blob: 2aecf5dac682e524df7a2fccbc4eadfd331ef7a7 [file] [log] [blame]
/* Routing Information Base.
* Copyright (C) 1997, 98, 99, 2001 Kunihiro Ishiguro
*
* This file is part of GNU Zebra.
*
* GNU Zebra is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* GNU Zebra is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Zebra; see the file COPYING. If not, write to the Free
* Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include <zebra.h>
#include "prefix.h"
#include "table.h"
#include "memory.h"
#include "str.h"
#include "command.h"
#include "if.h"
#include "log.h"
#include "sockunion.h"
#include "linklist.h"
#include "thread.h"
#include "workqueue.h"
#include "prefix.h"
#include "routemap.h"
#include "vrf.h"
#include "nexthop.h"
#include "zebra/rib.h"
#include "zebra/rt.h"
#include "zebra/zserv.h"
#include "zebra/redistribute.h"
#include "zebra/debug.h"
#include "zebra/zebra_fpm.h"
#include "zebra/zebra_rnh.h"
/* Default rtm_table for all clients */
extern struct zebra_t zebrad;
/* Hold time for RIB process, should be very minimal.
* it is useful to able to set it otherwise for testing, hence exported
* as global here for test-rig code.
*/
int rib_process_hold_time = 10;
/* Each route type's string and default distance value. */
static const struct
{
int key;
int distance;
} route_info[ZEBRA_ROUTE_MAX] =
{
[ZEBRA_ROUTE_SYSTEM] = {ZEBRA_ROUTE_SYSTEM, 0},
[ZEBRA_ROUTE_KERNEL] = {ZEBRA_ROUTE_KERNEL, 0},
[ZEBRA_ROUTE_CONNECT] = {ZEBRA_ROUTE_CONNECT, 0},
[ZEBRA_ROUTE_STATIC] = {ZEBRA_ROUTE_STATIC, 1},
[ZEBRA_ROUTE_RIP] = {ZEBRA_ROUTE_RIP, 120},
[ZEBRA_ROUTE_RIPNG] = {ZEBRA_ROUTE_RIPNG, 120},
[ZEBRA_ROUTE_OSPF] = {ZEBRA_ROUTE_OSPF, 110},
[ZEBRA_ROUTE_OSPF6] = {ZEBRA_ROUTE_OSPF6, 110},
[ZEBRA_ROUTE_ISIS] = {ZEBRA_ROUTE_ISIS, 115},
[ZEBRA_ROUTE_BGP] = {ZEBRA_ROUTE_BGP, 20 /* IBGP is 200. */},
[ZEBRA_ROUTE_BABEL] = {ZEBRA_ROUTE_BABEL, 95},
/* no entry/default: 150 */
};
/* RPF lookup behaviour */
static enum multicast_mode ipv4_multicast_mode = MCAST_NO_CONFIG;
static void __attribute__((format (printf, 4, 5)))
_rnode_zlog(const char *_func, struct route_node *rn, int priority,
const char *msgfmt, ...)
{
char prefix[PREFIX_STRLEN], buf[256];
char msgbuf[512];
va_list ap;
va_start(ap, msgfmt);
vsnprintf(msgbuf, sizeof(msgbuf), msgfmt, ap);
va_end(ap);
if (rn)
{
rib_table_info_t *info = rn->table->info;
snprintf(buf, sizeof(buf), "%s%s vrf %u",
prefix2str(&rn->p, prefix, sizeof(prefix)),
info->safi == SAFI_MULTICAST ? " (MRIB)" : "",
info->zvrf->vrf_id);
}
else
{
snprintf(buf, sizeof(buf), "{(route_node *) NULL}");
}
zlog (NULL, priority, "%s: %s: %s", _func, buf, msgbuf);
}
#define rnode_debug(node, ...) \
_rnode_zlog(__func__, node, LOG_DEBUG, __VA_ARGS__)
#define rnode_info(node, ...) \
_rnode_zlog(__func__, node, LOG_INFO, __VA_ARGS__)
/* Add nexthop to the end of a rib node's nexthop list */
void
rib_nexthop_add (struct rib *rib, struct nexthop *nexthop)
{
nexthop_add(&rib->nexthop, nexthop);
rib->nexthop_num++;
}
/* Delete specified nexthop from the list. */
static void
rib_nexthop_delete (struct rib *rib, struct nexthop *nexthop)
{
if (nexthop->next)
nexthop->next->prev = nexthop->prev;
if (nexthop->prev)
nexthop->prev->next = nexthop->next;
else
rib->nexthop = nexthop->next;
rib->nexthop_num--;
}
struct nexthop *
rib_nexthop_ifindex_add (struct rib *rib, ifindex_t ifindex)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_IFINDEX;
nexthop->ifindex = ifindex;
rib_nexthop_add (rib, nexthop);
return nexthop;
}
struct nexthop *
rib_nexthop_ifname_add (struct rib *rib, char *ifname)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_IFNAME;
nexthop->ifname = XSTRDUP (MTYPE_TMP, ifname);
rib_nexthop_add (rib, nexthop);
return nexthop;
}
struct nexthop *
rib_nexthop_ipv4_add (struct rib *rib, struct in_addr *ipv4, struct in_addr *src)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_IPV4;
nexthop->gate.ipv4 = *ipv4;
if (src)
nexthop->src.ipv4 = *src;
rib_nexthop_add (rib, nexthop);
return nexthop;
}
struct nexthop *
rib_nexthop_ipv4_ifindex_add (struct rib *rib, struct in_addr *ipv4,
struct in_addr *src, ifindex_t ifindex)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
nexthop->gate.ipv4 = *ipv4;
if (src)
nexthop->src.ipv4 = *src;
nexthop->ifindex = ifindex;
rib_nexthop_add (rib, nexthop);
return nexthop;
}
struct nexthop *
rib_nexthop_ipv6_add (struct rib *rib, struct in6_addr *ipv6)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_IPV6;
nexthop->gate.ipv6 = *ipv6;
rib_nexthop_add (rib, nexthop);
return nexthop;
}
static struct nexthop *
rib_nexthop_ipv6_ifname_add (struct rib *rib, struct in6_addr *ipv6,
char *ifname)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_IPV6_IFNAME;
nexthop->gate.ipv6 = *ipv6;
nexthop->ifname = XSTRDUP (MTYPE_TMP, ifname);
rib_nexthop_add (rib, nexthop);
return nexthop;
}
struct nexthop *
rib_nexthop_ipv6_ifindex_add (struct rib *rib, struct in6_addr *ipv6,
ifindex_t ifindex)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
nexthop->gate.ipv6 = *ipv6;
nexthop->ifindex = ifindex;
rib_nexthop_add (rib, nexthop);
return nexthop;
}
struct nexthop *
rib_nexthop_blackhole_add (struct rib *rib)
{
struct nexthop *nexthop;
nexthop = nexthop_new ();
nexthop->type = NEXTHOP_TYPE_BLACKHOLE;
SET_FLAG (rib->flags, ZEBRA_FLAG_BLACKHOLE);
rib_nexthop_add (rib, nexthop);
return nexthop;
}
/* This method checks whether a recursive nexthop has at
* least one resolved nexthop in the fib.
*/
int
nexthop_has_fib_child(struct nexthop *nexthop)
{
struct nexthop *nh;
if (! CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE))
return 0;
for (nh = nexthop->resolved; nh; nh = nh->next)
if (CHECK_FLAG (nh->flags, NEXTHOP_FLAG_FIB))
return 1;
return 0;
}
/* If force flag is not set, do not modify falgs at all for uninstall
the route from FIB. */
static int
nexthop_active_ipv4 (struct rib *rib, struct nexthop *nexthop, int set,
struct route_node *top)
{
struct prefix_ipv4 p;
struct route_table *table;
struct route_node *rn;
struct rib *match;
int resolved;
struct nexthop *newhop;
struct nexthop *resolved_hop;
if (nexthop->type == NEXTHOP_TYPE_IPV4)
nexthop->ifindex = 0;
if (set)
{
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
nexthops_free(nexthop->resolved);
nexthop->resolved = NULL;
rib->nexthop_mtu = 0;
}
/* Make lookup prefix. */
memset (&p, 0, sizeof (struct prefix_ipv4));
p.family = AF_INET;
p.prefixlen = IPV4_MAX_PREFIXLEN;
p.prefix = nexthop->gate.ipv4;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, rib->vrf_id);
if (! table)
return 0;
rn = route_node_match (table, (struct prefix *) &p);
while (rn)
{
route_unlock_node (rn);
/* If lookup self prefix return immediately. */
if (rn == top)
return 0;
/* Pick up selected route. */
RNODE_FOREACH_RIB (rn, match)
{
if (CHECK_FLAG (match->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (match->status, RIB_ENTRY_SELECTED_FIB))
break;
}
/* If there is no selected route or matched route is EGP, go up
tree. */
if (! match
|| match->type == ZEBRA_ROUTE_BGP)
{
do {
rn = rn->parent;
} while (rn && rn->info == NULL);
if (rn)
route_lock_node (rn);
}
else
{
/* If the longest prefix match for the nexthop yields
* a blackhole, mark it as inactive. */
if (CHECK_FLAG (match->flags, ZEBRA_FLAG_BLACKHOLE)
|| CHECK_FLAG (match->flags, ZEBRA_FLAG_REJECT))
return 0;
if (match->type == ZEBRA_ROUTE_CONNECT)
{
/* Directly point connected route. */
newhop = match->nexthop;
if (newhop && nexthop->type == NEXTHOP_TYPE_IPV4)
nexthop->ifindex = newhop->ifindex;
return 1;
}
else if (CHECK_FLAG (rib->flags, ZEBRA_FLAG_INTERNAL))
{
resolved = 0;
for (newhop = match->nexthop; newhop; newhop = newhop->next)
if (CHECK_FLAG (newhop->flags, NEXTHOP_FLAG_FIB)
&& ! CHECK_FLAG (newhop->flags, NEXTHOP_FLAG_RECURSIVE))
{
if (set)
{
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
resolved_hop = XCALLOC(MTYPE_NEXTHOP, sizeof (struct nexthop));
SET_FLAG (resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
/* If the resolving route specifies a gateway, use it */
if (newhop->type == NEXTHOP_TYPE_IPV4
|| newhop->type == NEXTHOP_TYPE_IPV4_IFINDEX
|| newhop->type == NEXTHOP_TYPE_IPV4_IFNAME)
{
resolved_hop->type = newhop->type;
resolved_hop->gate.ipv4 = newhop->gate.ipv4;
resolved_hop->ifindex = newhop->ifindex;
}
/* If the resolving route is an interface route, it
* means the gateway we are looking up is connected
* to that interface. Therefore, the resolved route
* should have the original gateway as nexthop as it
* is directly connected. */
if (newhop->type == NEXTHOP_TYPE_IFINDEX
|| newhop->type == NEXTHOP_TYPE_IFNAME)
{
resolved_hop->type = NEXTHOP_TYPE_IPV4_IFINDEX;
resolved_hop->gate.ipv4 = nexthop->gate.ipv4;
resolved_hop->ifindex = newhop->ifindex;
}
nexthop_add(&nexthop->resolved, resolved_hop);
}
resolved = 1;
}
if (resolved && set)
rib->nexthop_mtu = match->mtu;
return resolved;
}
else
{
return 0;
}
}
}
return 0;
}
/* If force flag is not set, do not modify falgs at all for uninstall
the route from FIB. */
static int
nexthop_active_ipv6 (struct rib *rib, struct nexthop *nexthop, int set,
struct route_node *top)
{
struct prefix_ipv6 p;
struct route_table *table;
struct route_node *rn;
struct rib *match;
int resolved;
struct nexthop *newhop;
struct nexthop *resolved_hop;
if (nexthop->type == NEXTHOP_TYPE_IPV6)
nexthop->ifindex = 0;
if (set)
{
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
nexthops_free(nexthop->resolved);
nexthop->resolved = NULL;
}
/* Make lookup prefix. */
memset (&p, 0, sizeof (struct prefix_ipv6));
p.family = AF_INET6;
p.prefixlen = IPV6_MAX_PREFIXLEN;
p.prefix = nexthop->gate.ipv6;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP6, SAFI_UNICAST, rib->vrf_id);
if (! table)
return 0;
rn = route_node_match (table, (struct prefix *) &p);
while (rn)
{
route_unlock_node (rn);
/* If lookup self prefix return immediately. */
if (rn == top)
return 0;
/* Pick up selected route. */
RNODE_FOREACH_RIB (rn, match)
{
if (CHECK_FLAG (match->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (match->status, RIB_ENTRY_SELECTED_FIB))
break;
}
/* If there is no selected route or matched route is EGP, go up
tree. */
if (! match
|| match->type == ZEBRA_ROUTE_BGP)
{
do {
rn = rn->parent;
} while (rn && rn->info == NULL);
if (rn)
route_lock_node (rn);
}
else
{
/* If the longest prefix match for the nexthop yields
* a blackhole, mark it as inactive. */
if (CHECK_FLAG (match->flags, ZEBRA_FLAG_BLACKHOLE)
|| CHECK_FLAG (match->flags, ZEBRA_FLAG_REJECT))
return 0;
if (match->type == ZEBRA_ROUTE_CONNECT)
{
/* Directly point connected route. */
newhop = match->nexthop;
if (newhop && nexthop->type == NEXTHOP_TYPE_IPV6)
nexthop->ifindex = newhop->ifindex;
return 1;
}
else if (CHECK_FLAG (rib->flags, ZEBRA_FLAG_INTERNAL))
{
resolved = 0;
for (newhop = match->nexthop; newhop; newhop = newhop->next)
if (CHECK_FLAG (newhop->flags, NEXTHOP_FLAG_FIB)
&& ! CHECK_FLAG (newhop->flags, NEXTHOP_FLAG_RECURSIVE))
{
if (set)
{
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE);
resolved_hop = XCALLOC(MTYPE_NEXTHOP, sizeof (struct nexthop));
SET_FLAG (resolved_hop->flags, NEXTHOP_FLAG_ACTIVE);
/* See nexthop_active_ipv4 for a description how the
* resolved nexthop is constructed. */
if (newhop->type == NEXTHOP_TYPE_IPV6
|| newhop->type == NEXTHOP_TYPE_IPV6_IFINDEX
|| newhop->type == NEXTHOP_TYPE_IPV6_IFNAME)
{
resolved_hop->type = newhop->type;
resolved_hop->gate.ipv6 = newhop->gate.ipv6;
if (newhop->ifindex)
{
resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
resolved_hop->ifindex = newhop->ifindex;
}
}
if (newhop->type == NEXTHOP_TYPE_IFINDEX
|| newhop->type == NEXTHOP_TYPE_IFNAME)
{
resolved_hop->flags |= NEXTHOP_FLAG_ONLINK;
resolved_hop->type = NEXTHOP_TYPE_IPV6_IFINDEX;
resolved_hop->gate.ipv6 = nexthop->gate.ipv6;
resolved_hop->ifindex = newhop->ifindex;
}
nexthop_add(&nexthop->resolved, resolved_hop);
}
resolved = 1;
}
return resolved;
}
else
{
return 0;
}
}
}
return 0;
}
struct rib *
rib_match_ipv4_safi (struct in_addr addr, safi_t safi, int skip_bgp,
struct route_node **rn_out, vrf_id_t vrf_id)
{
struct route_table *table;
struct route_node *rn;
struct rib *match;
struct nexthop *newhop, *tnewhop;
int recursing;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, safi, vrf_id);
if (! table)
return 0;
rn = route_node_match_ipv4 (table, &addr);
while (rn)
{
route_unlock_node (rn);
/* Pick up selected route. */
RNODE_FOREACH_RIB (rn, match)
{
if (CHECK_FLAG (match->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (match->status, RIB_ENTRY_SELECTED_FIB))
break;
}
/* If there is no selected route or matched route is EGP, go up
tree. */
if (!match || (skip_bgp && (match->type == ZEBRA_ROUTE_BGP)))
{
do {
rn = rn->parent;
} while (rn && rn->info == NULL);
if (rn)
route_lock_node (rn);
}
else
{
if (match->type != ZEBRA_ROUTE_CONNECT)
{
int found = 0;
for (ALL_NEXTHOPS_RO(match->nexthop, newhop, tnewhop, recursing))
if (CHECK_FLAG (newhop->flags, NEXTHOP_FLAG_FIB))
{
found = 1;
break;
}
if (!found)
return NULL;
}
if (rn_out)
*rn_out = rn;
return match;
}
}
return NULL;
}
struct rib *
rib_match_ipv4_multicast (struct in_addr addr, struct route_node **rn_out,
vrf_id_t vrf_id)
{
struct rib *rib = NULL, *mrib = NULL, *urib = NULL;
struct route_node *m_rn = NULL, *u_rn = NULL;
int skip_bgp = 0; /* bool */
switch (ipv4_multicast_mode)
{
case MCAST_MRIB_ONLY:
return rib_match_ipv4_safi (addr, SAFI_MULTICAST, skip_bgp, rn_out,
vrf_id);
case MCAST_URIB_ONLY:
return rib_match_ipv4_safi (addr, SAFI_UNICAST, skip_bgp, rn_out,
vrf_id);
case MCAST_NO_CONFIG:
case MCAST_MIX_MRIB_FIRST:
rib = mrib = rib_match_ipv4_safi (addr, SAFI_MULTICAST, skip_bgp, &m_rn,
vrf_id);
if (!mrib)
rib = urib = rib_match_ipv4_safi (addr, SAFI_UNICAST, skip_bgp, &u_rn,
vrf_id);
break;
case MCAST_MIX_DISTANCE:
mrib = rib_match_ipv4_safi (addr, SAFI_MULTICAST, skip_bgp, &m_rn,
vrf_id);
urib = rib_match_ipv4_safi (addr, SAFI_UNICAST, skip_bgp, &u_rn,
vrf_id);
if (mrib && urib)
rib = urib->distance < mrib->distance ? urib : mrib;
else if (mrib)
rib = mrib;
else if (urib)
rib = urib;
break;
case MCAST_MIX_PFXLEN:
mrib = rib_match_ipv4_safi (addr, SAFI_MULTICAST, skip_bgp, &m_rn,
vrf_id);
urib = rib_match_ipv4_safi (addr, SAFI_UNICAST, skip_bgp, &u_rn,
vrf_id);
if (mrib && urib)
rib = u_rn->p.prefixlen > m_rn->p.prefixlen ? urib : mrib;
else if (mrib)
rib = mrib;
else if (urib)
rib = urib;
break;
}
if (rn_out)
*rn_out = (rib == mrib) ? m_rn : u_rn;
if (IS_ZEBRA_DEBUG_RIB)
{
char buf[BUFSIZ];
inet_ntop (AF_INET, &addr, buf, BUFSIZ);
zlog_debug("%s: %s vrf %u: found %s, using %s",
__func__, buf, vrf_id,
mrib ? (urib ? "MRIB+URIB" : "MRIB") :
urib ? "URIB" : "nothing",
rib == urib ? "URIB" : rib == mrib ? "MRIB" : "none");
}
return rib;
}
void
multicast_mode_ipv4_set (enum multicast_mode mode)
{
if (IS_ZEBRA_DEBUG_RIB)
zlog_debug("%s: multicast lookup mode set (%d)", __func__, mode);
ipv4_multicast_mode = mode;
}
enum multicast_mode
multicast_mode_ipv4_get (void)
{
return ipv4_multicast_mode;
}
struct rib *
rib_lookup_ipv4 (struct prefix_ipv4 *p, vrf_id_t vrf_id)
{
struct route_table *table;
struct route_node *rn;
struct rib *match;
struct nexthop *nexthop, *tnexthop;
int recursing;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, vrf_id);
if (! table)
return 0;
rn = route_node_lookup (table, (struct prefix *) p);
/* No route for this prefix. */
if (! rn)
return NULL;
/* Unlock node. */
route_unlock_node (rn);
RNODE_FOREACH_RIB (rn, match)
{
if (CHECK_FLAG (match->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (match->status, RIB_ENTRY_SELECTED_FIB))
break;
}
if (! match || match->type == ZEBRA_ROUTE_BGP)
return NULL;
if (match->type == ZEBRA_ROUTE_CONNECT)
return match;
for (ALL_NEXTHOPS_RO(match->nexthop, nexthop, tnexthop, recursing))
if (CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB))
return match;
return NULL;
}
/*
* This clone function, unlike its original rib_lookup_ipv4(), checks
* if specified IPv4 route record (prefix/mask -> gate) exists in
* the whole RIB and has ZEBRA_FLAG_SELECTED set.
*
* Return values:
* -1: error
* 0: exact match found
* 1: a match was found with a different gate
* 2: connected route found
* 3: no matches found
*/
int
rib_lookup_ipv4_route (struct prefix_ipv4 *p, union sockunion * qgate,
vrf_id_t vrf_id)
{
struct route_table *table;
struct route_node *rn;
struct rib *match;
struct nexthop *nexthop, *tnexthop;
int recursing;
int nexthops_active;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, vrf_id);
if (! table)
return ZEBRA_RIB_LOOKUP_ERROR;
/* Scan the RIB table for exactly matching RIB entry. */
rn = route_node_lookup (table, (struct prefix *) p);
/* No route for this prefix. */
if (! rn)
return ZEBRA_RIB_NOTFOUND;
/* Unlock node. */
route_unlock_node (rn);
/* Find out if a "selected" RR for the discovered RIB entry exists ever. */
RNODE_FOREACH_RIB (rn, match)
{
if (CHECK_FLAG (match->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (match->status, RIB_ENTRY_SELECTED_FIB))
break;
}
/* None such found :( */
if (!match)
return ZEBRA_RIB_NOTFOUND;
if (match->type == ZEBRA_ROUTE_CONNECT)
return ZEBRA_RIB_FOUND_CONNECTED;
/* Ok, we have a cood candidate, let's check it's nexthop list... */
nexthops_active = 0;
for (ALL_NEXTHOPS_RO(match->nexthop, nexthop, tnexthop, recursing))
if (CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB))
{
nexthops_active = 1;
if (nexthop->gate.ipv4.s_addr == sockunion2ip (qgate))
return ZEBRA_RIB_FOUND_EXACT;
if (IS_ZEBRA_DEBUG_RIB)
{
char gate_buf[INET_ADDRSTRLEN], qgate_buf[INET_ADDRSTRLEN];
inet_ntop (AF_INET, &nexthop->gate.ipv4.s_addr, gate_buf, INET_ADDRSTRLEN);
inet_ntop (AF_INET, &sockunion2ip(qgate), qgate_buf, INET_ADDRSTRLEN);
zlog_debug ("%s: qgate == %s, %s == %s", __func__,
qgate_buf, recursing ? "rgate" : "gate", gate_buf);
}
}
if (nexthops_active)
return ZEBRA_RIB_FOUND_NOGATE;
return ZEBRA_RIB_NOTFOUND;
}
struct rib *
rib_match_ipv6 (struct in6_addr *addr, vrf_id_t vrf_id)
{
struct prefix_ipv6 p;
struct route_table *table;
struct route_node *rn;
struct rib *match;
struct nexthop *newhop, *tnewhop;
int recursing;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP6, SAFI_UNICAST, vrf_id);
if (! table)
return 0;
memset (&p, 0, sizeof (struct prefix_ipv6));
p.family = AF_INET6;
p.prefixlen = IPV6_MAX_PREFIXLEN;
IPV6_ADDR_COPY (&p.prefix, addr);
rn = route_node_match (table, (struct prefix *) &p);
while (rn)
{
route_unlock_node (rn);
/* Pick up selected route. */
RNODE_FOREACH_RIB (rn, match)
{
if (CHECK_FLAG (match->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (match->status, RIB_ENTRY_SELECTED_FIB))
break;
}
/* If there is no selected route or matched route is EGP, go up
tree. */
if (! match
|| match->type == ZEBRA_ROUTE_BGP)
{
do {
rn = rn->parent;
} while (rn && rn->info == NULL);
if (rn)
route_lock_node (rn);
}
else
{
if (match->type == ZEBRA_ROUTE_CONNECT)
/* Directly point connected route. */
return match;
else
{
for (ALL_NEXTHOPS_RO(match->nexthop, newhop, tnewhop, recursing))
if (CHECK_FLAG (newhop->flags, NEXTHOP_FLAG_FIB))
return match;
return NULL;
}
}
}
return NULL;
}
#define RIB_SYSTEM_ROUTE(R) \
((R)->type == ZEBRA_ROUTE_KERNEL || (R)->type == ZEBRA_ROUTE_CONNECT)
/* This function verifies reachability of one given nexthop, which can be
* numbered or unnumbered, IPv4 or IPv6. The result is unconditionally stored
* in nexthop->flags field. If the 4th parameter, 'set', is non-zero,
* nexthop->ifindex will be updated appropriately as well.
* An existing route map can turn (otherwise active) nexthop into inactive, but
* not vice versa.
*
* The return value is the final value of 'ACTIVE' flag.
*/
static unsigned
nexthop_active_check (struct route_node *rn, struct rib *rib,
struct nexthop *nexthop, int set)
{
rib_table_info_t *info = rn->table->info;
struct interface *ifp;
route_map_result_t ret = RMAP_MATCH;
extern char *proto_rm[AFI_MAX][ZEBRA_ROUTE_MAX+1];
struct route_map *rmap;
int family;
family = 0;
switch (nexthop->type)
{
case NEXTHOP_TYPE_IFINDEX:
ifp = if_lookup_by_index_vrf (nexthop->ifindex, rib->vrf_id);
if (ifp && if_is_operative(ifp))
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
else
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
break;
case NEXTHOP_TYPE_IPV6_IFNAME:
family = AFI_IP6;
case NEXTHOP_TYPE_IFNAME:
ifp = if_lookup_by_name_vrf (nexthop->ifname, rib->vrf_id);
if (ifp && if_is_operative(ifp))
{
if (set)
nexthop->ifindex = ifp->ifindex;
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
}
else
{
if (set)
nexthop->ifindex = 0;
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
}
break;
case NEXTHOP_TYPE_IPV4:
case NEXTHOP_TYPE_IPV4_IFINDEX:
family = AFI_IP;
if (nexthop_active_ipv4 (rib, nexthop, set, rn))
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
else
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
break;
case NEXTHOP_TYPE_IPV6:
family = AFI_IP6;
if (nexthop_active_ipv6 (rib, nexthop, set, rn))
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
else
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
break;
case NEXTHOP_TYPE_IPV6_IFINDEX:
family = AFI_IP6;
if (IN6_IS_ADDR_LINKLOCAL (&nexthop->gate.ipv6))
{
ifp = if_lookup_by_index_vrf (nexthop->ifindex, rib->vrf_id);
if (ifp && if_is_operative(ifp))
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
else
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
}
else
{
if (nexthop_active_ipv6 (rib, nexthop, set, rn))
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
else
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
}
break;
case NEXTHOP_TYPE_BLACKHOLE:
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
break;
default:
break;
}
if (! CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE))
return 0;
/* XXX: What exactly do those checks do? Do we support
* e.g. IPv4 routes with IPv6 nexthops or vice versa? */
if (RIB_SYSTEM_ROUTE(rib) ||
(family == AFI_IP && rn->p.family != AF_INET) ||
(family == AFI_IP6 && rn->p.family != AF_INET6))
return CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
/* The original code didn't determine the family correctly
* e.g. for NEXTHOP_TYPE_IFINDEX. Retrieve the correct afi
* from the rib_table_info in those cases.
* Possibly it may be better to use only the rib_table_info
* in every case.
*/
if (!family)
family = info->afi;
rmap = 0;
if (rib->type >= 0 && rib->type < ZEBRA_ROUTE_MAX &&
proto_rm[family][rib->type])
rmap = route_map_lookup_by_name (proto_rm[family][rib->type]);
if (!rmap && proto_rm[family][ZEBRA_ROUTE_MAX])
rmap = route_map_lookup_by_name (proto_rm[family][ZEBRA_ROUTE_MAX]);
if (rmap) {
struct nexthop_vrfid nh_vrf = {nexthop, rib->vrf_id};
ret = route_map_apply(rmap, &rn->p, RMAP_ZEBRA, &nh_vrf);
}
if (ret == RMAP_DENYMATCH)
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
return CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
}
/* Iterate over all nexthops of the given RIB entry and refresh their
* ACTIVE flag. rib->nexthop_active_num is updated accordingly. If any
* nexthop is found to toggle the ACTIVE flag, the whole rib structure
* is flagged with RIB_ENTRY_CHANGED. The 4th 'set' argument is
* transparently passed to nexthop_active_check().
*
* Return value is the new number of active nexthops.
*/
static int
nexthop_active_update (struct route_node *rn, struct rib *rib, int set)
{
struct nexthop *nexthop;
unsigned int prev_active, new_active;
ifindex_t prev_index;
rib->nexthop_active_num = 0;
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next)
{
prev_active = CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE);
prev_index = nexthop->ifindex;
if ((new_active = nexthop_active_check (rn, rib, nexthop, set)))
rib->nexthop_active_num++;
if (prev_active != new_active ||
prev_index != nexthop->ifindex)
SET_FLAG (rib->status, RIB_ENTRY_CHANGED);
}
return rib->nexthop_active_num;
}
static int
rib_update_kernel (struct route_node *rn, struct rib *old, struct rib *new)
{
int ret = 0;
struct nexthop *nexthop, *tnexthop;
rib_table_info_t *info = rn->table->info;
int recursing;
if (info->safi != SAFI_UNICAST)
{
if (new)
for (ALL_NEXTHOPS_RO(new->nexthop, nexthop, tnexthop, recursing))
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
if (old)
for (ALL_NEXTHOPS_RO(old->nexthop, nexthop, tnexthop, recursing))
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
return 0;
}
/*
* Make sure we update the FPM any time we send new information to
* the kernel.
*/
zfpm_trigger_update (rn, "updating in kernel");
ret = kernel_route_rib (&rn->p, old, new);
/* This condition is never met, if we are using rt_socket.c */
if (ret < 0 && new)
{
for (ALL_NEXTHOPS_RO(new->nexthop, nexthop, tnexthop, recursing))
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
}
else if (old && old != new)
{
for (ALL_NEXTHOPS_RO(old->nexthop, nexthop, tnexthop, recursing))
UNSET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
}
return ret;
}
/* Uninstall the route from kernel. */
static void
rib_uninstall (struct route_node *rn, struct rib *rib)
{
rib_table_info_t *info = rn->table->info;
if (CHECK_FLAG (rib->status, RIB_ENTRY_SELECTED_FIB))
{
if (info->safi == SAFI_UNICAST)
zfpm_trigger_update (rn, "rib_uninstall");
redistribute_delete (&rn->p, rib);
if (! RIB_SYSTEM_ROUTE (rib))
rib_update_kernel (rn, rib, NULL);
UNSET_FLAG (rib->flags, ZEBRA_FLAG_SELECTED);
}
}
static void rib_unlink (struct route_node *, struct rib *);
/*
* rib_can_delete_dest
*
* Returns TRUE if the given dest can be deleted from the table.
*/
static int
rib_can_delete_dest (rib_dest_t *dest)
{
if (dest->routes)
{
return 0;
}
/*
* Don't delete the dest if we have to update the FPM about this
* prefix.
*/
if (CHECK_FLAG (dest->flags, RIB_DEST_UPDATE_FPM) ||
CHECK_FLAG (dest->flags, RIB_DEST_SENT_TO_FPM))
return 0;
return 1;
}
/*
* rib_gc_dest
*
* Garbage collect the rib dest corresponding to the given route node
* if appropriate.
*
* Returns TRUE if the dest was deleted, FALSE otherwise.
*/
int
rib_gc_dest (struct route_node *rn)
{
rib_dest_t *dest;
dest = rib_dest_from_rnode (rn);
if (!dest)
return 0;
if (!rib_can_delete_dest (dest))
return 0;
if (IS_ZEBRA_DEBUG_RIB)
rnode_debug (rn, "removing dest from table");
dest->rnode = NULL;
XFREE (MTYPE_RIB_DEST, dest);
rn->info = NULL;
/*
* Release the one reference that we keep on the route node.
*/
route_unlock_node (rn);
return 1;
}
/* Check if 'alternate' RIB entry is better than 'current'. */
static struct rib *
rib_choose_best (struct rib *current, struct rib *alternate)
{
if (current == NULL)
return alternate;
/* filter route selection in following order:
* - connected beats other types
* - lower distance beats higher
* - lower metric beats higher for equal distance
* - last, hence oldest, route wins tie break.
*/
/* Connected routes. Pick the last connected
* route of the set of lowest metric connected routes.
*/
if (alternate->type == ZEBRA_ROUTE_CONNECT)
{
if (current->type != ZEBRA_ROUTE_CONNECT
|| alternate->metric <= current->metric)
return alternate;
return current;
}
if (current->type == ZEBRA_ROUTE_CONNECT)
return current;
/* higher distance loses */
if (alternate->distance < current->distance)
return alternate;
if (current->distance < alternate->distance)
return current;
/* metric tie-breaks equal distance */
if (alternate->metric <= current->metric)
return alternate;
return current;
}
/* Core function for processing routing information base. */
static void
rib_process (struct route_node *rn)
{
struct rib *rib;
struct rib *next;
struct rib *old_selected = NULL;
struct rib *new_selected = NULL;
struct rib *old_fib = NULL;
struct rib *new_fib = NULL;
int installed = 0;
struct nexthop *nexthop = NULL, *tnexthop;
int recursing;
rib_table_info_t *info;
assert (rn);
info = rn->table->info;
RNODE_FOREACH_RIB (rn, rib)
{
UNSET_FLAG (rib->status, RIB_ENTRY_CHANGED);
/* Currently installed rib. */
if (CHECK_FLAG (rib->flags, ZEBRA_FLAG_SELECTED))
{
assert (old_selected == NULL);
old_selected = rib;
}
if (CHECK_FLAG (rib->status, RIB_ENTRY_SELECTED_FIB))
{
assert (old_fib == NULL);
old_fib = rib;
}
/* Skip deleted entries from selection */
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
/* Skip unreachable nexthop. */
if (! nexthop_active_update (rn, rib, 0))
continue;
/* Infinit distance. */
if (rib->distance == DISTANCE_INFINITY)
continue;
if (CHECK_FLAG (rib->flags, ZEBRA_FLAG_FIB_OVERRIDE))
new_fib = rib_choose_best(new_fib, rib);
else
new_selected = rib_choose_best(new_selected, rib);
} /* RNODE_FOREACH_RIB_SAFE */
/* If no FIB override route, use the selected route also for FIB */
if (new_fib == NULL)
new_fib = new_selected;
/* After the cycle is finished, the following pointers will be set:
* old_selected --- RIB entry currently having SELECTED
* new_selected --- RIB entry that is newly SELECTED
* old_fib --- RIB entry currently in kernel FIB
* new_fib --- RIB entry that is newly to be in kernel FIB
*
* new_selected will get SELECTED flag, and is going to be redistributed
* the zclients. new_fib (which can be new_selected) will be installed in kernel.
*/
/* Set real nexthops. */
if (new_fib)
nexthop_active_update (rn, new_fib, 1);
if (new_selected && new_selected != new_fib)
nexthop_active_update (rn, new_selected, 1);
/* Update kernel if FIB entry has changed */
if (old_fib != new_fib
|| (new_fib && CHECK_FLAG (new_fib->status, RIB_ENTRY_CHANGED)))
{
if (old_fib && old_fib != new_fib)
{
if (! RIB_SYSTEM_ROUTE (old_fib) && (! new_fib || RIB_SYSTEM_ROUTE (new_fib)))
rib_update_kernel (rn, old_fib, NULL);
UNSET_FLAG (old_fib->status, RIB_ENTRY_SELECTED_FIB);
}
if (new_fib)
{
/* Install new or replace existing FIB entry */
SET_FLAG (new_fib->status, RIB_ENTRY_SELECTED_FIB);
if (! RIB_SYSTEM_ROUTE (new_fib))
rib_update_kernel (rn, old_fib, new_fib);
}
if (info->safi == SAFI_UNICAST)
zfpm_trigger_update (rn, "updating existing route");
}
else if (old_fib == new_fib && new_fib && ! RIB_SYSTEM_ROUTE (new_fib))
{
/* Housekeeping code to deal with race conditions in kernel with
* linux netlink reporting interface up before IPv4 or IPv6 protocol
* is ready to add routes. This makes sure routes are IN the kernel.
*/
for (ALL_NEXTHOPS_RO(new_fib->nexthop, nexthop, tnexthop, recursing))
if (CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB))
{
installed = 1;
break;
}
if (! installed)
rib_update_kernel (rn, NULL, new_fib);
}
/* Redistribute SELECTED entry */
if (old_selected != new_selected
|| (new_selected && CHECK_FLAG (new_selected->status, RIB_ENTRY_CHANGED)))
{
if (old_selected)
{
if (! new_selected)
redistribute_delete (&rn->p, old_selected);
if (old_selected != new_selected)
UNSET_FLAG (old_selected->flags, ZEBRA_FLAG_SELECTED);
}
if (new_selected)
{
/* Install new or replace existing redistributed entry */
SET_FLAG (new_selected->flags, ZEBRA_FLAG_SELECTED);
redistribute_add (&rn->p, new_selected);
}
}
/* Remove all RIB entries queued for removal */
RNODE_FOREACH_RIB_SAFE (rn, rib, next)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
{
if (IS_ZEBRA_DEBUG_RIB)
rnode_debug (rn, "rn %p, removing rib %p",
(void *)rn, (void *)rib);
rib_unlink (rn, rib);
}
}
if (IS_ZEBRA_DEBUG_RIB_Q)
rnode_debug (rn, "rn %p dequeued", (void *)rn);
/*
* Check if the dest can be deleted now.
*/
rib_gc_dest (rn);
}
/* Take a list of route_node structs and return 1, if there was a record
* picked from it and processed by rib_process(). Don't process more,
* than one RN record; operate only in the specified sub-queue.
*/
static unsigned int
process_subq (struct list * subq, u_char qindex)
{
struct listnode *lnode = listhead (subq);
struct route_node *rnode;
if (!lnode)
return 0;
rnode = listgetdata (lnode);
rib_process (rnode);
if (rnode->info)
UNSET_FLAG (rib_dest_from_rnode (rnode)->flags, RIB_ROUTE_QUEUED (qindex));
#if 0
else
{
zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
__func__, rnode, rnode->lock);
zlog_backtrace(LOG_DEBUG);
}
#endif
route_unlock_node (rnode);
list_delete_node (subq, lnode);
return 1;
}
/*
* All meta queues have been processed. Trigger next-hop evaluation.
*/
static void
meta_queue_process_complete (struct work_queue *dummy)
{
zebra_evaluate_rnh_table(0, AF_INET);
#ifdef HAVE_IPV6
zebra_evaluate_rnh_table(0, AF_INET6);
#endif /* HAVE_IPV6 */
}
/* Dispatch the meta queue by picking, processing and unlocking the next RN from
* a non-empty sub-queue with lowest priority. wq is equal to zebra->ribq and data
* is pointed to the meta queue structure.
*/
static wq_item_status
meta_queue_process (struct work_queue *dummy, void *data)
{
struct meta_queue * mq = data;
unsigned i;
for (i = 0; i < MQ_SIZE; i++)
if (process_subq (mq->subq[i], i))
{
mq->size--;
break;
}
return mq->size ? WQ_REQUEUE : WQ_SUCCESS;
}
/*
* Map from rib types to queue type (priority) in meta queue
*/
static const u_char meta_queue_map[ZEBRA_ROUTE_MAX] = {
[ZEBRA_ROUTE_SYSTEM] = 4,
[ZEBRA_ROUTE_KERNEL] = 0,
[ZEBRA_ROUTE_CONNECT] = 0,
[ZEBRA_ROUTE_STATIC] = 1,
[ZEBRA_ROUTE_RIP] = 2,
[ZEBRA_ROUTE_RIPNG] = 2,
[ZEBRA_ROUTE_OSPF] = 2,
[ZEBRA_ROUTE_OSPF6] = 2,
[ZEBRA_ROUTE_ISIS] = 2,
[ZEBRA_ROUTE_BGP] = 3,
[ZEBRA_ROUTE_HSLS] = 4,
[ZEBRA_ROUTE_BABEL] = 2,
};
/* Look into the RN and queue it into one or more priority queues,
* increasing the size for each data push done.
*/
static void
rib_meta_queue_add (struct meta_queue *mq, struct route_node *rn)
{
struct rib *rib;
RNODE_FOREACH_RIB (rn, rib)
{
u_char qindex = meta_queue_map[rib->type];
/* Invariant: at this point we always have rn->info set. */
if (CHECK_FLAG (rib_dest_from_rnode (rn)->flags,
RIB_ROUTE_QUEUED (qindex)))
{
if (IS_ZEBRA_DEBUG_RIB_Q)
rnode_debug (rn, "rn %p is already queued in sub-queue %u",
(void *)rn, qindex);
continue;
}
SET_FLAG (rib_dest_from_rnode (rn)->flags, RIB_ROUTE_QUEUED (qindex));
listnode_add (mq->subq[qindex], rn);
route_lock_node (rn);
mq->size++;
if (IS_ZEBRA_DEBUG_RIB_Q)
rnode_debug (rn, "queued rn %p into sub-queue %u",
(void *)rn, qindex);
}
}
/* Add route_node to work queue and schedule processing */
static void
rib_queue_add (struct zebra_t *zebra, struct route_node *rn)
{
assert (zebra && rn);
/* Pointless to queue a route_node with no RIB entries to add or remove */
if (!rnode_to_ribs (rn))
{
zlog_debug ("%s: called for route_node (%p, %d) with no ribs",
__func__, (void *)rn, rn->lock);
zlog_backtrace(LOG_DEBUG);
return;
}
if (IS_ZEBRA_DEBUG_RIB_Q)
rnode_info (rn, "work queue added");
assert (zebra);
if (zebra->ribq == NULL)
{
zlog_err ("%s: work_queue does not exist!", __func__);
return;
}
/*
* The RIB queue should normally be either empty or holding the only
* work_queue_item element. In the latter case this element would
* hold a pointer to the meta queue structure, which must be used to
* actually queue the route nodes to process. So create the MQ
* holder, if necessary, then push the work into it in any case.
* This semantics was introduced after 0.99.9 release.
*/
if (!zebra->ribq->items->count)
work_queue_add (zebra->ribq, zebra->mq);
rib_meta_queue_add (zebra->mq, rn);
if (IS_ZEBRA_DEBUG_RIB_Q)
rnode_debug (rn, "rn %p queued", (void *)rn);
return;
}
/* Create new meta queue.
A destructor function doesn't seem to be necessary here.
*/
static struct meta_queue *
meta_queue_new (void)
{
struct meta_queue *new;
unsigned i;
new = XCALLOC (MTYPE_WORK_QUEUE, sizeof (struct meta_queue));
assert(new);
for (i = 0; i < MQ_SIZE; i++)
{
new->subq[i] = list_new ();
assert(new->subq[i]);
}
return new;
}
/* initialise zebra rib work queue */
static void
rib_queue_init (struct zebra_t *zebra)
{
assert (zebra);
if (! (zebra->ribq = work_queue_new (zebra->master,
"route_node processing")))
{
zlog_err ("%s: could not initialise work queue!", __func__);
return;
}
/* fill in the work queue spec */
zebra->ribq->spec.workfunc = &meta_queue_process;
zebra->ribq->spec.errorfunc = NULL;
zebra->ribq->spec.completion_func = &meta_queue_process_complete;
/* XXX: TODO: These should be runtime configurable via vty */
zebra->ribq->spec.max_retries = 3;
zebra->ribq->spec.hold = rib_process_hold_time;
if (!(zebra->mq = meta_queue_new ()))
{
zlog_err ("%s: could not initialise meta queue!", __func__);
return;
}
return;
}
/* RIB updates are processed via a queue of pointers to route_nodes.
*
* The queue length is bounded by the maximal size of the routing table,
* as a route_node will not be requeued, if already queued.
*
* RIBs are submitted via rib_addnode or rib_delnode which set minimal
* state, or static_install_route (when an existing RIB is updated)
* and then submit route_node to queue for best-path selection later.
* Order of add/delete state changes are preserved for any given RIB.
*
* Deleted RIBs are reaped during best-path selection.
*
* rib_addnode
* |-> rib_link or unset RIB_ENTRY_REMOVE |->Update kernel with
* |-------->| | best RIB, if required
* | |
* static_install->|->rib_addqueue...... -> rib_process
* | |
* |-------->| |-> rib_unlink
* |-> set RIB_ENTRY_REMOVE |
* rib_delnode (RIB freed)
*
* The 'info' pointer of a route_node points to a rib_dest_t
* ('dest'). Queueing state for a route_node is kept on the dest. The
* dest is created on-demand by rib_link() and is kept around at least
* as long as there are ribs hanging off it (@see rib_gc_dest()).
*
* Refcounting (aka "locking" throughout the GNU Zebra and Quagga code):
*
* - route_nodes: refcounted by:
* - dest attached to route_node:
* - managed by: rib_link/rib_gc_dest
* - route_node processing queue
* - managed by: rib_addqueue, rib_process.
*
*/
/* Add RIB to head of the route node. */
static void
rib_link (struct route_node *rn, struct rib *rib)
{
struct rib *head;
rib_dest_t *dest;
assert (rib && rn);
if (IS_ZEBRA_DEBUG_RIB)
rnode_debug (rn, "rn %p, rib %p", (void *)rn, (void *)rib);
dest = rib_dest_from_rnode (rn);
if (!dest)
{
if (IS_ZEBRA_DEBUG_RIB)
rnode_debug (rn, "adding dest to table");
dest = XCALLOC (MTYPE_RIB_DEST, sizeof (rib_dest_t));
route_lock_node (rn); /* rn route table reference */
rn->info = dest;
dest->rnode = rn;
}
head = dest->routes;
if (head)
{
head->prev = rib;
}
rib->next = head;
dest->routes = rib;
rib_queue_add (&zebrad, rn);
}
static void
rib_addnode (struct route_node *rn, struct rib *rib)
{
/* RIB node has been un-removed before route-node is processed.
* route_node must hence already be on the queue for processing..
*/
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
{
if (IS_ZEBRA_DEBUG_RIB)
rnode_debug (rn, "rn %p, un-removed rib %p", (void *)rn, (void *)rib);
UNSET_FLAG (rib->status, RIB_ENTRY_REMOVED);
return;
}
rib_link (rn, rib);
}
/*
* rib_unlink
*
* Detach a rib structure from a route_node.
*
* Note that a call to rib_unlink() should be followed by a call to
* rib_gc_dest() at some point. This allows a rib_dest_t that is no
* longer required to be deleted.
*/
static void
rib_unlink (struct route_node *rn, struct rib *rib)
{
rib_dest_t *dest;
assert (rn && rib);
if (IS_ZEBRA_DEBUG_RIB)
rnode_debug (rn, "rn %p, rib %p", (void *)rn, (void *)rib);
dest = rib_dest_from_rnode (rn);
if (rib->next)
rib->next->prev = rib->prev;
if (rib->prev)
rib->prev->next = rib->next;
else
{
dest->routes = rib->next;
}
/* free RIB and nexthops */
nexthops_free(rib->nexthop);
XFREE (MTYPE_RIB, rib);
}
static void
rib_delnode (struct route_node *rn, struct rib *rib)
{
if (IS_ZEBRA_DEBUG_RIB)
rnode_debug (rn, "rn %p, rib %p, removing", (void *)rn, (void *)rib);
SET_FLAG (rib->status, RIB_ENTRY_REMOVED);
rib_queue_add (&zebrad, rn);
}
int
rib_add_ipv4 (int type, int flags, struct prefix_ipv4 *p,
struct in_addr *gate, struct in_addr *src,
ifindex_t ifindex, vrf_id_t vrf_id, int table_id,
u_int32_t metric, u_int32_t mtu, u_char distance, safi_t safi)
{
struct rib *rib;
struct rib *same = NULL;
struct route_table *table;
struct route_node *rn;
struct nexthop *nexthop;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, safi, vrf_id);
if (! table)
return 0;
/* Make it sure prefixlen is applied to the prefix. */
apply_mask_ipv4 (p);
/* Set default distance by route type. */
if (distance == 0)
{
if ((unsigned)type >= array_size(route_info))
distance = 150;
else
distance = route_info[type].distance;
/* iBGP distance is 200. */
if (type == ZEBRA_ROUTE_BGP && CHECK_FLAG (flags, ZEBRA_FLAG_IBGP))
distance = 200;
}
/* Lookup route node.*/
rn = route_node_get (table, (struct prefix *) p);
/* If same type of route are installed, treat it as a implicit
withdraw. */
RNODE_FOREACH_RIB (rn, rib)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (rib->type != type)
continue;
if (rib->type != ZEBRA_ROUTE_CONNECT)
{
same = rib;
break;
}
/* Duplicate connected route comes in. */
else if ((nexthop = rib->nexthop) &&
nexthop->type == NEXTHOP_TYPE_IFINDEX &&
nexthop->ifindex == ifindex &&
!CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
{
rib->refcnt++;
return 0 ;
}
}
/* Allocate new rib structure. */
rib = XCALLOC (MTYPE_RIB, sizeof (struct rib));
rib->type = type;
rib->distance = distance;
rib->flags = flags;
rib->metric = metric;
rib->mtu = mtu;
rib->vrf_id = vrf_id;
rib->table = table_id;
rib->nexthop_num = 0;
rib->uptime = time (NULL);
/* Nexthop settings. */
if (gate)
{
if (ifindex)
rib_nexthop_ipv4_ifindex_add (rib, gate, src, ifindex);
else
rib_nexthop_ipv4_add (rib, gate, src);
}
else
rib_nexthop_ifindex_add (rib, ifindex);
/* If this route is kernel route, set FIB flag to the route. */
if (type == ZEBRA_ROUTE_KERNEL || type == ZEBRA_ROUTE_CONNECT)
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next)
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
/* Link new rib to node.*/
if (IS_ZEBRA_DEBUG_RIB)
zlog_debug ("%s: calling rib_addnode (%p, %p)",
__func__, (void *)rn, (void *)rib);
rib_addnode (rn, rib);
/* Free implicit route.*/
if (same)
{
if (IS_ZEBRA_DEBUG_RIB)
zlog_debug ("%s: calling rib_delnode (%p, %p)",
__func__, (void *)rn, (void *)rib);
rib_delnode (rn, same);
}
route_unlock_node (rn);
return 0;
}
/* This function dumps the contents of a given RIB entry into
* standard debug log. Calling function name and IP prefix in
* question are passed as 1st and 2nd arguments.
*/
void _rib_dump (const char * func,
union prefix46constptr pp, const struct rib * rib)
{
const struct prefix *p = pp.p;
char straddr[PREFIX_STRLEN];
struct nexthop *nexthop, *tnexthop;
int recursing;
zlog_debug ("%s: dumping RIB entry %p for %s vrf %u", func, (void *)rib,
prefix2str(p, straddr, sizeof(straddr)), rib->vrf_id);
zlog_debug
(
"%s: refcnt == %lu, uptime == %lu, type == %u, table == %d",
func,
rib->refcnt,
(unsigned long) rib->uptime,
rib->type,
rib->table
);
zlog_debug
(
"%s: metric == %u, distance == %u, flags == %u, status == %u",
func,
rib->metric,
rib->distance,
rib->flags,
rib->status
);
zlog_debug
(
"%s: nexthop_num == %u, nexthop_active_num == %u, nexthop_fib_num == %u",
func,
rib->nexthop_num,
rib->nexthop_active_num,
rib->nexthop_fib_num
);
for (ALL_NEXTHOPS_RO(rib->nexthop, nexthop, tnexthop, recursing))
{
inet_ntop (p->family, &nexthop->gate, straddr, INET6_ADDRSTRLEN);
zlog_debug
(
"%s: %s %s with flags %s%s%s",
func,
(recursing ? " NH" : "NH"),
straddr,
(CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_ACTIVE) ? "ACTIVE " : ""),
(CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB) ? "FIB " : ""),
(CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_RECURSIVE) ? "RECURSIVE" : "")
);
}
zlog_debug ("%s: dump complete", func);
}
/* This is an exported helper to rtm_read() to dump the strange
* RIB entry found by rib_lookup_ipv4_route()
*/
void rib_lookup_and_dump (struct prefix_ipv4 * p)
{
struct route_table *table;
struct route_node *rn;
struct rib *rib;
char prefix_buf[INET_ADDRSTRLEN];
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, VRF_DEFAULT);
if (! table)
{
zlog_err ("%s: zebra_vrf_table() returned NULL", __func__);
return;
}
/* Scan the RIB table for exactly matching RIB entry. */
rn = route_node_lookup (table, (struct prefix *) p);
/* No route for this prefix. */
if (! rn)
{
zlog_debug ("%s: lookup failed for %s", __func__,
prefix2str((struct prefix*) p, prefix_buf, sizeof(prefix_buf)));
return;
}
/* Unlock node. */
route_unlock_node (rn);
/* let's go */
RNODE_FOREACH_RIB (rn, rib)
{
zlog_debug
(
"%s: rn %p, rib %p: %s, %s",
__func__,
(void *)rn,
(void *)rib,
(CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED) ? "removed" : "NOT removed"),
(CHECK_FLAG (rib->flags, ZEBRA_FLAG_SELECTED) ? "selected" : "NOT selected")
);
rib_dump (p, rib);
}
}
int
rib_add_ipv4_multipath (struct prefix_ipv4 *p, struct rib *rib, safi_t safi)
{
struct route_table *table;
struct route_node *rn;
struct rib *same;
struct nexthop *nexthop;
int ret = 0;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, safi, rib->vrf_id);
if (! table)
return 0;
/* Make it sure prefixlen is applied to the prefix. */
apply_mask_ipv4 (p);
/* Set default distance by route type. */
if (rib->distance == 0)
{
rib->distance = route_info[rib->type].distance;
/* iBGP distance is 200. */
if (rib->type == ZEBRA_ROUTE_BGP
&& CHECK_FLAG (rib->flags, ZEBRA_FLAG_IBGP))
rib->distance = 200;
}
/* Lookup route node.*/
rn = route_node_get (table, (struct prefix *) p);
/* If same type of route are installed, treat it as a implicit
withdraw. */
RNODE_FOREACH_RIB (rn, same)
{
if (CHECK_FLAG (same->status, RIB_ENTRY_REMOVED))
continue;
if (same->type == rib->type && same->table == rib->table
&& same->type != ZEBRA_ROUTE_CONNECT)
break;
}
/* If this route is kernel route, set FIB flag to the route. */
if (rib->type == ZEBRA_ROUTE_KERNEL || rib->type == ZEBRA_ROUTE_CONNECT)
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next)
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
/* Link new rib to node.*/
rib_addnode (rn, rib);
ret = 1;
if (IS_ZEBRA_DEBUG_RIB)
{
zlog_debug ("%s: called rib_addnode (%p, %p) on new RIB entry",
__func__, (void *)rn, (void *)rib);
rib_dump (p, rib);
}
/* Free implicit route.*/
if (same)
{
if (IS_ZEBRA_DEBUG_RIB)
{
zlog_debug ("%s: calling rib_delnode (%p, %p) on existing RIB entry",
__func__, (void *)rn, (void *)same);
rib_dump (p, same);
}
rib_delnode (rn, same);
ret = -1;
}
route_unlock_node (rn);
return ret;
}
/* XXX factor with rib_delete_ipv6 */
int
rib_delete_ipv4 (int type, int flags, struct prefix_ipv4 *p,
struct in_addr *gate, ifindex_t ifindex,
vrf_id_t vrf_id, safi_t safi)
{
struct route_table *table;
struct route_node *rn;
struct rib *rib;
struct rib *fib = NULL;
struct rib *same = NULL;
struct nexthop *nexthop, *tnexthop;
int recursing;
char buf1[PREFIX_STRLEN];
char buf2[INET_ADDRSTRLEN];
/* Lookup table. */
table = zebra_vrf_table (AFI_IP, safi, vrf_id);
if (! table)
return 0;
/* Apply mask. */
apply_mask_ipv4 (p);
if (IS_ZEBRA_DEBUG_KERNEL)
{
if (gate)
zlog_debug ("rib_delete_ipv4(): route delete %s vrf %u via %s ifindex %d",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
inet_ntoa (*gate),
ifindex);
else
zlog_debug ("rib_delete_ipv4(): route delete %s vrf %u ifindex %d",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
ifindex);
}
/* Lookup route node. */
rn = route_node_lookup (table, (struct prefix *) p);
if (! rn)
{
if (IS_ZEBRA_DEBUG_KERNEL)
{
if (gate)
zlog_debug ("route %s vrf %u via %s ifindex %d doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
inet_ntop (AF_INET, gate, buf2, INET_ADDRSTRLEN),
ifindex);
else
zlog_debug ("route %s vrf %u ifindex %d doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
ifindex);
}
return ZEBRA_ERR_RTNOEXIST;
}
/* Lookup same type route. */
RNODE_FOREACH_RIB (rn, rib)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (rib->status, RIB_ENTRY_SELECTED_FIB))
fib = rib;
if (rib->type != type)
continue;
if (rib->type == ZEBRA_ROUTE_CONNECT && (nexthop = rib->nexthop) &&
nexthop->type == NEXTHOP_TYPE_IFINDEX)
{
if (nexthop->ifindex != ifindex)
continue;
if (rib->refcnt)
{
rib->refcnt--;
route_unlock_node (rn);
route_unlock_node (rn);
return 0;
}
same = rib;
break;
}
/* Make sure that the route found has the same gateway. */
else
{
if (gate == NULL)
{
same = rib;
break;
}
for (ALL_NEXTHOPS_RO(rib->nexthop, nexthop, tnexthop, recursing))
if (IPV4_ADDR_SAME (&nexthop->gate.ipv4, gate))
{
same = rib;
break;
}
if (same)
break;
}
}
/* If same type of route can't be found and this message is from
kernel. */
if (! same)
{
if (fib && type == ZEBRA_ROUTE_KERNEL &&
CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE))
{
if (IS_ZEBRA_DEBUG_KERNEL)
{
zlog_debug ("Zebra route %s/%d was deleted by others from kernel",
inet_ntop (AF_INET, &p->prefix, buf1, INET_ADDRSTRLEN),
p->prefixlen);
}
/* This means someone else, other than Zebra, has deleted
* a Zebra router from the kernel. We will add it back */
rib_update_kernel(rn, NULL, fib);
}
else
{
if (IS_ZEBRA_DEBUG_KERNEL)
{
if (gate)
zlog_debug ("route %s vrf %u via %s ifindex %d type %d "
"doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
inet_ntop (AF_INET, gate, buf2, INET_ADDRSTRLEN),
ifindex,
type);
else
zlog_debug ("route %s vrf %u ifindex %d type %d doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
ifindex,
type);
}
route_unlock_node (rn);
return ZEBRA_ERR_RTNOEXIST;
}
}
if (same)
rib_delnode (rn, same);
route_unlock_node (rn);
return 0;
}
/* Install static route into rib. */
static void
static_install_route (afi_t afi, safi_t safi, struct prefix *p, struct static_route *si)
{
struct rib *rib;
struct route_node *rn;
struct route_table *table;
/* Lookup table. */
table = zebra_vrf_table (afi, safi, si->vrf_id);
if (! table)
return;
/* Lookup existing route */
rn = route_node_get (table, p);
RNODE_FOREACH_RIB (rn, rib)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (rib->type == ZEBRA_ROUTE_STATIC && rib->distance == si->distance)
break;
}
if (rib)
{
/* if tag value changed , update old value in RIB */
if (rib->tag != si->tag)
rib->tag = si->tag;
/* Same distance static route is there. Update it with new
nexthop. */
route_unlock_node (rn);
switch (si->type)
{
case STATIC_IPV4_GATEWAY:
rib_nexthop_ipv4_add (rib, &si->addr.ipv4, NULL);
break;
case STATIC_IPV4_IFNAME:
rib_nexthop_ifname_add (rib, si->ifname);
break;
case STATIC_IPV4_BLACKHOLE:
rib_nexthop_blackhole_add (rib);
break;
case STATIC_IPV6_GATEWAY:
rib_nexthop_ipv6_add (rib, &si->addr.ipv6);
break;
case STATIC_IPV6_IFNAME:
rib_nexthop_ifname_add (rib, si->ifname);
break;
case STATIC_IPV6_GATEWAY_IFNAME:
rib_nexthop_ipv6_ifname_add (rib, &si->addr.ipv6, si->ifname);
break;
}
rib_queue_add (&zebrad, rn);
}
else
{
/* This is new static route. */
rib = XCALLOC (MTYPE_RIB, sizeof (struct rib));
rib->type = ZEBRA_ROUTE_STATIC;
rib->distance = si->distance;
rib->metric = 0;
rib->vrf_id = si->vrf_id;
rib->table = zebrad.rtm_table_default;
rib->nexthop_num = 0;
rib->tag = si->tag;
switch (si->type)
{
case STATIC_IPV4_GATEWAY:
rib_nexthop_ipv4_add (rib, &si->addr.ipv4, NULL);
break;
case STATIC_IPV4_IFNAME:
rib_nexthop_ifname_add (rib, si->ifname);
break;
case STATIC_IPV4_BLACKHOLE:
rib_nexthop_blackhole_add (rib);
break;
case STATIC_IPV6_GATEWAY:
rib_nexthop_ipv6_add (rib, &si->addr.ipv6);
break;
case STATIC_IPV6_IFNAME:
rib_nexthop_ifname_add (rib, si->ifname);
break;
case STATIC_IPV6_GATEWAY_IFNAME:
rib_nexthop_ipv6_ifname_add (rib, &si->addr.ipv6, si->ifname);
break;
}
/* Save the flags of this static routes (reject, blackhole) */
rib->flags = si->flags;
/* Link this rib to the tree. */
rib_addnode (rn, rib);
}
}
static int
static_nexthop_same (struct nexthop *nexthop, struct static_route *si)
{
if (nexthop->type == NEXTHOP_TYPE_IPV4
&& si->type == STATIC_IPV4_GATEWAY
&& IPV4_ADDR_SAME (&nexthop->gate.ipv4, &si->addr.ipv4))
return 1;
if (nexthop->type == NEXTHOP_TYPE_IFNAME
&& si->type == STATIC_IPV4_IFNAME
&& strcmp (nexthop->ifname, si->ifname) == 0)
return 1;
if (nexthop->type == NEXTHOP_TYPE_BLACKHOLE
&& si->type == STATIC_IPV4_BLACKHOLE)
return 1;
if (nexthop->type == NEXTHOP_TYPE_IPV6
&& si->type == STATIC_IPV6_GATEWAY
&& IPV6_ADDR_SAME (&nexthop->gate.ipv6, &si->addr.ipv6))
return 1;
if (nexthop->type == NEXTHOP_TYPE_IFNAME
&& si->type == STATIC_IPV6_IFNAME
&& strcmp (nexthop->ifname, si->ifname) == 0)
return 1;
if (nexthop->type == NEXTHOP_TYPE_IPV6_IFNAME
&& si->type == STATIC_IPV6_GATEWAY_IFNAME
&& IPV6_ADDR_SAME (&nexthop->gate.ipv6, &si->addr.ipv6)
&& strcmp (nexthop->ifname, si->ifname) == 0)
return 1;
return 0;
}
/* Uninstall static route from RIB. */
static void
static_uninstall_route (afi_t afi, safi_t safi, struct prefix *p, struct static_route *si)
{
struct route_node *rn;
struct rib *rib;
struct nexthop *nexthop;
struct route_table *table;
/* Lookup table. */
table = zebra_vrf_table (afi, safi, si->vrf_id);
if (! table)
return;
/* Lookup existing route with type and distance. */
rn = route_node_lookup (table, p);
if (! rn)
return;
RNODE_FOREACH_RIB (rn, rib)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (rib->type == ZEBRA_ROUTE_STATIC && rib->distance == si->distance &&
rib->tag == si->tag)
break;
}
if (! rib)
{
route_unlock_node (rn);
return;
}
/* Lookup nexthop. */
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next)
if (static_nexthop_same (nexthop, si))
break;
/* Can't find nexthop. */
if (! nexthop)
{
route_unlock_node (rn);
return;
}
/* Check nexthop. */
if (rib->nexthop_num == 1)
rib_delnode (rn, rib);
else
{
if (CHECK_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB))
rib_uninstall (rn, rib);
rib_nexthop_delete (rib, nexthop);
nexthop_free (nexthop);
rib_queue_add (&zebrad, rn);
}
/* Unlock node. */
route_unlock_node (rn);
}
int
static_add_ipv4_safi (safi_t safi, struct prefix *p, struct in_addr *gate,
const char *ifname, u_char flags, route_tag_t tag,
u_char distance, vrf_id_t vrf_id)
{
u_char type = 0;
struct route_node *rn;
struct static_route *si;
struct static_route *pp;
struct static_route *cp;
struct static_route *update = NULL;
struct zebra_vrf *zvrf = vrf_info_get (vrf_id);
struct route_table *stable = zvrf->stable[AFI_IP][safi];
if (! stable)
return -1;
/* Lookup static route prefix. */
rn = route_node_get (stable, p);
/* Make flags. */
if (gate)
type = STATIC_IPV4_GATEWAY;
else if (ifname)
type = STATIC_IPV4_IFNAME;
else
type = STATIC_IPV4_BLACKHOLE;
/* Do nothing if there is a same static route. */
for (si = rn->info; si; si = si->next)
{
if (type == si->type
&& (! gate || IPV4_ADDR_SAME (gate, &si->addr.ipv4))
&& (! ifname || strcmp (ifname, si->ifname) == 0))
{
if (distance == si->distance &&
tag == si->tag)
{
route_unlock_node (rn);
return 0;
}
else
update = si;
}
}
/* Distance or tag changed. */
if (update)
static_delete_ipv4_safi (safi, p, gate, ifname, update->tag, update->distance, vrf_id);
/* Make new static route structure. */
si = XCALLOC (MTYPE_STATIC_ROUTE, sizeof (struct static_route));
si->type = type;
si->distance = distance;
si->tag = tag;
si->flags = flags;
si->vrf_id = vrf_id;
if (gate)
si->addr.ipv4 = *gate;
if (ifname)
si->ifname = XSTRDUP (MTYPE_TMP, ifname);
/* Add new static route information to the tree with sort by
distance value and gateway address. */
for (pp = NULL, cp = rn->info; cp; pp = cp, cp = cp->next)
{
if (si->distance < cp->distance)
break;
if (si->distance > cp->distance)
continue;
if (si->type == STATIC_IPV4_GATEWAY && cp->type == STATIC_IPV4_GATEWAY)
{
if (ntohl (si->addr.ipv4.s_addr) < ntohl (cp->addr.ipv4.s_addr))
break;
if (ntohl (si->addr.ipv4.s_addr) > ntohl (cp->addr.ipv4.s_addr))
continue;
}
}
/* Make linked list. */
if (pp)
pp->next = si;
else
rn->info = si;
if (cp)
cp->prev = si;
si->prev = pp;
si->next = cp;
/* Install into rib. */
static_install_route (AFI_IP, safi, p, si);
return 1;
}
int
static_delete_ipv4_safi (safi_t safi, struct prefix *p, struct in_addr *gate,
const char *ifname, route_tag_t tag, u_char distance,
vrf_id_t vrf_id)
{
u_char type = 0;
struct route_node *rn;
struct static_route *si;
struct route_table *stable;
/* Lookup table. */
stable = zebra_vrf_static_table (AFI_IP, safi, vrf_id);
if (! stable)
return -1;
/* Lookup static route prefix. */
rn = route_node_lookup (stable, p);
if (! rn)
return 0;
/* Make flags. */
if (gate)
type = STATIC_IPV4_GATEWAY;
else if (ifname)
type = STATIC_IPV4_IFNAME;
else
type = STATIC_IPV4_BLACKHOLE;
/* Find same static route is the tree */
for (si = rn->info; si; si = si->next)
if (type == si->type
&& (! gate || IPV4_ADDR_SAME (gate, &si->addr.ipv4))
&& (! ifname || strcmp (ifname, si->ifname) == 0)
&& (! tag || (tag == si->tag)))
break;
/* Can't find static route. */
if (! si)
{
route_unlock_node (rn);
return 0;
}
/* Install into rib. */
static_uninstall_route (AFI_IP, safi, p, si);
/* Unlink static route from linked list. */
if (si->prev)
si->prev->next = si->next;
else
rn->info = si->next;
if (si->next)
si->next->prev = si->prev;
route_unlock_node (rn);
/* Free static route configuration. */
if (ifname)
XFREE (0, si->ifname);
XFREE (MTYPE_STATIC_ROUTE, si);
route_unlock_node (rn);
return 1;
}
int
rib_add_ipv6 (int type, int flags, struct prefix_ipv6 *p,
struct in6_addr *gate, ifindex_t ifindex,
vrf_id_t vrf_id, int table_id,
u_int32_t metric, u_int32_t mtu, u_char distance, safi_t safi)
{
struct rib *rib;
struct rib *same = NULL;
struct route_table *table;
struct route_node *rn;
struct nexthop *nexthop;
/* Lookup table. */
table = zebra_vrf_table (AFI_IP6, safi, vrf_id);
if (! table)
return 0;
/* Make sure mask is applied. */
apply_mask_ipv6 (p);
/* Set default distance by route type. */
if (!distance)
distance = route_info[type].distance;
if (type == ZEBRA_ROUTE_BGP && CHECK_FLAG (flags, ZEBRA_FLAG_IBGP))
distance = 200;
/* Lookup route node.*/
rn = route_node_get (table, (struct prefix *) p);
/* If same type of route are installed, treat it as a implicit
withdraw. */
RNODE_FOREACH_RIB (rn, rib)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (rib->type != type)
continue;
if (rib->type != ZEBRA_ROUTE_CONNECT)
{
same = rib;
break;
}
else if ((nexthop = rib->nexthop) &&
nexthop->type == NEXTHOP_TYPE_IFINDEX &&
nexthop->ifindex == ifindex)
{
rib->refcnt++;
return 0;
}
}
/* Allocate new rib structure. */
rib = XCALLOC (MTYPE_RIB, sizeof (struct rib));
rib->type = type;
rib->distance = distance;
rib->flags = flags;
rib->metric = metric;
rib->mtu = mtu;
rib->vrf_id = vrf_id;
rib->table = table_id;
rib->nexthop_num = 0;
rib->uptime = time (NULL);
/* Nexthop settings. */
if (gate)
{
if (ifindex)
rib_nexthop_ipv6_ifindex_add (rib, gate, ifindex);
else
rib_nexthop_ipv6_add (rib, gate);
}
else
rib_nexthop_ifindex_add (rib, ifindex);
/* If this route is kernel route, set FIB flag to the route. */
if (type == ZEBRA_ROUTE_KERNEL || type == ZEBRA_ROUTE_CONNECT)
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next)
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
/* Link new rib to node.*/
rib_addnode (rn, rib);
if (IS_ZEBRA_DEBUG_RIB)
{
zlog_debug ("%s: called rib_addnode (%p, %p) on new RIB entry",
__func__, (void *)rn, (void *)rib);
rib_dump (p, rib);
}
/* Free implicit route.*/
if (same)
{
if (IS_ZEBRA_DEBUG_RIB)
{
zlog_debug ("%s: calling rib_delnode (%p, %p) on existing RIB entry",
__func__, (void *)rn, (void *)same);
rib_dump (p, same);
}
rib_delnode (rn, same);
}
route_unlock_node (rn);
return 0;
}
int
rib_add_ipv6_multipath (struct prefix_ipv6 *p, struct rib *rib, safi_t safi)
{
struct route_table *table;
struct route_node *rn;
struct rib *same = NULL;
struct nexthop *nexthop;
int ret = 0;
if (!rib)
return 0; /* why are we getting called with NULL rib */
/* Lookup table. */
table = zebra_vrf_table (AFI_IP6, safi, rib->vrf_id);
if (! table)
return 0;
/* Make sure mask is applied. */
apply_mask_ipv6 (p);
/* Set default distance by route type. */
if (rib->distance == 0)
{
rib->distance = route_info[rib->type].distance;
/* iBGP distance is 200. */
if (rib->type == ZEBRA_ROUTE_BGP
&& CHECK_FLAG (rib->flags, ZEBRA_FLAG_IBGP))
rib->distance = 200;
}
/* Lookup route node.*/
rn = route_node_get (table, (struct prefix *) p);
/* If same type of route are installed, treat it as a implicit
withdraw. */
RNODE_FOREACH_RIB (rn, same) {
if (CHECK_FLAG (same->status, RIB_ENTRY_REMOVED)) {
continue;
}
if (same->type != rib->type) {
continue;
}
if (same->table != rib->table) {
continue;
}
if (same->type != ZEBRA_ROUTE_CONNECT) {
break;
}
}
/* If this route is kernel route, set FIB flag to the route. */
if (rib->type == ZEBRA_ROUTE_KERNEL || rib->type == ZEBRA_ROUTE_CONNECT) {
for (nexthop = rib->nexthop; nexthop; nexthop = nexthop->next) {
SET_FLAG (nexthop->flags, NEXTHOP_FLAG_FIB);
}
}
/* Link new rib to node.*/
rib_addnode (rn, rib);
ret = 1;
/* Free implicit route.*/
if (same)
{
if (IS_ZEBRA_DEBUG_RIB)
{
zlog_debug ("%s: calling rib_delnode (%p, %p) on existing RIB entry",
__func__, rn, same);
rib_dump ((struct prefix *)p, same);
}
rib_delnode (rn, same);
ret = -1;
}
route_unlock_node (rn);
return ret;
}
/* XXX factor with rib_delete_ipv6 */
int
rib_delete_ipv6 (int type, int flags, struct prefix_ipv6 *p,
struct in6_addr *gate, ifindex_t ifindex,
vrf_id_t vrf_id, safi_t safi)
{
struct route_table *table;
struct route_node *rn;
struct rib *rib;
struct rib *fib = NULL;
struct rib *same = NULL;
struct nexthop *nexthop, *tnexthop;
int recursing;
char buf1[PREFIX_STRLEN];
char buf2[INET6_ADDRSTRLEN];
/* Apply mask. */
apply_mask_ipv6 (p);
/* Lookup table. */
table = zebra_vrf_table (AFI_IP6, safi, vrf_id);
if (! table)
return 0;
/* Lookup route node. */
rn = route_node_lookup (table, (struct prefix *) p);
if (! rn)
{
if (IS_ZEBRA_DEBUG_KERNEL)
{
if (gate)
zlog_debug ("route %s vrf %u via %s ifindex %d doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
inet_ntop (AF_INET6, gate, buf2, INET6_ADDRSTRLEN),
ifindex);
else
zlog_debug ("route %s vrf %u ifindex %d doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
ifindex);
}
return ZEBRA_ERR_RTNOEXIST;
}
/* Lookup same type route. */
RNODE_FOREACH_RIB (rn, rib)
{
if (CHECK_FLAG(rib->status, RIB_ENTRY_REMOVED))
continue;
if (CHECK_FLAG (rib->status, RIB_ENTRY_SELECTED_FIB))
fib = rib;
if (rib->type != type)
continue;
if (rib->type == ZEBRA_ROUTE_CONNECT && (nexthop = rib->nexthop) &&
nexthop->type == NEXTHOP_TYPE_IFINDEX)
{
if (nexthop->ifindex != ifindex)
continue;
if (rib->refcnt)
{
rib->refcnt--;
route_unlock_node (rn);
route_unlock_node (rn);
return 0;
}
same = rib;
break;
}
/* Make sure that the route found has the same gateway. */
else
{
if (gate == NULL)
{
same = rib;
break;
}
for (ALL_NEXTHOPS_RO(rib->nexthop, nexthop, tnexthop, recursing))
if (IPV6_ADDR_SAME (&nexthop->gate.ipv6, gate))
{
same = rib;
break;
}
if (same)
break;
}
}
/* If same type of route can't be found and this message is from
kernel. */
if (! same)
{
if (fib && type == ZEBRA_ROUTE_KERNEL &&
CHECK_FLAG(flags, ZEBRA_FLAG_SELFROUTE))
{
if (IS_ZEBRA_DEBUG_KERNEL)
{
zlog_debug ("Zebra route %s/%d was deleted by others from kernel",
inet_ntop (AF_INET, &p->prefix, buf1, INET_ADDRSTRLEN),
p->prefixlen);
}
/* This means someone else, other than Zebra, has deleted a Zebra
* route from the kernel. We will add it back */
rib_update_kernel(rn, NULL, fib);
}
else
{
if (IS_ZEBRA_DEBUG_KERNEL)
{
if (gate)
zlog_debug ("route %s vrf %u via %s ifindex %d type %d "
"doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
inet_ntop (AF_INET6, gate, buf2, INET6_ADDRSTRLEN),
ifindex,
type);
else
zlog_debug ("route %s vrf %u ifindex %d type %d doesn't exist in rib",
prefix2str (p, buf1, sizeof(buf1)), vrf_id,
ifindex,
type);
}
route_unlock_node (rn);
return ZEBRA_ERR_RTNOEXIST;
}
}
if (same)
rib_delnode (rn, same);
route_unlock_node (rn);
return 0;
}
/* Add static route into static route configuration. */
int
static_add_ipv6 (struct prefix *p, u_char type, struct in6_addr *gate,
const char *ifname, u_char flags, route_tag_t tag,
u_char distance, vrf_id_t vrf_id)
{
struct route_node *rn;
struct static_route *si;
struct static_route *pp;
struct static_route *cp;
struct static_route *update = NULL;
struct zebra_vrf *zvrf = vrf_info_get (vrf_id);
struct route_table *stable = zvrf->stable[AFI_IP6][SAFI_UNICAST];
if (! stable)
return -1;
if (!gate &&
(type == STATIC_IPV6_GATEWAY || type == STATIC_IPV6_GATEWAY_IFNAME))
return -1;
if (!ifname &&
(type == STATIC_IPV6_GATEWAY_IFNAME || type == STATIC_IPV6_IFNAME))
return -1;
/* Lookup static route prefix. */
rn = route_node_get (stable, p);
/* Do nothing if there is a same static route. */
for (si = rn->info; si; si = si->next)
{
if (type == si->type
&& tag == si->tag
&& (! gate || IPV6_ADDR_SAME (gate, &si->addr.ipv6))
&& (! ifname || strcmp (ifname, si->ifname) == 0))
{
if (distance == si->distance)
{
route_unlock_node (rn);
return 0;
}
else
update = si;
}
}
if (update)
static_delete_ipv6(p, type, gate, ifname, tag, update->distance, vrf_id);
/* Make new static route structure. */
si = XCALLOC (MTYPE_STATIC_ROUTE, sizeof (struct static_route));
si->type = type;
si->distance = distance;
si->tag = tag;
si->flags = flags;
si->vrf_id = vrf_id;
switch (type)
{
case STATIC_IPV6_GATEWAY:
si->addr.ipv6 = *gate;
break;
case STATIC_IPV6_IFNAME:
si->ifname = XSTRDUP (MTYPE_TMP, ifname);
break;
case STATIC_IPV6_GATEWAY_IFNAME:
si->addr.ipv6 = *gate;
si->ifname = XSTRDUP (MTYPE_TMP, ifname);
break;
}
/* Add new static route information to the tree with sort by
distance value and gateway address. */
for (pp = NULL, cp = rn->info; cp; pp = cp, cp = cp->next)
{
if (si->distance < cp->distance)
break;
if (si->distance > cp->distance)
continue;
}
/* Make linked list. */
if (pp)
pp->next = si;
else
rn->info = si;
if (cp)
cp->prev = si;
si->prev = pp;
si->next = cp;
/* Install into rib. */
static_install_route (AFI_IP6, SAFI_UNICAST, p, si);
return 1;
}
/* Delete static route from static route configuration. */
int
static_delete_ipv6 (struct prefix *p, u_char type, struct in6_addr *gate,
const char *ifname, route_tag_t tag, u_char distance,
vrf_id_t vrf_id)
{
struct route_node *rn;
struct static_route *si;
struct route_table *stable;
/* Lookup table. */
stable = zebra_vrf_static_table (AFI_IP6, SAFI_UNICAST, vrf_id);
if (! stable)
return -1;
/* Lookup static route prefix. */
rn = route_node_lookup (stable, p);
if (! rn)
return 0;
/* Find same static route is the tree */
for (si = rn->info; si; si = si->next)
if (distance == si->distance
&& type == si->type
&& (! gate || IPV6_ADDR_SAME (gate, &si->addr.ipv6))
&& (! ifname || strcmp (ifname, si->ifname) == 0)
&& (! tag || (tag == si->tag)))
break;
/* Can't find static route. */
if (! si)
{
route_unlock_node (rn);
return 0;
}
/* Install into rib. */
static_uninstall_route (AFI_IP6, SAFI_UNICAST, p, si);
/* Unlink static route from linked list. */
if (si->prev)
si->prev->next = si->next;
else
rn->info = si->next;
if (si->next)
si->next->prev = si->prev;
/* Free static route configuration. */
if (ifname)
XFREE (0, si->ifname);
XFREE (MTYPE_STATIC_ROUTE, si);
return 1;
}
/* RIB update function. */
void
rib_update (vrf_id_t vrf_id)
{
struct route_node *rn;
struct route_table *table;
table = zebra_vrf_table (AFI_IP, SAFI_UNICAST, vrf_id);
if (table)
for (rn = route_top (table); rn; rn = route_next (rn))
if (rnode_to_ribs (rn))
rib_queue_add (&zebrad, rn);
table = zebra_vrf_table (AFI_IP6, SAFI_UNICAST, vrf_id);
if (table)
for (rn = route_top (table); rn; rn = route_next (rn))
if (rnode_to_ribs (rn))
rib_queue_add (&zebrad, rn);
}
/* Remove all routes which comes from non main table. */
static void
rib_weed_table (struct route_table *table)
{
struct route_node *rn;
struct rib *rib;
struct rib *next;
if (table)
for (rn = route_top (table); rn; rn = route_next (rn))
RNODE_FOREACH_RIB_SAFE (rn, rib, next)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (rib->table != zebrad.rtm_table_default &&
rib->table != RT_TABLE_MAIN)
rib_delnode (rn, rib);
}
}
/* Delete all routes from non main table. */
void
rib_weed_tables (void)
{
vrf_iter_t iter;
struct zebra_vrf *zvrf;
for (iter = vrf_first (); iter != VRF_ITER_INVALID; iter = vrf_next (iter))
if ((zvrf = vrf_iter2info (iter)) != NULL)
{
rib_weed_table (zvrf->table[AFI_IP][SAFI_UNICAST]);
rib_weed_table (zvrf->table[AFI_IP6][SAFI_UNICAST]);
}
}
#if 0
/* Delete self installed routes after zebra is relaunched. */
static void
rib_sweep_table (struct route_table *table)
{
struct route_node *rn;
struct rib *rib;
struct rib *next;
int ret = 0;
if (table)
for (rn = route_top (table); rn; rn = route_next (rn))
RNODE_FOREACH_RIB_SAFE (rn, rib, next)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (rib->type == ZEBRA_ROUTE_KERNEL &&
CHECK_FLAG (rib->flags, ZEBRA_FLAG_SELFROUTE))
{
ret = rib_update_kernel (rn, rib, NULL);
if (! ret)
rib_delnode (rn, rib);
}
}
}
#endif
/* Sweep all RIB tables. */
void
rib_sweep_route (void)
{
vrf_iter_t iter;
struct zebra_vrf *zvrf;
for (iter = vrf_first (); iter != VRF_ITER_INVALID; iter = vrf_next (iter))
if ((zvrf = vrf_iter2info (iter)) != NULL)
{
rib_weed_table (zvrf->table[AFI_IP][SAFI_UNICAST]);
rib_weed_table (zvrf->table[AFI_IP6][SAFI_UNICAST]);
}
}
/* Remove specific by protocol routes from 'table'. */
static unsigned long
rib_score_proto_table (u_char proto, struct route_table *table)
{
struct route_node *rn;
struct rib *rib;
struct rib *next;
unsigned long n = 0;
if (table)
for (rn = route_top (table); rn; rn = route_next (rn))
RNODE_FOREACH_RIB_SAFE (rn, rib, next)
{
if (CHECK_FLAG (rib->status, RIB_ENTRY_REMOVED))
continue;
if (rib->type == proto)
{
rib_delnode (rn, rib);
n++;
}
}
return n;
}
/* Remove specific by protocol routes. */
unsigned long
rib_score_proto (u_char proto)
{
vrf_iter_t iter;
struct zebra_vrf *zvrf;
unsigned long cnt = 0;
for (iter = vrf_first (); iter != VRF_ITER_INVALID; iter = vrf_next (iter))
if ((zvrf = vrf_iter2info (iter)) != NULL)
cnt += rib_score_proto_table (proto, zvrf->table[AFI_IP][SAFI_UNICAST])
+rib_score_proto_table (proto, zvrf->table[AFI_IP6][SAFI_UNICAST]);
return cnt;
}
/* Close RIB and clean up kernel routes. */
void
rib_close_table (struct route_table *table)
{
struct route_node *rn;
rib_table_info_t *info = table->info;
struct rib *rib;
if (table)
for (rn = route_top (table); rn; rn = route_next (rn))
RNODE_FOREACH_RIB (rn, rib)
{
if (!CHECK_FLAG (rib->status, RIB_ENTRY_SELECTED_FIB))
continue;
if (info->safi == SAFI_UNICAST)
zfpm_trigger_update (rn, NULL);
if (! RIB_SYSTEM_ROUTE (rib))
rib_update_kernel (rn, rib, NULL);
}
}
/* Close all RIB tables. */
void
rib_close (void)
{
vrf_iter_t iter;
struct zebra_vrf *zvrf;
for (iter = vrf_first (); iter != VRF_ITER_INVALID; iter = vrf_next (iter))
if ((zvrf = vrf_iter2info (iter)) != NULL)
{
rib_close_table (zvrf->table[AFI_IP][SAFI_UNICAST]);
rib_close_table (zvrf->table[AFI_IP6][SAFI_UNICAST]);
}
}
/* Routing information base initialize. */
void
rib_init (void)
{
rib_queue_init (&zebrad);
}
/*
* vrf_id_get_next
*
* Get the first vrf id that is greater than the given vrf id if any.
*
* Returns TRUE if a vrf id was found, FALSE otherwise.
*/
static inline int
vrf_id_get_next (vrf_id_t vrf_id, vrf_id_t *next_id_p)
{
vrf_iter_t iter = vrf_iterator (vrf_id);
struct zebra_vrf *zvrf = vrf_iter2info (iter);
/* The same one ? Then find out the next. */
if (zvrf && (zvrf->vrf_id == vrf_id))
zvrf = vrf_iter2info (vrf_next (iter));
if (zvrf)
{
*next_id_p = zvrf->vrf_id;
return 1;
}
return 0;
}
/*
* rib_tables_iter_next
*
* Returns the next table in the iteration.
*/
struct route_table *
rib_tables_iter_next (rib_tables_iter_t *iter)
{
struct route_table *table;
/*
* Array that helps us go over all AFI/SAFI combinations via one
* index.
*/
static struct {
afi_t afi;
safi_t safi;
} afi_safis[] = {
{ AFI_IP, SAFI_UNICAST },
{ AFI_IP, SAFI_MULTICAST },
{ AFI_IP6, SAFI_UNICAST },
{ AFI_IP6, SAFI_MULTICAST },
};
table = NULL;
switch (iter->state)
{
case RIB_TABLES_ITER_S_INIT:
iter->vrf_id = VRF_DEFAULT;
iter->afi_safi_ix = -1;
/* Fall through */
case RIB_TABLES_ITER_S_ITERATING:
iter->afi_safi_ix++;
while (1)
{
while (iter->afi_safi_ix < (int) ZEBRA_NUM_OF (afi_safis))
{
table = zebra_vrf_table (afi_safis[iter->afi_safi_ix].afi,
afi_safis[iter->afi_safi_ix].safi,
iter->vrf_id);
if (table)
break;
iter->afi_safi_ix++;
}
/*
* Found another table in this vrf.
*/
if (table)
break;
/*
* Done with all tables in the current vrf, go to the next
* one.
*/
if (!vrf_id_get_next (iter->vrf_id, &iter->vrf_id))
break;
iter->afi_safi_ix = 0;
}
break;
case RIB_TABLES_ITER_S_DONE:
return NULL;
}
if (table)
iter->state = RIB_TABLES_ITER_S_ITERATING;
else
iter->state = RIB_TABLES_ITER_S_DONE;
return table;
}
/* Lookup VRF by identifier. */
struct zebra_vrf *
zebra_vrf_lookup (vrf_id_t vrf_id)
{
return vrf_info_lookup (vrf_id);
}
/*
* Create a routing table for the specific AFI/SAFI in the given VRF.
*/
static void
zebra_vrf_table_create (struct zebra_vrf *zvrf, afi_t afi, safi_t safi)
{
rib_table_info_t *info;
struct route_table *table;
assert (!zvrf->table[afi][safi]);
table = route_table_init ();
zvrf->table[afi][safi] = table;
info = XCALLOC (MTYPE_RIB_TABLE_INFO, sizeof (*info));
info->zvrf = zvrf;
info->afi = afi;
info->safi = safi;
table->info = info;
}
/* Allocate new zebra VRF. */
struct zebra_vrf *
zebra_vrf_alloc (vrf_id_t vrf_id)
{
struct zebra_vrf *zvrf;
#ifdef HAVE_NETLINK
char nl_name[64];
#endif
zvrf = XCALLOC (MTYPE_ZEBRA_VRF, sizeof (struct zebra_vrf));
/* Allocate routing table and static table. */
zebra_vrf_table_create (zvrf, AFI_IP, SAFI_UNICAST);
zebra_vrf_table_create (zvrf, AFI_IP6, SAFI_UNICAST);
zvrf->stable[AFI_IP][SAFI_UNICAST] = route_table_init ();
zvrf->stable[AFI_IP6][SAFI_UNICAST] = route_table_init ();
zebra_vrf_table_create (zvrf, AFI_IP, SAFI_MULTICAST);
zebra_vrf_table_create (zvrf, AFI_IP6, SAFI_MULTICAST);
zvrf->stable[AFI_IP][SAFI_MULTICAST] = route_table_init ();
zvrf->stable[AFI_IP6][SAFI_MULTICAST] = route_table_init ();
zvrf->rnh_table[AFI_IP] = route_table_init();
zvrf->rnh_table[AFI_IP6] = route_table_init();
/* Set VRF ID */
zvrf->vrf_id = vrf_id;
#ifdef HAVE_NETLINK
/* Initialize netlink sockets */
snprintf (nl_name, 64, "netlink-listen (vrf %u)", vrf_id);
zvrf->netlink.sock = -1;
zvrf->netlink.name = XSTRDUP (MTYPE_NETLINK_NAME, nl_name);
snprintf (nl_name, 64, "netlink-cmd (vrf %u)", vrf_id);
zvrf->netlink_cmd.sock = -1;
zvrf->netlink_cmd.name = XSTRDUP (MTYPE_NETLINK_NAME, nl_name);
#endif
return zvrf;
}
/* Lookup the routing table in an enabled VRF. */
struct route_table *
zebra_vrf_table (afi_t afi, safi_t safi, vrf_id_t vrf_id)
{
struct zebra_vrf *zvrf = vrf_info_lookup (vrf_id);
if (!zvrf)
return NULL;
if (afi >= AFI_MAX || safi >= SAFI_MAX)
return NULL;
return zvrf->table[afi][safi];
}
/* Lookup the static routing table in a VRF. */
struct route_table *
zebra_vrf_static_table (afi_t afi, safi_t safi, vrf_id_t vrf_id)
{
struct zebra_vrf *zvrf = vrf_info_lookup (vrf_id);
if (!zvrf)
return NULL;
if (afi >= AFI_MAX || safi >= SAFI_MAX)
return NULL;
return zvrf->stable[afi][safi];
}