link state cost D of the resulting path |
| from the root to vertex W. D is equal to the sum of the link |
| state cost of the (already calculated) shortest path to |
| vertex V and the advertised cost of the link between vertices |
| V and W. If D is: */ |
| |
| /* calculate link cost D. */ |
| if (v->lsa->type == OSPF_ROUTER_LSA) |
| distance = v->distance + ntohs (l->m[0].metric); |
| else /* v is not a Router-LSA */ |
| distance = v->distance; |
| |
| /* Is there already vertex W in candidate list? */ |
| if (w_lsa->stat == LSA_SPF_NOT_EXPLORED) |
| { |
| /* prepare vertex W. */ |
| w = ospf_vertex_new (w_lsa); |
| |
| /* Calculate nexthop to W. */ |
| w->distance = distance; |
| |
| ospf_nexthop_calculation (area, v, w, l); |
| pqueue_enqueue (w, candidate); |
| } |
| else if (w_lsa->stat >= 0) |
| { |
| /* Get the vertex from candidates. */ |
| w = candidate->array[w_lsa->stat]; |
| |
| /* if D is greater than. */ |
| if (w->distance < distance) |
| { |
| continue; |
| } |
| /* equal to. */ |
| else if (w->distance == distance) |
| { |
| /* Found an equal-cost path to W. |
| * Calculate nexthop of to W from V. */ |
| ospf_nexthop_calculation (area, v, w, l); |
| } |
| /* less than. */ |
| else |
| { |
| /* Found a lower-cost path to W. */ |
| w->distance = distance; |
| |
| /* Flush existing parent list from W */ |
| ospf_spf_flush_parents (w); |
| |
| /* Calculate new nexthop(s) to W. */ |
| ospf_nexthop_calculation (area, v, w, l); |
| |
| /* Decrease the key of the node in the heap, re-sort the heap. */ |
| trickle_down (w_lsa->stat, candidate); |
| } |
| } /* end W is already on the candidate list */ |
| } /* end loop over the links in V's LSA */ |
| } |
| |
| static void |
| ospf_spf_dump (struct vertex *v, int i) |
| { |
| struct listnode *cnode; |
| struct listnode *nnode; |
| struct vertex_parent *parent; |
| |
| if (v->type == OSPF_VERTEX_ROUTER) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("SPF Result: %d [R] %s", i, inet_ntoa (v->lsa->id)); |
| } |
| else |
| { |
| struct network_lsa *lsa = (struct network_lsa *) v->lsa; |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("SPF Result: %d [N] %s/%d", i, inet_ntoa (v->lsa->id), |
| ip_masklen (lsa->mask)); |
| } |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| for (ALL_LIST_ELEMENTS_RO (v->parents, nnode, parent)) |
| { |
| zlog_debug (" nexthop %p %s %s", |
| parent->nexthop, |
| inet_ntoa (parent->nexthop->router), |
| parent->nexthop->oi ? IF_NAME(parent->nexthop->oi) |
| : "NULL"); |
| } |
| |
| i++; |
| |
| for (ALL_LIST_ELEMENTS_RO (v->children, cnode, v)) |
| ospf_spf_dump (v, i); |
| } |
| |
| /* Second stage of SPF calculation. */ |
| static void |
| ospf_spf_process_stubs (struct ospf_area *area, struct vertex *v, |
| struct route_table *rt) |
| { |
| struct listnode *cnode, *cnnode; |
| struct vertex *child; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("ospf_process_stub():processing stubs for area %s", |
| inet_ntoa (area->area_id)); |
| if (v->type == OSPF_VERTEX_ROUTER) |
| { |
| u_char *p; |
| u_char *lim; |
| struct router_lsa_link *l; |
| struct router_lsa *rlsa; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("ospf_process_stubs():processing router LSA, id: %s", |
| inet_ntoa (v->lsa->id)); |
| rlsa = (struct router_lsa *) v->lsa; |
| |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("ospf_process_stubs(): we have %d links to process", |
| ntohs (rlsa->links)); |
| p = ((u_char *) v->lsa) + OSPF_LSA_HEADER_SIZE + 4; |
| lim = ((u_char *) v->lsa) + ntohs (v->lsa->length); |
| |
| while (p < lim) |
| { |
| l = (struct router_lsa_link *) p; |
| |
| p += (ROUTER_LSA_MIN_SIZE + |
| (l->m[0].tos_count * ROUTER_LSA_TOS_SIZE)); |
| |
| if (l->m[0].type == LSA_LINK_TYPE_STUB) |
| ospf_intra_add_stub (rt, l, v, area); |
| } |
| } |
| |
| ospf_vertex_dump("ospf_process_stubs(): after examining links: ", v, 1, 1); |
| |
| for (ALL_LIST_ELEMENTS (v->children, cnode, cnnode, child)) |
| { |
| if (CHECK_FLAG (child->flags, OSPF_VERTEX_PROCESSED)) |
| continue; |
| |
| ospf_spf_process_stubs (area, child, rt); |
| |
| SET_FLAG (child->flags, OSPF_VERTEX_PROCESSED); |
| } |
| } |
| |
| void |
| ospf_rtrs_free (struct route_table *rtrs) |
| { |
| struct route_node *rn; |
| struct list *or_list; |
| struct ospf_route *or; |
| struct listnode *node, *nnode; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("Route: Router Routing Table free"); |
| |
| for (rn = route_top (rtrs); rn; rn = route_next (rn)) |
| if ((or_list = rn->info) != NULL) |
| { |
| for (ALL_LIST_ELEMENTS (or_list, node, nnode, or)) |
| ospf_route_free (or); |
| |
| list_delete (or_list); |
| |
| /* Unlock the node. */ |
| rn->info = NULL; |
| route_unlock_node (rn); |
| } |
| route_table_finish (rtrs); |
| } |
| |
| static void |
| ospf_rtrs_print (struct route_table *rtrs) |
| { |
| struct route_node *rn; |
| struct list *or_list; |
| struct listnode *ln; |
| struct listnode *pnode; |
| struct ospf_route *or; |
| struct ospf_path *path; |
| char buf1[BUFSIZ]; |
| char buf2[BUFSIZ]; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("ospf_rtrs_print() start"); |
| |
| for (rn = route_top (rtrs); rn; rn = route_next (rn)) |
| if ((or_list = rn->info) != NULL) |
| for (ALL_LIST_ELEMENTS_RO (or_list, ln, or)) |
| { |
| switch (or->path_type) |
| { |
| case OSPF_PATH_INTRA_AREA: |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("%s [%d] area: %s", |
| inet_ntop (AF_INET, &or->id, buf1, BUFSIZ), |
| or->cost, inet_ntop (AF_INET, &or->u.std.area_id, |
| buf2, BUFSIZ)); |
| break; |
| case OSPF_PATH_INTER_AREA: |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("%s IA [%d] area: %s", |
| inet_ntop (AF_INET, &or->id, buf1, BUFSIZ), |
| or->cost, inet_ntop (AF_INET, &or->u.std.area_id, |
| buf2, BUFSIZ)); |
| break; |
| default: |
| break; |
| } |
| |
| for (ALL_LIST_ELEMENTS_RO (or->paths, pnode, path)) |
| { |
| if (path->nexthop.s_addr == 0) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug (" directly attached to %s\r\n", |
| IF_NAME (path->oi)); |
| } |
| else |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug (" via %s, %s\r\n", |
| inet_ntoa (path->nexthop), IF_NAME (path->oi)); |
| } |
| } |
| } |
| |
| zlog_debug ("ospf_rtrs_print() end"); |
| } |
| |
| /* Calculating the shortest-path tree for an area. */ |
| static void |
| ospf_spf_calculate (struct ospf_area *area, struct route_table *new_table, |
| struct route_table *new_rtrs) |
| { |
| struct pqueue *candidate; |
| struct vertex *v; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| { |
| zlog_debug ("ospf_spf_calculate: Start"); |
| zlog_debug ("ospf_spf_calculate: running Dijkstra for area %s", |
| inet_ntoa (area->area_id)); |
| } |
| |
| /* Check router-lsa-self. If self-router-lsa is not yet allocated, |
| return this area's calculation. */ |
| if (!area->router_lsa_self) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("ospf_spf_calculate: " |
| "Skip area %s's calculation due to empty router_lsa_self", |
| inet_ntoa (area->area_id)); |
| return; |
| } |
| |
| /* RFC2328 16.1. (1). */ |
| /* Initialize the algorithm's data structures. */ |
| |
| /* This function scans all the LSA database and set the stat field to |
| * LSA_SPF_NOT_EXPLORED. */ |
| ospf_lsdb_clean_stat (area->lsdb); |
| /* Create a new heap for the candidates. */ |
| candidate = pqueue_create(); |
| candidate->cmp = cmp; |
| candidate->update = update_stat; |
| |
| /* Initialize the shortest-path tree to only the root (which is the |
| router doing the calculation). */ |
| ospf_spf_init (area); |
| v = area->spf; |
| /* Set LSA position to LSA_SPF_IN_SPFTREE. This vertex is the root of the |
| * spanning tree. */ |
| *(v->stat) = LSA_SPF_IN_SPFTREE; |
| |
| /* Set Area A's TransitCapability to FALSE. */ |
| area->transit = OSPF_TRANSIT_FALSE; |
| area->shortcut_capability = 1; |
| |
| for (;;) |
| { |
| /* RFC2328 16.1. (2). */ |
| ospf_spf_next (v, area, candidate); |
| |
| /* RFC2328 16.1. (3). */ |
| /* If at this step the candidate list is empty, the shortest- |
| path tree (of transit vertices) has been completely built and |
| this stage of the procedure terminates. */ |
| if (candidate->size == 0) |
| break; |
| |
| /* Otherwise, choose the vertex belonging to the candidate list |
| that is closest to the root, and add it to the shortest-path |
| tree (removing it from the candidate list in the |
| process). */ |
| /* Extract from the candidates the node with the lower key. */ |
| v = (struct vertex *) pqueue_dequeue (candidate); |
| /* Update stat field in vertex. */ |
| *(v->stat) = LSA_SPF_IN_SPFTREE; |
| |
| ospf_vertex_add_parent (v); |
| |
| /* Note that when there is a choice of vertices closest to the |
| root, network vertices must be chosen before router vertices |
| in order to necessarily find all equal-cost paths. */ |
| /* We don't do this at this moment, we should add the treatment |
| above codes. -- kunihiro. */ |
| |
| /* RFC2328 16.1. (4). */ |
| if (v->type == OSPF_VERTEX_ROUTER) |
| ospf_intra_add_router (new_rtrs, v, area); |
| else |
| ospf_intra_add_transit (new_table, v, area); |
| |
| /* RFC2328 16.1. (5). */ |
| /* Iterate the algorithm by returning to Step 2. */ |
| |
| } /* end loop until no more candidate vertices */ |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| { |
| ospf_spf_dump (area->spf, 0); |
| ospf_route_table_dump (new_table); |
| } |
| |
| /* Second stage of SPF calculation procedure's */ |
| ospf_spf_process_stubs (area, area->spf, new_table); |
| |
| /* Free candidate queue. */ |
| pqueue_delete (candidate); |
| |
| ospf_vertex_dump (__func__, area->spf, 0, 1); |
| /* Free nexthop information, canonical versions of which are attached |
| * the first level of router vertices attached to the root vertex, see |
| * ospf_nexthop_calculation. |
| */ |
| ospf_canonical_nexthops_free (area->spf); |
| |
| /* Free SPF vertices, but not the list. List has ospf_vertex_free |
| * as deconstructor. |
| */ |
| list_delete_all_node (&vertex_list); |
| |
| /* Increment SPF Calculation Counter. */ |
| area->spf_calculation++; |
| |
| quagga_gettime (QUAGGA_CLK_MONOTONIC, &area->ospf->ts_spf); |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("ospf_spf_calculate: Stop. %ld vertices", |
| mtype_stats_alloc(MTYPE_OSPF_VERTEX)); |
| } |
| |
| /* Timer for SPF calculation. */ |
| static int |
| ospf_spf_calculate_timer (struct thread *thread) |
| { |
| struct ospf *ospf = THREAD_ARG (thread); |
| struct route_table *new_table, *new_rtrs; |
| struct ospf_area *area; |
| struct listnode *node, *nnode; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("SPF: Timer (SPF calculation expire)"); |
| |
| ospf->t_spf_calc = NULL; |
| |
| /* Allocate new table tree. */ |
| new_table = route_table_init (); |
| new_rtrs = route_table_init (); |
| |
| ospf_vl_unapprove (ospf); |
| |
| /* Calculate SPF for each area. */ |
| for (ALL_LIST_ELEMENTS (ospf->areas, node, nnode, area)) |
| { |
| /* Do backbone last, so as to first discover intra-area paths |
| * for any back-bone virtual-links |
| */ |
| if (ospf->backbone && ospf->backbone == area) |
| continue; |
| |
| ospf_spf_calculate (area, new_table, new_rtrs); |
| } |
| |
| /* SPF for backbone, if required */ |
| if (ospf->backbone) |
| ospf_spf_calculate (ospf->backbone, new_table, new_rtrs); |
| |
| ospf_vl_shut_unapproved (ospf); |
| |
| ospf_ia_routing (ospf, new_table, new_rtrs); |
| |
| ospf_prune_unreachable_networks (new_table); |
| ospf_prune_unreachable_routers (new_rtrs); |
| |
| /* AS-external-LSA calculation should not be performed here. */ |
| |
| /* If new Router Route is installed, |
| then schedule re-calculate External routes. */ |
| if (1) |
| ospf_ase_calculate_schedule (ospf); |
| |
| ospf_ase_calculate_timer_add (ospf); |
| |
| /* Update routing table. */ |
| ospf_route_install (ospf, new_table); |
| |
| /* Update ABR/ASBR routing table */ |
| if (ospf->old_rtrs) |
| { |
| /* old_rtrs's node holds linked list of ospf_route. --kunihiro. */ |
| /* ospf_route_delete (ospf->old_rtrs); */ |
| ospf_rtrs_free (ospf->old_rtrs); |
| } |
| |
| ospf->old_rtrs = ospf->new_rtrs; |
| ospf->new_rtrs = new_rtrs; |
| |
| if (IS_OSPF_ABR (ospf)) |
| ospf_abr_task (ospf); |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("SPF: calculation complete"); |
| |
| return 0; |
| } |
| |
| /* Add schedule for SPF calculation. To avoid frequenst SPF calc, we |
| set timer for SPF calc. */ |
| void |
| ospf_spf_calculate_schedule (struct ospf *ospf) |
| { |
| unsigned long delay, elapsed, ht; |
| struct timeval result; |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("SPF: calculation timer scheduled"); |
| |
| /* OSPF instance does not exist. */ |
| if (ospf == NULL) |
| return; |
| |
| /* SPF calculation timer is already scheduled. */ |
| if (ospf->t_spf_calc) |
| { |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("SPF: calculation timer is already scheduled: %p", |
| ospf->t_spf_calc); |
| return; |
| } |
| |
| /* XXX Monotic timers: we only care about relative time here. */ |
| result = tv_sub (recent_relative_time (), ospf->ts_spf); |
| |
| elapsed = (result.tv_sec * 1000) + (result.tv_usec / 1000); |
| ht = ospf->spf_holdtime * ospf->spf_hold_multiplier; |
| |
| if (ht > ospf->spf_max_holdtime) |
| ht = ospf->spf_max_holdtime; |
| |
| /* Get SPF calculation delay time. */ |
| if (elapsed < ht) |
| { |
| /* Got an event within the hold time of last SPF. We need to |
| * increase the hold_multiplier, if it's not already at/past |
| * maximum value, and wasn't already increased.. |
| */ |
| if (ht < ospf->spf_max_holdtime) |
| ospf->spf_hold_multiplier++; |
| |
| /* always honour the SPF initial delay */ |
| if ( (ht - elapsed) < ospf->spf_delay) |
| delay = ospf->spf_delay; |
| else |
| delay = ht - elapsed; |
| } |
| else |
| { |
| /* Event is past required hold-time of last SPF */ |
| delay = ospf->spf_delay; |
| ospf->spf_hold_multiplier = 1; |
| } |
| |
| if (IS_DEBUG_OSPF_EVENT) |
| zlog_debug ("SPF: calculation timer delay = %ld", delay); |
| |
| ospf->t_spf_calc = |
| thread_add_timer_msec (master, ospf_spf_calculate_timer, ospf, delay); |
| } |