| /* |
| * Routing Table functions. |
| * Copyright (C) 1998 Kunihiro Ishiguro |
| * |
| * This file is part of GNU Zebra. |
| * |
| * GNU Zebra is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any |
| * later version. |
| * |
| * GNU Zebra is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with GNU Zebra; see the file COPYING. If not, write to the Free |
| * Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| * 02111-1307, USA. |
| */ |
| |
| #include <zebra.h> |
| |
| #include "prefix.h" |
| #include "table.h" |
| #include "memory.h" |
| #include "sockunion.h" |
| |
| static void route_node_delete (struct route_node *); |
| static void route_table_free (struct route_table *); |
| |
| |
| /* |
| * route_table_init_with_delegate |
| */ |
| struct route_table * |
| route_table_init_with_delegate (route_table_delegate_t *delegate) |
| { |
| struct route_table *rt; |
| |
| rt = XCALLOC (MTYPE_ROUTE_TABLE, sizeof (struct route_table)); |
| rt->delegate = delegate; |
| return rt; |
| } |
| |
| void |
| route_table_finish (struct route_table *rt) |
| { |
| route_table_free (rt); |
| } |
| |
| /* Allocate new route node. */ |
| static struct route_node * |
| route_node_new (struct route_table *table) |
| { |
| return table->delegate->create_node (table->delegate, table); |
| } |
| |
| /* Allocate new route node with prefix set. */ |
| static struct route_node * |
| route_node_set (struct route_table *table, struct prefix *prefix) |
| { |
| struct route_node *node; |
| |
| node = route_node_new (table); |
| |
| prefix_copy (&node->p, prefix); |
| node->table = table; |
| |
| return node; |
| } |
| |
| /* Free route node. */ |
| static void |
| route_node_free (struct route_table *table, struct route_node *node) |
| { |
| table->delegate->destroy_node (table->delegate, table, node); |
| } |
| |
| /* Free route table. */ |
| static void |
| route_table_free (struct route_table *rt) |
| { |
| struct route_node *tmp_node; |
| struct route_node *node; |
| |
| if (rt == NULL) |
| return; |
| |
| node = rt->top; |
| |
| /* Bulk deletion of nodes remaining in this table. This function is not |
| called until workers have completed their dependency on this table. |
| A final route_unlock_node() will not be called for these nodes. */ |
| while (node) |
| { |
| if (node->l_left) |
| { |
| node = node->l_left; |
| continue; |
| } |
| |
| if (node->l_right) |
| { |
| node = node->l_right; |
| continue; |
| } |
| |
| tmp_node = node; |
| node = node->parent; |
| |
| tmp_node->table->count--; |
| tmp_node->lock = 0; /* to cause assert if unlocked after this */ |
| route_node_free (rt, tmp_node); |
| |
| if (node != NULL) |
| { |
| if (node->l_left == tmp_node) |
| node->l_left = NULL; |
| else |
| node->l_right = NULL; |
| } |
| else |
| { |
| break; |
| } |
| } |
| |
| assert (rt->count == 0); |
| |
| XFREE (MTYPE_ROUTE_TABLE, rt); |
| return; |
| } |
| |
| /* Utility mask array. */ |
| static const u_char maskbit[] = |
| { |
| 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff |
| }; |
| |
| /* Common prefix route genaration. */ |
| static void |
| route_common (struct prefix *n, struct prefix *p, struct prefix *new) |
| { |
| int i; |
| u_char diff; |
| u_char mask; |
| |
| u_char *np = (u_char *)&n->u.prefix; |
| u_char *pp = (u_char *)&p->u.prefix; |
| u_char *newp = (u_char *)&new->u.prefix; |
| |
| for (i = 0; i < p->prefixlen / 8; i++) |
| { |
| if (np[i] == pp[i]) |
| newp[i] = np[i]; |
| else |
| break; |
| } |
| |
| new->prefixlen = i * 8; |
| |
| if (new->prefixlen != p->prefixlen) |
| { |
| diff = np[i] ^ pp[i]; |
| mask = 0x80; |
| while (new->prefixlen < p->prefixlen && !(mask & diff)) |
| { |
| mask >>= 1; |
| new->prefixlen++; |
| } |
| newp[i] = np[i] & maskbit[new->prefixlen % 8]; |
| } |
| } |
| |
| static void |
| set_link (struct route_node *node, struct route_node *new) |
| { |
| unsigned int bit = prefix_bit (&new->p.u.prefix, node->p.prefixlen); |
| |
| node->link[bit] = new; |
| new->parent = node; |
| } |
| |
| /* Lock node. */ |
| struct route_node * |
| route_lock_node (struct route_node *node) |
| { |
| node->lock++; |
| return node; |
| } |
| |
| /* Unlock node. */ |
| void |
| route_unlock_node (struct route_node *node) |
| { |
| assert (node->lock > 0); |
| node->lock--; |
| |
| if (node->lock == 0) |
| route_node_delete (node); |
| } |
| |
| /* Find matched prefix. */ |
| struct route_node * |
| route_node_match (const struct route_table *table, const struct prefix *p) |
| { |
| struct route_node *node; |
| struct route_node *matched; |
| |
| matched = NULL; |
| node = table->top; |
| |
| /* Walk down tree. If there is matched route then store it to |
| matched. */ |
| while (node && node->p.prefixlen <= p->prefixlen && |
| prefix_match (&node->p, p)) |
| { |
| if (node->info) |
| matched = node; |
| |
| if (node->p.prefixlen == p->prefixlen) |
| break; |
| |
| node = node->link[prefix_bit(&p->u.prefix, node->p.prefixlen)]; |
| } |
| |
| /* If matched route found, return it. */ |
| if (matched) |
| return route_lock_node (matched); |
| |
| return NULL; |
| } |
| |
| struct route_node * |
| route_node_match_ipv4 (const struct route_table *table, |
| const struct in_addr *addr) |
| { |
| struct prefix_ipv4 p; |
| |
| memset (&p, 0, sizeof (struct prefix_ipv4)); |
| p.family = AF_INET; |
| p.prefixlen = IPV4_MAX_PREFIXLEN; |
| p.prefix = *addr; |
| |
| return route_node_match (table, (struct prefix *) &p); |
| } |
| |
| #ifdef HAVE_IPV6 |
| struct route_node * |
| route_node_match_ipv6 (const struct route_table *table, |
| const struct in6_addr *addr) |
| { |
| struct prefix_ipv6 p; |
| |
| memset (&p, 0, sizeof (struct prefix_ipv6)); |
| p.family = AF_INET6; |
| p.prefixlen = IPV6_MAX_PREFIXLEN; |
| p.prefix = *addr; |
| |
| return route_node_match (table, (struct prefix *) &p); |
| } |
| #endif /* HAVE_IPV6 */ |
| |
| /* Lookup same prefix node. Return NULL when we can't find route. */ |
| struct route_node * |
| route_node_lookup (const struct route_table *table, struct prefix *p) |
| { |
| struct route_node *node; |
| u_char prefixlen = p->prefixlen; |
| const u_char *prefix = &p->u.prefix; |
| |
| node = table->top; |
| |
| while (node && node->p.prefixlen <= prefixlen && |
| prefix_match (&node->p, p)) |
| { |
| if (node->p.prefixlen == prefixlen) |
| return node->info ? route_lock_node (node) : NULL; |
| |
| node = node->link[prefix_bit(prefix, node->p.prefixlen)]; |
| } |
| |
| return NULL; |
| } |
| |
| /* Add node to routing table. */ |
| struct route_node * |
| route_node_get (struct route_table *const table, struct prefix *p) |
| { |
| struct route_node *new; |
| struct route_node *node; |
| struct route_node *match; |
| u_char prefixlen = p->prefixlen; |
| const u_char *prefix = &p->u.prefix; |
| |
| match = NULL; |
| node = table->top; |
| while (node && node->p.prefixlen <= prefixlen && |
| prefix_match (&node->p, p)) |
| { |
| if (node->p.prefixlen == prefixlen) |
| return route_lock_node (node); |
| |
| match = node; |
| node = node->link[prefix_bit(prefix, node->p.prefixlen)]; |
| } |
| |
| if (node == NULL) |
| { |
| new = route_node_set (table, p); |
| if (match) |
| set_link (match, new); |
| else |
| table->top = new; |
| } |
| else |
| { |
| new = route_node_new (table); |
| route_common (&node->p, p, &new->p); |
| new->p.family = p->family; |
| new->table = table; |
| set_link (new, node); |
| |
| if (match) |
| set_link (match, new); |
| else |
| table->top = new; |
| |
| if (new->p.prefixlen != p->prefixlen) |
| { |
| match = new; |
| new = route_node_set (table, p); |
| set_link (match, new); |
| table->count++; |
| } |
| } |
| table->count++; |
| route_lock_node (new); |
| |
| return new; |
| } |
| |
| /* Delete node from the routing table. */ |
| static void |
| route_node_delete (struct route_node *node) |
| { |
| struct route_node *child; |
| struct route_node *parent; |
| |
| assert (node->lock == 0); |
| assert (node->info == NULL); |
| |
| if (node->l_left && node->l_right) |
| return; |
| |
| if (node->l_left) |
| child = node->l_left; |
| else |
| child = node->l_right; |
| |
| parent = node->parent; |
| |
| if (child) |
| child->parent = parent; |
| |
| if (parent) |
| { |
| if (parent->l_left == node) |
| parent->l_left = child; |
| else |
| parent->l_right = child; |
| } |
| else |
| node->table->top = child; |
| |
| node->table->count--; |
| |
| route_node_free (node->table, node); |
| |
| /* If parent node is stub then delete it also. */ |
| if (parent && parent->lock == 0) |
| route_node_delete (parent); |
| } |
| |
| /* Get fist node and lock it. This function is useful when one want |
| to lookup all the node exist in the routing table. */ |
| struct route_node * |
| route_top (struct route_table *table) |
| { |
| /* If there is no node in the routing table return NULL. */ |
| if (table->top == NULL) |
| return NULL; |
| |
| /* Lock the top node and return it. */ |
| route_lock_node (table->top); |
| return table->top; |
| } |
| |
| /* Unlock current node and lock next node then return it. */ |
| struct route_node * |
| route_next (struct route_node *node) |
| { |
| struct route_node *next; |
| struct route_node *start; |
| |
| /* Node may be deleted from route_unlock_node so we have to preserve |
| next node's pointer. */ |
| |
| if (node->l_left) |
| { |
| next = node->l_left; |
| route_lock_node (next); |
| route_unlock_node (node); |
| return next; |
| } |
| if (node->l_right) |
| { |
| next = node->l_right; |
| route_lock_node (next); |
| route_unlock_node (node); |
| return next; |
| } |
| |
| start = node; |
| while (node->parent) |
| { |
| if (node->parent->l_left == node && node->parent->l_right) |
| { |
| next = node->parent->l_right; |
| route_lock_node (next); |
| route_unlock_node (start); |
| return next; |
| } |
| node = node->parent; |
| } |
| route_unlock_node (start); |
| return NULL; |
| } |
| |
| /* Unlock current node and lock next node until limit. */ |
| struct route_node * |
| route_next_until (struct route_node *node, struct route_node *limit) |
| { |
| struct route_node *next; |
| struct route_node *start; |
| |
| /* Node may be deleted from route_unlock_node so we have to preserve |
| next node's pointer. */ |
| |
| if (node->l_left) |
| { |
| next = node->l_left; |
| route_lock_node (next); |
| route_unlock_node (node); |
| return next; |
| } |
| if (node->l_right) |
| { |
| next = node->l_right; |
| route_lock_node (next); |
| route_unlock_node (node); |
| return next; |
| } |
| |
| start = node; |
| while (node->parent && node != limit) |
| { |
| if (node->parent->l_left == node && node->parent->l_right) |
| { |
| next = node->parent->l_right; |
| route_lock_node (next); |
| route_unlock_node (start); |
| return next; |
| } |
| node = node->parent; |
| } |
| route_unlock_node (start); |
| return NULL; |
| } |
| |
| unsigned long |
| route_table_count (const struct route_table *table) |
| { |
| return table->count; |
| } |
| |
| /** |
| * route_node_create |
| * |
| * Default function for creating a route node. |
| */ |
| static struct route_node * |
| route_node_create (route_table_delegate_t *delegate, |
| struct route_table *table) |
| { |
| struct route_node *node; |
| node = XCALLOC (MTYPE_ROUTE_NODE, sizeof (struct route_node)); |
| return node; |
| } |
| |
| /** |
| * route_node_destroy |
| * |
| * Default function for destroying a route node. |
| */ |
| static void |
| route_node_destroy (route_table_delegate_t *delegate, |
| struct route_table *table, struct route_node *node) |
| { |
| XFREE (MTYPE_ROUTE_NODE, node); |
| } |
| |
| /* |
| * Default delegate. |
| */ |
| static route_table_delegate_t default_delegate = { |
| .create_node = route_node_create, |
| .destroy_node = route_node_destroy |
| }; |
| |
| /* |
| * route_table_init |
| */ |
| struct route_table * |
| route_table_init (void) |
| { |
| return route_table_init_with_delegate (&default_delegate); |
| } |
| |
| /** |
| * route_table_prefix_iter_cmp |
| * |
| * Compare two prefixes according to the order in which they appear in |
| * an iteration over a tree. |
| * |
| * @return -1 if p1 occurs before p2 (p1 < p2) |
| * 0 if the prefixes are identical (p1 == p2) |
| * +1 if p1 occurs after p2 (p1 > p2) |
| */ |
| int |
| route_table_prefix_iter_cmp (struct prefix *p1, struct prefix *p2) |
| { |
| struct prefix common_space; |
| struct prefix *common = &common_space; |
| |
| if (p1->prefixlen <= p2->prefixlen) |
| { |
| if (prefix_match (p1, p2)) |
| { |
| |
| /* |
| * p1 contains p2, or is equal to it. |
| */ |
| return (p1->prefixlen == p2->prefixlen) ? 0 : -1; |
| } |
| } |
| else |
| { |
| |
| /* |
| * Check if p2 contains p1. |
| */ |
| if (prefix_match (p2, p1)) |
| return 1; |
| } |
| |
| route_common (p1, p2, common); |
| assert (common->prefixlen < p1->prefixlen); |
| assert (common->prefixlen < p2->prefixlen); |
| |
| /* |
| * Both prefixes are longer than the common prefix. |
| * |
| * We need to check the bit after the common prefixlen to determine |
| * which one comes later. |
| */ |
| if (prefix_bit (&p1->u.prefix, common->prefixlen)) |
| { |
| |
| /* |
| * We branch to the right to get to p1 from the common prefix. |
| */ |
| assert (!prefix_bit (&p2->u.prefix, common->prefixlen)); |
| return 1; |
| } |
| |
| /* |
| * We branch to the right to get to p2 from the common prefix. |
| */ |
| assert (prefix_bit (&p2->u.prefix, common->prefixlen)); |
| return -1; |
| } |
| |
| /* |
| * route_get_subtree_next |
| * |
| * Helper function that returns the first node that follows the nodes |
| * in the sub-tree under 'node' in iteration order. |
| */ |
| static struct route_node * |
| route_get_subtree_next (struct route_node *node) |
| { |
| while (node->parent) |
| { |
| if (node->parent->l_left == node && node->parent->l_right) |
| return node->parent->l_right; |
| |
| node = node->parent; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * route_table_get_next_internal |
| * |
| * Helper function to find the node that occurs after the given prefix in |
| * order of iteration. |
| * |
| * @see route_table_get_next |
| */ |
| static struct route_node * |
| route_table_get_next_internal (const struct route_table *table, |
| struct prefix *p) |
| { |
| struct route_node *node, *tmp_node; |
| u_char prefixlen; |
| int cmp; |
| |
| prefixlen = p->prefixlen; |
| |
| node = table->top; |
| |
| while (node) |
| { |
| int match; |
| |
| if (node->p.prefixlen < p->prefixlen) |
| match = prefix_match (&node->p, p); |
| else |
| match = prefix_match (p, &node->p); |
| |
| if (match) |
| { |
| if (node->p.prefixlen == p->prefixlen) |
| { |
| |
| /* |
| * The prefix p exists in the tree, just return the next |
| * node. |
| */ |
| route_lock_node (node); |
| node = route_next (node); |
| if (node) |
| route_unlock_node (node); |
| |
| return (node); |
| } |
| |
| if (node->p.prefixlen > p->prefixlen) |
| { |
| |
| /* |
| * Node is in the subtree of p, and hence greater than p. |
| */ |
| return node; |
| } |
| |
| /* |
| * p is in the sub-tree under node. |
| */ |
| tmp_node = node->link[prefix_bit (&p->u.prefix, node->p.prefixlen)]; |
| |
| if (tmp_node) |
| { |
| node = tmp_node; |
| continue; |
| } |
| |
| /* |
| * There are no nodes in the direction where p should be. If |
| * node has a right child, then it must be greater than p. |
| */ |
| if (node->l_right) |
| return node->l_right; |
| |
| /* |
| * No more children to follow, go upwards looking for the next |
| * node. |
| */ |
| return route_get_subtree_next (node); |
| } |
| |
| /* |
| * Neither node prefix nor 'p' contains the other. |
| */ |
| cmp = route_table_prefix_iter_cmp (&node->p, p); |
| if (cmp > 0) |
| { |
| |
| /* |
| * Node follows p in iteration order. Return it. |
| */ |
| return node; |
| } |
| |
| assert (cmp < 0); |
| |
| /* |
| * Node and the subtree under it come before prefix p in |
| * iteration order. Prefix p and its sub-tree are not present in |
| * the tree. Go upwards and find the first node that follows the |
| * subtree. That node will also succeed p. |
| */ |
| return route_get_subtree_next (node); |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * route_table_get_next |
| * |
| * Find the node that occurs after the given prefix in order of |
| * iteration. |
| */ |
| struct route_node * |
| route_table_get_next (const struct route_table *table, struct prefix *p) |
| { |
| struct route_node *node; |
| |
| node = route_table_get_next_internal (table, p); |
| if (node) |
| { |
| assert (route_table_prefix_iter_cmp (&node->p, p) > 0); |
| route_lock_node (node); |
| } |
| return node; |
| } |
| |
| /* |
| * route_table_iter_init |
| */ |
| void |
| route_table_iter_init (route_table_iter_t * iter, struct route_table *table) |
| { |
| memset (iter, 0, sizeof (*iter)); |
| iter->state = RT_ITER_STATE_INIT; |
| iter->table = table; |
| } |
| |
| /* |
| * route_table_iter_pause |
| * |
| * Pause an iteration over the table. This allows the iteration to be |
| * resumed point after arbitrary additions/deletions from the table. |
| * An iteration can be resumed by just calling route_table_iter_next() |
| * on the iterator. |
| */ |
| void |
| route_table_iter_pause (route_table_iter_t * iter) |
| { |
| switch (iter->state) |
| { |
| |
| case RT_ITER_STATE_INIT: |
| case RT_ITER_STATE_PAUSED: |
| case RT_ITER_STATE_DONE: |
| return; |
| |
| case RT_ITER_STATE_ITERATING: |
| |
| /* |
| * Save the prefix that we are currently at. The next call to |
| * route_table_iter_next() will return the node after this prefix |
| * in the tree. |
| */ |
| prefix_copy (&iter->pause_prefix, &iter->current->p); |
| route_unlock_node (iter->current); |
| iter->current = NULL; |
| iter->state = RT_ITER_STATE_PAUSED; |
| return; |
| |
| default: |
| assert (0); |
| } |
| |
| } |
| |
| /* |
| * route_table_iter_cleanup |
| * |
| * Release any resources held by the iterator. |
| */ |
| void |
| route_table_iter_cleanup (route_table_iter_t * iter) |
| { |
| if (iter->state == RT_ITER_STATE_ITERATING) |
| { |
| route_unlock_node (iter->current); |
| iter->current = NULL; |
| } |
| assert (!iter->current); |
| |
| /* |
| * Set the state to RT_ITER_STATE_DONE to make any |
| * route_table_iter_next() calls on this iterator return NULL. |
| */ |
| iter->state = RT_ITER_STATE_DONE; |
| } |