blob: 91a4799ced4705ad55f9edfeecef7468b8a54771 [file] [log] [blame]
David Lamparter821df2c2015-09-15 01:53:09 -07001#include <zebra.h>
jardineb5d44e2003-12-23 08:09:43 +00002#include <stdio.h>
3#include <stdlib.h>
4#include <string.h>
5#include <values.h>
6
7#include "random.c"
8
9#define DASH '-'
10#define VERY_FAR 100000000
11
12
13/* generator of acyclic random networks for the shortest paths problem;
14 extended DIMACS format for output */
15
16main ( argc, argv )
17
18int argc;
19char* argv[];
20
21{
22
23char args[30];
24
25long n,
26 n0,
27 source,
28 i,
29 i0,
30 j,
31 dij;
32
33long m,
34 m0,
35 mc,
36 k;
37
38long *p,
39 p_t,
40 l,
41 lx;
42
43long seed,
44 seed1,
45 seed2;
46
47int ext=0;
48
49FILE *fout;
50
51/* variables for lengths generating */
52/* initialized by default values */
53int l_f = 0, ll_f = 0, lm_f = 0, ln_f = 0, ls_f = 0;
54long ll = 10000, /* upper bound of the interval */
55 lm = 0; /* lower bound of the interval */
56double ln = 0, /* l += ln * |i-j| */
57 ls = 0; /* l += ls * |i-j|^2 */
58
59/* variables for connecting path(s) */
60int c_f = 0, cl_f = 0, ch_f = 0, c_rand = 1;
61long cl = 1; /* length of path arc */
62long ch; /* number of arcs in the path
63 n - by default */
64
65/* variables for artifical source */
66int s_f = 0, sl_f = 0, sm_f = 0;
67long sl = VERY_FAR, /* upper bound of artifical arc */
68 sm, /* lower bound of artifical arc */
69 s;
70
71/* variables for potentials */
72int p_f = 0, pl_f = 0, pm_f = 0, pn_f = 0, ps_f = 0,
73 pa_f = 0, pap_f = 0, pac_f = 0;
74long pl, /* upper bound of the interval */
75 pm; /* lower bound of the interval */
76double pn = 0, /* l += ln * |i-j| */
77 ps = 0, /* l += ls * |i-j|^2 */
78 pap = 0, /* part of nodes with alternative dustribution */
79 pac = -1; /* multiplier for alternative distribution */
80
81int np; /* number of parameter parsing now */
82
83#define PRINT_ARC( i, j, length )\
84{\
85l = length;\
86if ( p_f ) l += ( p[i] - p[j] );\
87printf ("a %8ld %8ld %12ld\n", i, j, l );\
88}
89
90 /* parsing parameters */
91
92if ( argc < 2 ) goto usage;
93
94np = 0;
95
96strcpy ( args, argv[1] );
97
98 if ( ( args[0] == DASH ) && ( args[1] == 'h')
99 )
100 goto help;
101
102if ( argc < 4 ) goto usage;
103
104/* first parameter - number of nodes */
105np = 1;
106if ( ( n = atoi ( argv[1] ) ) < 2 ) goto usage;
107
108/* second parameter - number of arcs */
109np = 2;
110if ( ( m = atoi ( argv[2] ) ) < n ) goto usage;
111
112/* third parameter - seed */
113np=3;
114if ( ( seed = atoi ( argv[3] ) ) <= 0 ) goto usage;
115
116/* other parameters */
117
118for ( np = 4; np < argc; np ++ )
119 {
120 strcpy ( args, argv[np] );
121 if ( args[0] != DASH ) goto usage;
122
123 switch ( args[1] )
124 {
125
126 case 'l' : /* an interval for arc length */
127 l_f = 1;
128 switch ( args[2] )
129 {
130 case 'l': /* length of the interval */
131 ll_f = 1;
132 ll = (long) atof ( &args[3] );
133 break;
134 case 'm': /* minimal bound */
135 lm_f = 1;
136 lm = (long ) atof ( &args[3] );
137 break;
138 case 'n': /* additional length: l*|i-j| */
139 ln_f = 1;
140 ln = atof ( &args[3] );
141 break;
142 case 's': /* additional length: l*|i-j|^2 */
143 ls_f = 1;
144 ls = atof ( &args[3] );
145 break;
146 default: /* unknown switch value */
147 goto usage;
148 }
149 break;
150
151 case 'c' : /* connecting path(s) */
152 c_f = 1;
153 switch ( args[2] )
154 {
155 case 'l': /* length of path arc */
156 c_rand = 0; /* fixed arc length */
157 cl_f = 1;
158 cl = (long) atof ( &args[3] );
159 break;
160 case 'h': /* number of arcs in connecting path */
161 ch_f = 1;
162 ch = (long) atof ( &args[3] );
163 if ( ch < 1 || ch > n ) goto usage;
164 break;
165 default: /* unknown switch value */
166 goto usage;
167 }
168 break;
169
170 case 's' : /* additional source */
171 s_f = 1;
172 if ( strlen ( args ) > 2 )
173 {
174 switch ( args[2] )
175 {
176 case 'l': /* upper bound of art. arc */
177 sl_f = 1;
178 sl = (long) atof ( &args[3] );
179 break;
180 case 'm': /* lower bound of art. arc */
181 sm_f = 1;
182 sm = (long) atof ( &args[3] );
183 break;
184 default: /* unknown switch value */
185 goto usage;
186 }
187 }
188 break;
189
190 case 'p' : /* potentials */
191 p_f = 1;
192 if ( strlen ( args ) > 2 )
193 {
194 switch ( args[2] )
195 {
196 case 'l': /* length of the interval */
197 pl_f = 1;
198 pl = (long) atof ( &args[3] );
199 break;
200 case 'm': /* minimal bound */
201 pm_f = 1;
202 pm = (long ) atof ( &args[3] );
203 break;
204 case 'n': /* additional length: l*|i-j| */
205 pn_f = 1;
206 pn = atof ( &args[3] );
207 break;
208 case 's': /* additional length: l*|i-j|^2 */
209 ps_f = 1;
210 ps = atof ( &args[3] );
211 break;
212 case 'a': /* bipolar distribution */
213 pa_f = 1;
214 switch ( args[3] )
215 {
216 case 'p': /* % of alternative potentials */
217 pap_f = 1;
218 pap = atof ( &args[4] );
219 if ( pap < 0 ) pap = 0;
220 if ( pap > 100 ) pap = 100;
221 pap /= 100;
222 break;
223 case 'c': /* multiplier */
224 pac_f = 1;
225 pac = atof ( &args[4] );
226 break;
227 default: /* unknown switch value */
228 goto usage;
229 }
230 break;
231 default: /* unknown switch value */
232 goto usage;
233 }
234 }
235 break;
236
237 default : /* unknoun case */
238 goto usage;
239 }
240 }
241
242/* ----- ajusting parameters ----- */
243
244n0 = n; m0 = m;
245
246/* length parameters */
247if ( ll < lm ) { lx = ll; ll = lm; lm = lx; }
248
249/* potential parameters */
250if ( p_f )
251 {
252 if ( ! pl_f ) pl = ll;
253 if ( ! pm_f ) pm = lm;
254 if ( pl < pm ) { lx = pl; pl = pm; pm = lx; }
255 }
256
257/* path(s) parameters */
258if ( ! ch_f ) ch = n - 1;
259mc = n - 1;
260
261 /* artifical source parameters */
262if ( s_f )
263 { m0 += n; n0 ++ ;
264 if ( ! sm_f ) sm = sl;
265 if ( sl < sm ) { lx = sl; sl = sm; sm = lx; }
266 }
267
268/*----- printing title -----*/
269
270printf ("c acyclic network for shortest paths problem\n");
271printf ("c extended DIMACS format\nc\n" );
272
273
274/* name of the problem */
275printf ("t ac_%ld_%ld_%ld_", n, m, seed );
276if ( l_f )
277 printf ("%c", 'l');
278if ( c_f )
279 printf ("%c", 'c');
280if ( s_f )
281 printf ("%c", 's');
282if ( p_f )
283 printf ("%c", 'p');
284printf ("\nc\n");
285
286/* printing additional information */
287if ( l_f )
288 printf ("c length -> min: %ld max: %ld k1: %.2f k2: %.2f\n",
289 lm, ll, ln, ls );
290if ( c_f )
291 printf ("c path(s) -> number of arcs: %ld arc length: %ld\n",
292 ch, cl );
293if ( s_f )
294 printf ("c length of arcs from artifical source -> min: %ld max: %ld\n",
295 sm, sl );
296if ( p_f )
297 {
298 printf ("c potentials -> min: %ld max: %ld k1: %.2f k2: %.2f\n",
299 pm, pl, pn, ps );
300 if ( pa_f )
301 printf ("c potentials -> part of alternative distribution: %.2f k: %.2f\n",
302 pap, pac );
303 }
304printf ("c\n" );
305
306printf ("p sp %8ld %8ld\nc\n", n0, m0 );
307
308source = ( s_f ) ? n0 : 1;
309printf ("n %8ld\nc\n", source );
310
311
312if ( p_f ) /* generating potentials */
313 {
314 seed1 = 2*seed + 1;
315 p = (long*) calloc ( n+2, sizeof (long) );
316 init_rand ( seed1);
317 pl = pl - pm + 1;
318
319 for ( i = 0; i <= n; i ++ )
320 {
321 p_t = pm + nrand ( pl );
322 if ( pn_f ) p_t += (long) ( i * pn );
323 if ( ps_f ) p_t += (long) ( i * ( i * ps ));
324 if ( pap_f )
325 if ( rand01() < pap )
326 p_t = (long) ( p_t * pac );
327 p[i] = p_t;
328 }
329 p[n+1] = 0;
330 }
331
332
333if ( s_f ) /* additional arcs from artifical source */
334 {
335 seed2 = 3*seed + 1;
336 init_rand ( seed2 );
337 sl = sl - sm + 1;
338
339 for ( i = n; i > 1; i -- )
340 {
341 s = sm + nrand ( sl );
342 PRINT_ARC ( n0, i, s )
343 }
344
345 PRINT_ARC ( n0, 1, 0 )
346 }
347
348/* initialize random number generator */
349init_rand ( seed );
350ll = ll - lm + 1;
351
352/* generating connecting path(s) */
353for ( i = 1; i < n; i ++ )
354 {
355 if ( ( (i-1) % ch ) != 0 )
356 i0 = i;
357 else
358 i0 = 1;
359
360 if (c_rand)
361 cl = lm + nrand(ll);
362 PRINT_ARC ( i0, i+1, cl )
363 }
364
365/* generating random arcs */
366
367
368for ( k = 1; k <= m - mc; k ++ )
369 {
370 i = 1 + nrand ( n );
371
372 do
373 j = 1 + nrand ( n );
374 while ( j == i );
375
376 if ( i > j )
377 { i0 = i; i = j; j = i0; }
378
379 dij = j - i;
380 l = lm + nrand ( ll );
381 if ( ln_f ) l += (long) ( dij * ln );
382 if ( ls_f ) l += (long) ( dij * ( dij * ls ) );
383 PRINT_ARC ( i, j, l );
384 }
385
386/* all is done */
387exit (ext);
388
389/* ----- wrong usage ----- */
390
391 usage:
392fprintf ( stderr,
393"\nusage: %s n m seed [ -ll#i -lm#i -cl#i -p -pl#i -pm#i ... ]\n\
394help: %s -h\n\n", argv[0], argv[0] );
395
396if ( np > 0 )
397 fprintf ( stderr, "error in parameter # %d\n\n", np );
398exit (4);
399
400/* ---- help ---- */
401
402 help:
403
404if ( args[2] == 'h') goto hhelp;
405
406fprintf ( stderr,
407"\n'%s' - acyclic network generator for shortest paths problem.\n\
408Generates problems in extended DIMACS format.\n\
409\n\
410 %s n m seed [ -ll#i -lm#i -cl#i -p -pl#i -pm#i ... ]\n\
411 %s -hh\n\
412\n\
413 #i - integer number #f - real number\n\
414\n\
415-ll#i - #i is the upper bound on arc lengths (default 10000)\n\
416-lm#i - #i is the lower bound on arc lengths (default 0)\n\
417-cl#i - #i is length of arcs in connecting path(s) (default random)\n\
418-p - generate potentials \n\
419-pl#i - #i is the upper bound on potentials (default ll)\n\
420-pm#i - #i is the lower bound on potentials (default lm)\n\
421\n\
422-hh - extended help \n\n",
423argv[0], argv[0], argv[0] );
424
425exit (0);
426
427/* --------- sophisticated help ------------ */
428 hhelp:
429
430if ( argc < 3 )
431 fout = stderr;
432else
433 fout = fopen ( argv[2], "w" );
434
435if ( fout == NULL )
436{ fprintf ( stderr, "\nCan't open file '%s' for writing help\n\n", argv[2] );
437 exit ( 2 );
438}
439
440fprintf (fout,
441"\n'%s' - acyclic network generator for shortest paths problem.\n\
442Generates problems in extended DIMACS format.\n\
443\n\
444 %s n m seed [ -ll#i -lm#i -ln#f -ls#f\n\
445 -p -pl#i -pm#i -pn#f -ps#f -pap#i -pac#f\n\
446 -cl#i -ch#i\n\
447 -s -sl#i -sm#i\n\
448 ]\n\
449 %s -hh file_name\n\
450\n\
451 #i - integer number #f - real number\n\
452\n\
453 Arc length parameters:\n\
454-ll#i - #i is the upper bound on arc lengths (default 10000)\n\
455-lm#i - #i is the lower bound on arc lengths (default 0)\n\
456-ln#f - multipliy l(i, j) by #f * |i-j| (default 0)\n\
457-ls#f - multipliy l(i, j) by #f * |i-j|^2 (default 0)\n\
458\n\
459 Potential parameters:\n\
460-p - generate potentials \n\
461-pl#i - #i is the upper bound on potentials (default ll)\n\
462-pm#i - #i is the lower bound on potentials (default lm)\n\
463-pn#f - multiply p(i) by #f * i (default 0)\n\
464-ps#f - multiply p(i) by #f * i^2 (default 0)\n\
465-pap#i - percentage of alternative potential nodes (default 0)\n\
466-pac#f - if i is alternative, multiply p(i) by #f (default -1)\n\
467\n\
468 Connecting path(s) parameters:\n\
469-cl#i - #i is length of arcs in connecting path(s) (default random)\n\
470-ch#i - #i is length of connecting path(s) (default n-1)\n\
471\n\
472 Artificial source parameters:\n\
473-s - generate artificial source with default connecting arc lengths\n\
474-sl#i - #i is the upper bound on art. arc lengths (default 100000000)\n\
475-sm#i - #i is the lower bound on art. arc lengths (default sl)\n\
476\n\
477-hh file_name - save this help in the file 'file_name'\n\n",
478argv[0], argv[0], argv[0] );
479
480exit (0);
481}
482
483
484