blob: 8c7acd54c85ff69b2ed0fe3aae79e55e32be02a0 [file] [log] [blame]
paul718e3742002-12-13 20:15:29 +00001/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5 Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
6
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
11
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
16
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined _AIX && !defined REGEX_MALLOC
24 #pragma alloca
25#endif
26
27#undef _GNU_SOURCE
28#define _GNU_SOURCE
29
30#ifdef HAVE_CONFIG_H
31# include <config.h>
32#endif
33
34#ifndef PARAMS
35# if defined __GNUC__ || (defined __STDC__ && __STDC__)
36# define PARAMS(args) args
37# else
38# define PARAMS(args) ()
39# endif /* GCC. */
40#endif /* Not PARAMS. */
41
42#if defined STDC_HEADERS && !defined emacs
43# include <stddef.h>
44#else
45/* We need this for `regex.h', and perhaps for the Emacs include files. */
46# include <sys/types.h>
47#endif
48
49#define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
50
51/* For platform which support the ISO C amendement 1 functionality we
52 support user defined character classes. */
53#if defined _LIBC || WIDE_CHAR_SUPPORT
54/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
55# include <wchar.h>
56# include <wctype.h>
57#endif
58
59#ifdef _LIBC
60/* We have to keep the namespace clean. */
61# define regfree(preg) __regfree (preg)
62# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
63# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
64# define regerror(errcode, preg, errbuf, errbuf_size) \
65 __regerror(errcode, preg, errbuf, errbuf_size)
66# define re_set_registers(bu, re, nu, st, en) \
67 __re_set_registers (bu, re, nu, st, en)
68# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
69 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
70# define re_match(bufp, string, size, pos, regs) \
71 __re_match (bufp, string, size, pos, regs)
72# define re_search(bufp, string, size, startpos, range, regs) \
73 __re_search (bufp, string, size, startpos, range, regs)
74# define re_compile_pattern(pattern, length, bufp) \
75 __re_compile_pattern (pattern, length, bufp)
76# define re_set_syntax(syntax) __re_set_syntax (syntax)
77# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
78 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
79# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
80
81#define btowc __btowc
82#endif
83
84/* This is for other GNU distributions with internationalized messages. */
85#if HAVE_LIBINTL_H || defined _LIBC
86# include <libintl.h>
87#else
88# define gettext(msgid) (msgid)
89#endif
90
91#ifndef gettext_noop
92/* This define is so xgettext can find the internationalizable
93 strings. */
94# define gettext_noop(String) String
95#endif
96
97/* The `emacs' switch turns on certain matching commands
98 that make sense only in Emacs. */
99#ifdef emacs
100
101# include "lisp.h"
102# include "buffer.h"
103# include "syntax.h"
104
105#else /* not emacs */
106
107/* If we are not linking with Emacs proper,
108 we can't use the relocating allocator
109 even if config.h says that we can. */
110# undef REL_ALLOC
111
112# if defined STDC_HEADERS || defined _LIBC
113# include <stdlib.h>
114# else
115char *malloc ();
116char *realloc ();
117# endif
118
119/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
120 If nothing else has been done, use the method below. */
121# ifdef INHIBIT_STRING_HEADER
122# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
123# if !defined bzero && !defined bcopy
124# undef INHIBIT_STRING_HEADER
125# endif
126# endif
127# endif
128
129/* This is the normal way of making sure we have a bcopy and a bzero.
130 This is used in most programs--a few other programs avoid this
131 by defining INHIBIT_STRING_HEADER. */
132# ifndef INHIBIT_STRING_HEADER
133# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
134# include <string.h>
135# ifndef bzero
136# ifndef _LIBC
137# define bzero(s, n) (memset (s, '\0', n), (s))
138# else
139# define bzero(s, n) __bzero (s, n)
140# endif
141# endif
142# else
143# include <strings.h>
144# ifndef memcmp
145# define memcmp(s1, s2, n) bcmp (s1, s2, n)
146# endif
147# ifndef memcpy
148# define memcpy(d, s, n) (bcopy (s, d, n), (d))
149# endif
150# endif
151# endif
152
153/* Define the syntax stuff for \<, \>, etc. */
154
155/* This must be nonzero for the wordchar and notwordchar pattern
156 commands in re_match_2. */
157# ifndef Sword
158# define Sword 1
159# endif
160
161# ifdef SWITCH_ENUM_BUG
162# define SWITCH_ENUM_CAST(x) ((int)(x))
163# else
164# define SWITCH_ENUM_CAST(x) (x)
165# endif
166
167/* How many characters in the character set. */
168# define CHAR_SET_SIZE 256
169
170# ifdef SYNTAX_TABLE
171
172extern char *re_syntax_table;
173
174# else /* not SYNTAX_TABLE */
175
176static char re_syntax_table[CHAR_SET_SIZE];
177
178static void
179init_syntax_once ()
180{
181 register int c;
182 static int done;
183
184 if (done)
185 return;
186
187 bzero (re_syntax_table, sizeof re_syntax_table);
188
189 for (c = 'a'; c <= 'z'; c++)
190 re_syntax_table[c] = Sword;
191
192 for (c = 'A'; c <= 'Z'; c++)
193 re_syntax_table[c] = Sword;
194
195 for (c = '0'; c <= '9'; c++)
196 re_syntax_table[c] = Sword;
197
198 re_syntax_table['_'] = Sword;
199
200 done = 1;
201}
202
203# endif /* not SYNTAX_TABLE */
204
205# define SYNTAX(c) re_syntax_table[c]
206
207#endif /* not emacs */
208
209/* Get the interface, including the syntax bits. */
210#include <regex-gnu.h>
211
212/* isalpha etc. are used for the character classes. */
213#include <ctype.h>
214
215/* Jim Meyering writes:
216
217 "... Some ctype macros are valid only for character codes that
218 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
219 using /bin/cc or gcc but without giving an ansi option). So, all
220 ctype uses should be through macros like ISPRINT... If
221 STDC_HEADERS is defined, then autoconf has verified that the ctype
222 macros don't need to be guarded with references to isascii. ...
223 Defining isascii to 1 should let any compiler worth its salt
224 eliminate the && through constant folding."
225 Solaris defines some of these symbols so we must undefine them first. */
226
227#undef ISASCII
228#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
229# define ISASCII(c) 1
230#else
231# define ISASCII(c) isascii(c)
232#endif
233
234#ifdef isblank
235# define ISBLANK(c) (ISASCII (c) && isblank (c))
236#else
237# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
238#endif
239#ifdef isgraph
240# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
241#else
242# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
243#endif
244
245#undef ISPRINT
246#define ISPRINT(c) (ISASCII (c) && isprint (c))
247#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
248#define ISALNUM(c) (ISASCII (c) && isalnum (c))
249#define ISALPHA(c) (ISASCII (c) && isalpha (c))
250#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
251#define ISLOWER(c) (ISASCII (c) && islower (c))
252#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
253#define ISSPACE(c) (ISASCII (c) && isspace (c))
254#define ISUPPER(c) (ISASCII (c) && isupper (c))
255#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
256
257#ifdef _tolower
258# define TOLOWER(c) _tolower(c)
259#else
260# define TOLOWER(c) tolower(c)
261#endif
262
263#ifndef NULL
264# define NULL (void *)0
265#endif
266
267/* We remove any previous definition of `SIGN_EXTEND_CHAR',
268 since ours (we hope) works properly with all combinations of
269 machines, compilers, `char' and `unsigned char' argument types.
270 (Per Bothner suggested the basic approach.) */
271#undef SIGN_EXTEND_CHAR
272#if __STDC__
273# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
274#else /* not __STDC__ */
275/* As in Harbison and Steele. */
276# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
277#endif
278
279/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
280 use `alloca' instead of `malloc'. This is because using malloc in
281 re_search* or re_match* could cause memory leaks when C-g is used in
282 Emacs; also, malloc is slower and causes storage fragmentation. On
283 the other hand, malloc is more portable, and easier to debug.
284
285 Because we sometimes use alloca, some routines have to be macros,
286 not functions -- `alloca'-allocated space disappears at the end of the
287 function it is called in. */
288
289#ifdef REGEX_MALLOC
290
291# define REGEX_ALLOCATE malloc
292# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
293# define REGEX_FREE free
294
295#else /* not REGEX_MALLOC */
296
297/* Emacs already defines alloca, sometimes. */
298# ifndef alloca
299
300/* Make alloca work the best possible way. */
301# ifdef __GNUC__
302# define alloca __builtin_alloca
303# else /* not __GNUC__ */
304# if HAVE_ALLOCA_H
305# include <alloca.h>
306# endif /* HAVE_ALLOCA_H */
307# endif /* not __GNUC__ */
308
309# endif /* not alloca */
310
311# define REGEX_ALLOCATE alloca
312
313/* Assumes a `char *destination' variable. */
314# define REGEX_REALLOCATE(source, osize, nsize) \
315 (destination = (char *) alloca (nsize), \
316 memcpy (destination, source, osize))
317
318/* No need to do anything to free, after alloca. */
319# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
320
321#endif /* not REGEX_MALLOC */
322
323/* Define how to allocate the failure stack. */
324
325#if defined REL_ALLOC && defined REGEX_MALLOC
326
327# define REGEX_ALLOCATE_STACK(size) \
328 r_alloc (&failure_stack_ptr, (size))
329# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
330 r_re_alloc (&failure_stack_ptr, (nsize))
331# define REGEX_FREE_STACK(ptr) \
332 r_alloc_free (&failure_stack_ptr)
333
334#else /* not using relocating allocator */
335
336# ifdef REGEX_MALLOC
337
338# define REGEX_ALLOCATE_STACK malloc
339# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
340# define REGEX_FREE_STACK free
341
342# else /* not REGEX_MALLOC */
343
344# define REGEX_ALLOCATE_STACK alloca
345
346# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
347 REGEX_REALLOCATE (source, osize, nsize)
348/* No need to explicitly free anything. */
349# define REGEX_FREE_STACK(arg)
350
351# endif /* not REGEX_MALLOC */
352#endif /* not using relocating allocator */
353
354
355/* True if `size1' is non-NULL and PTR is pointing anywhere inside
356 `string1' or just past its end. This works if PTR is NULL, which is
357 a good thing. */
358#define FIRST_STRING_P(ptr) \
359 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
360
361/* (Re)Allocate N items of type T using malloc, or fail. */
362#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
363#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
364#define RETALLOC_IF(addr, n, t) \
365 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
366#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
367
368#define BYTEWIDTH 8 /* In bits. */
369
370#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
371
372#undef MAX
373#undef MIN
374#define MAX(a, b) ((a) > (b) ? (a) : (b))
375#define MIN(a, b) ((a) < (b) ? (a) : (b))
376
377typedef char boolean;
378#define false 0
379#define true 1
380
381static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
382 const char *string1, int size1,
383 const char *string2, int size2,
384 int pos,
385 struct re_registers *regs,
386 int stop));
387
388/* These are the command codes that appear in compiled regular
389 expressions. Some opcodes are followed by argument bytes. A
390 command code can specify any interpretation whatsoever for its
391 arguments. Zero bytes may appear in the compiled regular expression. */
392
393typedef enum
394{
395 no_op = 0,
396
397 /* Succeed right away--no more backtracking. */
398 succeed,
399
400 /* Followed by one byte giving n, then by n literal bytes. */
401 exactn,
402
403 /* Matches any (more or less) character. */
404 anychar,
405
406 /* Matches any one char belonging to specified set. First
407 following byte is number of bitmap bytes. Then come bytes
408 for a bitmap saying which chars are in. Bits in each byte
409 are ordered low-bit-first. A character is in the set if its
410 bit is 1. A character too large to have a bit in the map is
411 automatically not in the set. */
412 charset,
413
414 /* Same parameters as charset, but match any character that is
415 not one of those specified. */
416 charset_not,
417
418 /* Start remembering the text that is matched, for storing in a
419 register. Followed by one byte with the register number, in
420 the range 0 to one less than the pattern buffer's re_nsub
421 field. Then followed by one byte with the number of groups
422 inner to this one. (This last has to be part of the
423 start_memory only because we need it in the on_failure_jump
424 of re_match_2.) */
425 start_memory,
426
427 /* Stop remembering the text that is matched and store it in a
428 memory register. Followed by one byte with the register
429 number, in the range 0 to one less than `re_nsub' in the
430 pattern buffer, and one byte with the number of inner groups,
431 just like `start_memory'. (We need the number of inner
432 groups here because we don't have any easy way of finding the
433 corresponding start_memory when we're at a stop_memory.) */
434 stop_memory,
435
436 /* Match a duplicate of something remembered. Followed by one
437 byte containing the register number. */
438 duplicate,
439
440 /* Fail unless at beginning of line. */
441 begline,
442
443 /* Fail unless at end of line. */
444 endline,
445
446 /* Succeeds if at beginning of buffer (if emacs) or at beginning
447 of string to be matched (if not). */
448 begbuf,
449
450 /* Analogously, for end of buffer/string. */
451 endbuf,
452
453 /* Followed by two byte relative address to which to jump. */
454 jump,
455
456 /* Same as jump, but marks the end of an alternative. */
457 jump_past_alt,
458
459 /* Followed by two-byte relative address of place to resume at
460 in case of failure. */
461 on_failure_jump,
462
463 /* Like on_failure_jump, but pushes a placeholder instead of the
464 current string position when executed. */
465 on_failure_keep_string_jump,
466
467 /* Throw away latest failure point and then jump to following
468 two-byte relative address. */
469 pop_failure_jump,
470
471 /* Change to pop_failure_jump if know won't have to backtrack to
472 match; otherwise change to jump. This is used to jump
473 back to the beginning of a repeat. If what follows this jump
474 clearly won't match what the repeat does, such that we can be
475 sure that there is no use backtracking out of repetitions
476 already matched, then we change it to a pop_failure_jump.
477 Followed by two-byte address. */
478 maybe_pop_jump,
479
480 /* Jump to following two-byte address, and push a dummy failure
481 point. This failure point will be thrown away if an attempt
482 is made to use it for a failure. A `+' construct makes this
483 before the first repeat. Also used as an intermediary kind
484 of jump when compiling an alternative. */
485 dummy_failure_jump,
486
487 /* Push a dummy failure point and continue. Used at the end of
488 alternatives. */
489 push_dummy_failure,
490
491 /* Followed by two-byte relative address and two-byte number n.
492 After matching N times, jump to the address upon failure. */
493 succeed_n,
494
495 /* Followed by two-byte relative address, and two-byte number n.
496 Jump to the address N times, then fail. */
497 jump_n,
498
499 /* Set the following two-byte relative address to the
500 subsequent two-byte number. The address *includes* the two
501 bytes of number. */
502 set_number_at,
503
504 wordchar, /* Matches any word-constituent character. */
505 notwordchar, /* Matches any char that is not a word-constituent. */
506
507 wordbeg, /* Succeeds if at word beginning. */
508 wordend, /* Succeeds if at word end. */
509
510 wordbound, /* Succeeds if at a word boundary. */
511 notwordbound /* Succeeds if not at a word boundary. */
512
513#ifdef emacs
514 ,before_dot, /* Succeeds if before point. */
515 at_dot, /* Succeeds if at point. */
516 after_dot, /* Succeeds if after point. */
517
518 /* Matches any character whose syntax is specified. Followed by
519 a byte which contains a syntax code, e.g., Sword. */
520 syntaxspec,
521
522 /* Matches any character whose syntax is not that specified. */
523 notsyntaxspec
524#endif /* emacs */
525} re_opcode_t;
526
527/* Common operations on the compiled pattern. */
528
529/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
530
531#define STORE_NUMBER(destination, number) \
532 do { \
533 (destination)[0] = (number) & 0377; \
534 (destination)[1] = (number) >> 8; \
535 } while (0)
536
537/* Same as STORE_NUMBER, except increment DESTINATION to
538 the byte after where the number is stored. Therefore, DESTINATION
539 must be an lvalue. */
540
541#define STORE_NUMBER_AND_INCR(destination, number) \
542 do { \
543 STORE_NUMBER (destination, number); \
544 (destination) += 2; \
545 } while (0)
546
547/* Put into DESTINATION a number stored in two contiguous bytes starting
548 at SOURCE. */
549
550#define EXTRACT_NUMBER(destination, source) \
551 do { \
552 (destination) = *(source) & 0377; \
553 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
554 } while (0)
555
556#ifdef DEBUG
557static void extract_number _RE_ARGS ((int *dest, unsigned char *source));
558static void
559extract_number (dest, source)
560 int *dest;
561 unsigned char *source;
562{
563 int temp = SIGN_EXTEND_CHAR (*(source + 1));
564 *dest = *source & 0377;
565 *dest += temp << 8;
566}
567
568# ifndef EXTRACT_MACROS /* To debug the macros. */
569# undef EXTRACT_NUMBER
570# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
571# endif /* not EXTRACT_MACROS */
572
573#endif /* DEBUG */
574
575/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
576 SOURCE must be an lvalue. */
577
578#define EXTRACT_NUMBER_AND_INCR(destination, source) \
579 do { \
580 EXTRACT_NUMBER (destination, source); \
581 (source) += 2; \
582 } while (0)
583
584#ifdef DEBUG
585static void extract_number_and_incr _RE_ARGS ((int *destination,
586 unsigned char **source));
587static void
588extract_number_and_incr (destination, source)
589 int *destination;
590 unsigned char **source;
591{
592 extract_number (destination, *source);
593 *source += 2;
594}
595
596# ifndef EXTRACT_MACROS
597# undef EXTRACT_NUMBER_AND_INCR
598# define EXTRACT_NUMBER_AND_INCR(dest, src) \
599 extract_number_and_incr (&dest, &src)
600# endif /* not EXTRACT_MACROS */
601
602#endif /* DEBUG */
603
604/* If DEBUG is defined, Regex prints many voluminous messages about what
605 it is doing (if the variable `debug' is nonzero). If linked with the
606 main program in `iregex.c', you can enter patterns and strings
607 interactively. And if linked with the main program in `main.c' and
608 the other test files, you can run the already-written tests. */
609
610#ifdef DEBUG
611
612/* We use standard I/O for debugging. */
613# include <stdio.h>
614
615/* It is useful to test things that ``must'' be true when debugging. */
616# include <assert.h>
617
618static int debug;
619
620# define DEBUG_STATEMENT(e) e
621# define DEBUG_PRINT1(x) if (debug) printf (x)
622# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
623# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
624# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
625# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
626 if (debug) print_partial_compiled_pattern (s, e)
627# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
628 if (debug) print_double_string (w, s1, sz1, s2, sz2)
629
630
631/* Print the fastmap in human-readable form. */
632
633void
634print_fastmap (fastmap)
635 char *fastmap;
636{
637 unsigned was_a_range = 0;
638 unsigned i = 0;
639
640 while (i < (1 << BYTEWIDTH))
641 {
642 if (fastmap[i++])
643 {
644 was_a_range = 0;
645 putchar (i - 1);
646 while (i < (1 << BYTEWIDTH) && fastmap[i])
647 {
648 was_a_range = 1;
649 i++;
650 }
651 if (was_a_range)
652 {
653 printf ("-");
654 putchar (i - 1);
655 }
656 }
657 }
658 putchar ('\n');
659}
660
661
662/* Print a compiled pattern string in human-readable form, starting at
663 the START pointer into it and ending just before the pointer END. */
664
665void
666print_partial_compiled_pattern (start, end)
667 unsigned char *start;
668 unsigned char *end;
669{
670 int mcnt, mcnt2;
671 unsigned char *p1;
672 unsigned char *p = start;
673 unsigned char *pend = end;
674
675 if (start == NULL)
676 {
677 printf ("(null)\n");
678 return;
679 }
680
681 /* Loop over pattern commands. */
682 while (p < pend)
683 {
684 printf ("%d:\t", p - start);
685
686 switch ((re_opcode_t) *p++)
687 {
688 case no_op:
689 printf ("/no_op");
690 break;
691
692 case exactn:
693 mcnt = *p++;
694 printf ("/exactn/%d", mcnt);
695 do
696 {
697 putchar ('/');
698 putchar (*p++);
699 }
700 while (--mcnt);
701 break;
702
703 case start_memory:
704 mcnt = *p++;
705 printf ("/start_memory/%d/%d", mcnt, *p++);
706 break;
707
708 case stop_memory:
709 mcnt = *p++;
710 printf ("/stop_memory/%d/%d", mcnt, *p++);
711 break;
712
713 case duplicate:
714 printf ("/duplicate/%d", *p++);
715 break;
716
717 case anychar:
718 printf ("/anychar");
719 break;
720
721 case charset:
722 case charset_not:
723 {
724 register int c, last = -100;
725 register int in_range = 0;
726
727 printf ("/charset [%s",
728 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
729
730 assert (p + *p < pend);
731
732 for (c = 0; c < 256; c++)
733 if (c / 8 < *p
734 && (p[1 + (c/8)] & (1 << (c % 8))))
735 {
736 /* Are we starting a range? */
737 if (last + 1 == c && ! in_range)
738 {
739 putchar ('-');
740 in_range = 1;
741 }
742 /* Have we broken a range? */
743 else if (last + 1 != c && in_range)
744 {
745 putchar (last);
746 in_range = 0;
747 }
748
749 if (! in_range)
750 putchar (c);
751
752 last = c;
753 }
754
755 if (in_range)
756 putchar (last);
757
758 putchar (']');
759
760 p += 1 + *p;
761 }
762 break;
763
764 case begline:
765 printf ("/begline");
766 break;
767
768 case endline:
769 printf ("/endline");
770 break;
771
772 case on_failure_jump:
773 extract_number_and_incr (&mcnt, &p);
774 printf ("/on_failure_jump to %d", p + mcnt - start);
775 break;
776
777 case on_failure_keep_string_jump:
778 extract_number_and_incr (&mcnt, &p);
779 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
780 break;
781
782 case dummy_failure_jump:
783 extract_number_and_incr (&mcnt, &p);
784 printf ("/dummy_failure_jump to %d", p + mcnt - start);
785 break;
786
787 case push_dummy_failure:
788 printf ("/push_dummy_failure");
789 break;
790
791 case maybe_pop_jump:
792 extract_number_and_incr (&mcnt, &p);
793 printf ("/maybe_pop_jump to %d", p + mcnt - start);
794 break;
795
796 case pop_failure_jump:
797 extract_number_and_incr (&mcnt, &p);
798 printf ("/pop_failure_jump to %d", p + mcnt - start);
799 break;
800
801 case jump_past_alt:
802 extract_number_and_incr (&mcnt, &p);
803 printf ("/jump_past_alt to %d", p + mcnt - start);
804 break;
805
806 case jump:
807 extract_number_and_incr (&mcnt, &p);
808 printf ("/jump to %d", p + mcnt - start);
809 break;
810
811 case succeed_n:
812 extract_number_and_incr (&mcnt, &p);
813 p1 = p + mcnt;
814 extract_number_and_incr (&mcnt2, &p);
815 printf ("/succeed_n to %d, %d times", p1 - start, mcnt2);
816 break;
817
818 case jump_n:
819 extract_number_and_incr (&mcnt, &p);
820 p1 = p + mcnt;
821 extract_number_and_incr (&mcnt2, &p);
822 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
823 break;
824
825 case set_number_at:
826 extract_number_and_incr (&mcnt, &p);
827 p1 = p + mcnt;
828 extract_number_and_incr (&mcnt2, &p);
829 printf ("/set_number_at location %d to %d", p1 - start, mcnt2);
830 break;
831
832 case wordbound:
833 printf ("/wordbound");
834 break;
835
836 case notwordbound:
837 printf ("/notwordbound");
838 break;
839
840 case wordbeg:
841 printf ("/wordbeg");
842 break;
843
844 case wordend:
845 printf ("/wordend");
846
847# ifdef emacs
848 case before_dot:
849 printf ("/before_dot");
850 break;
851
852 case at_dot:
853 printf ("/at_dot");
854 break;
855
856 case after_dot:
857 printf ("/after_dot");
858 break;
859
860 case syntaxspec:
861 printf ("/syntaxspec");
862 mcnt = *p++;
863 printf ("/%d", mcnt);
864 break;
865
866 case notsyntaxspec:
867 printf ("/notsyntaxspec");
868 mcnt = *p++;
869 printf ("/%d", mcnt);
870 break;
871# endif /* emacs */
872
873 case wordchar:
874 printf ("/wordchar");
875 break;
876
877 case notwordchar:
878 printf ("/notwordchar");
879 break;
880
881 case begbuf:
882 printf ("/begbuf");
883 break;
884
885 case endbuf:
886 printf ("/endbuf");
887 break;
888
889 default:
890 printf ("?%d", *(p-1));
891 }
892
893 putchar ('\n');
894 }
895
896 printf ("%d:\tend of pattern.\n", p - start);
897}
898
899
900void
901print_compiled_pattern (bufp)
902 struct re_pattern_buffer *bufp;
903{
904 unsigned char *buffer = bufp->buffer;
905
906 print_partial_compiled_pattern (buffer, buffer + bufp->used);
907 printf ("%ld bytes used/%ld bytes allocated.\n",
908 bufp->used, bufp->allocated);
909
910 if (bufp->fastmap_accurate && bufp->fastmap)
911 {
912 printf ("fastmap: ");
913 print_fastmap (bufp->fastmap);
914 }
915
916 printf ("re_nsub: %d\t", bufp->re_nsub);
917 printf ("regs_alloc: %d\t", bufp->regs_allocated);
918 printf ("can_be_null: %d\t", bufp->can_be_null);
919 printf ("newline_anchor: %d\n", bufp->newline_anchor);
920 printf ("no_sub: %d\t", bufp->no_sub);
921 printf ("not_bol: %d\t", bufp->not_bol);
922 printf ("not_eol: %d\t", bufp->not_eol);
923 printf ("syntax: %lx\n", bufp->syntax);
924 /* Perhaps we should print the translate table? */
925}
926
927
928void
929print_double_string (where, string1, size1, string2, size2)
930 const char *where;
931 const char *string1;
932 const char *string2;
933 int size1;
934 int size2;
935{
936 int this_char;
937
938 if (where == NULL)
939 printf ("(null)");
940 else
941 {
942 if (FIRST_STRING_P (where))
943 {
944 for (this_char = where - string1; this_char < size1; this_char++)
945 putchar (string1[this_char]);
946
947 where = string2;
948 }
949
950 for (this_char = where - string2; this_char < size2; this_char++)
951 putchar (string2[this_char]);
952 }
953}
954
955void
956printchar (c)
957 int c;
958{
959 putc (c, stderr);
960}
961
962#else /* not DEBUG */
963
964# undef assert
965# define assert(e)
966
967# define DEBUG_STATEMENT(e)
968# define DEBUG_PRINT1(x)
969# define DEBUG_PRINT2(x1, x2)
970# define DEBUG_PRINT3(x1, x2, x3)
971# define DEBUG_PRINT4(x1, x2, x3, x4)
972# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
973# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
974
975#endif /* not DEBUG */
976
977/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
978 also be assigned to arbitrarily: each pattern buffer stores its own
979 syntax, so it can be changed between regex compilations. */
980/* This has no initializer because initialized variables in Emacs
981 become read-only after dumping. */
982reg_syntax_t re_syntax_options;
983
984
985/* Specify the precise syntax of regexps for compilation. This provides
986 for compatibility for various utilities which historically have
987 different, incompatible syntaxes.
988
989 The argument SYNTAX is a bit mask comprised of the various bits
990 defined in regex.h. We return the old syntax. */
991
992reg_syntax_t
993re_set_syntax (syntax)
994 reg_syntax_t syntax;
995{
996 reg_syntax_t ret = re_syntax_options;
997
998 re_syntax_options = syntax;
999#ifdef DEBUG
1000 if (syntax & RE_DEBUG)
1001 debug = 1;
1002 else if (debug) /* was on but now is not */
1003 debug = 0;
1004#endif /* DEBUG */
1005 return ret;
1006}
1007#ifdef _LIBC
1008weak_alias (__re_set_syntax, re_set_syntax)
1009#endif
1010
1011/* This table gives an error message for each of the error codes listed
1012 in regex.h. Obviously the order here has to be same as there.
1013 POSIX doesn't require that we do anything for REG_NOERROR,
1014 but why not be nice? */
1015
1016static const char re_error_msgid[] =
1017 {
1018#define REG_NOERROR_IDX 0
1019 gettext_noop ("Success") /* REG_NOERROR */
1020 "\0"
1021#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1022 gettext_noop ("No match") /* REG_NOMATCH */
1023 "\0"
1024#define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1025 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1026 "\0"
1027#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1028 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1029 "\0"
1030#define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1031 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1032 "\0"
1033#define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1034 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1035 "\0"
1036#define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1037 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1038 "\0"
1039#define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1040 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1041 "\0"
1042#define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1043 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1044 "\0"
1045#define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1046 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1047 "\0"
1048#define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1049 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1050 "\0"
1051#define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1052 gettext_noop ("Invalid range end") /* REG_ERANGE */
1053 "\0"
1054#define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1055 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1056 "\0"
1057#define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1058 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1059 "\0"
1060#define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1061 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1062 "\0"
1063#define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1064 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1065 "\0"
1066#define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1067 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1068 };
1069
1070static const size_t re_error_msgid_idx[] =
1071 {
1072 REG_NOERROR_IDX,
1073 REG_NOMATCH_IDX,
1074 REG_BADPAT_IDX,
1075 REG_ECOLLATE_IDX,
1076 REG_ECTYPE_IDX,
1077 REG_EESCAPE_IDX,
1078 REG_ESUBREG_IDX,
1079 REG_EBRACK_IDX,
1080 REG_EPAREN_IDX,
1081 REG_EBRACE_IDX,
1082 REG_BADBR_IDX,
1083 REG_ERANGE_IDX,
1084 REG_ESPACE_IDX,
1085 REG_BADRPT_IDX,
1086 REG_EEND_IDX,
1087 REG_ESIZE_IDX,
1088 REG_ERPAREN_IDX
1089 };
1090
1091/* Avoiding alloca during matching, to placate r_alloc. */
1092
1093/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1094 searching and matching functions should not call alloca. On some
1095 systems, alloca is implemented in terms of malloc, and if we're
1096 using the relocating allocator routines, then malloc could cause a
1097 relocation, which might (if the strings being searched are in the
1098 ralloc heap) shift the data out from underneath the regexp
1099 routines.
1100
1101 Here's another reason to avoid allocation: Emacs
1102 processes input from X in a signal handler; processing X input may
1103 call malloc; if input arrives while a matching routine is calling
1104 malloc, then we're scrod. But Emacs can't just block input while
1105 calling matching routines; then we don't notice interrupts when
1106 they come in. So, Emacs blocks input around all regexp calls
1107 except the matching calls, which it leaves unprotected, in the
1108 faith that they will not malloc. */
1109
1110/* Normally, this is fine. */
1111#define MATCH_MAY_ALLOCATE
1112
1113/* When using GNU C, we are not REALLY using the C alloca, no matter
1114 what config.h may say. So don't take precautions for it. */
1115#ifdef __GNUC__
1116# undef C_ALLOCA
1117#endif
1118
1119/* The match routines may not allocate if (1) they would do it with malloc
1120 and (2) it's not safe for them to use malloc.
1121 Note that if REL_ALLOC is defined, matching would not use malloc for the
1122 failure stack, but we would still use it for the register vectors;
1123 so REL_ALLOC should not affect this. */
1124#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1125# undef MATCH_MAY_ALLOCATE
1126#endif
1127
1128
1129/* Failure stack declarations and macros; both re_compile_fastmap and
1130 re_match_2 use a failure stack. These have to be macros because of
1131 REGEX_ALLOCATE_STACK. */
1132
1133
1134/* Number of failure points for which to initially allocate space
1135 when matching. If this number is exceeded, we allocate more
1136 space, so it is not a hard limit. */
1137#ifndef INIT_FAILURE_ALLOC
1138# define INIT_FAILURE_ALLOC 5
1139#endif
1140
1141/* Roughly the maximum number of failure points on the stack. Would be
1142 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1143 This is a variable only so users of regex can assign to it; we never
1144 change it ourselves. */
1145
1146#ifdef INT_IS_16BIT
1147
1148# if defined MATCH_MAY_ALLOCATE
1149/* 4400 was enough to cause a crash on Alpha OSF/1,
1150 whose default stack limit is 2mb. */
1151long int re_max_failures = 4000;
1152# else
1153long int re_max_failures = 2000;
1154# endif
1155
1156union fail_stack_elt
1157{
1158 unsigned char *pointer;
1159 long int integer;
1160};
1161
1162typedef union fail_stack_elt fail_stack_elt_t;
1163
1164typedef struct
1165{
1166 fail_stack_elt_t *stack;
1167 unsigned long int size;
1168 unsigned long int avail; /* Offset of next open position. */
1169} fail_stack_type;
1170
1171#else /* not INT_IS_16BIT */
1172
1173# if defined MATCH_MAY_ALLOCATE
1174/* 4400 was enough to cause a crash on Alpha OSF/1,
1175 whose default stack limit is 2mb. */
1176int re_max_failures = 20000;
1177# else
1178int re_max_failures = 2000;
1179# endif
1180
1181union fail_stack_elt
1182{
1183 unsigned char *pointer;
1184 int integer;
1185};
1186
1187typedef union fail_stack_elt fail_stack_elt_t;
1188
1189typedef struct
1190{
1191 fail_stack_elt_t *stack;
1192 unsigned size;
1193 unsigned avail; /* Offset of next open position. */
1194} fail_stack_type;
1195
1196#endif /* INT_IS_16BIT */
1197
1198#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1199#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1200#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1201
1202
1203/* Define macros to initialize and free the failure stack.
1204 Do `return -2' if the alloc fails. */
1205
1206#ifdef MATCH_MAY_ALLOCATE
1207# define INIT_FAIL_STACK() \
1208 do { \
1209 fail_stack.stack = (fail_stack_elt_t *) \
1210 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1211 \
1212 if (fail_stack.stack == NULL) \
1213 return -2; \
1214 \
1215 fail_stack.size = INIT_FAILURE_ALLOC; \
1216 fail_stack.avail = 0; \
1217 } while (0)
1218
1219# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1220#else
1221# define INIT_FAIL_STACK() \
1222 do { \
1223 fail_stack.avail = 0; \
1224 } while (0)
1225
1226# define RESET_FAIL_STACK()
1227#endif
1228
1229
1230/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1231
1232 Return 1 if succeeds, and 0 if either ran out of memory
1233 allocating space for it or it was already too large.
1234
1235 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1236
1237#define DOUBLE_FAIL_STACK(fail_stack) \
1238 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1239 ? 0 \
1240 : ((fail_stack).stack = (fail_stack_elt_t *) \
1241 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1242 (fail_stack).size * sizeof (fail_stack_elt_t), \
1243 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
1244 \
1245 (fail_stack).stack == NULL \
1246 ? 0 \
1247 : ((fail_stack).size <<= 1, \
1248 1)))
1249
1250
1251/* Push pointer POINTER on FAIL_STACK.
1252 Return 1 if was able to do so and 0 if ran out of memory allocating
1253 space to do so. */
1254#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1255 ((FAIL_STACK_FULL () \
1256 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1257 ? 0 \
1258 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1259 1))
1260
1261/* Push a pointer value onto the failure stack.
1262 Assumes the variable `fail_stack'. Probably should only
1263 be called from within `PUSH_FAILURE_POINT'. */
1264#define PUSH_FAILURE_POINTER(item) \
1265 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
1266
1267/* This pushes an integer-valued item onto the failure stack.
1268 Assumes the variable `fail_stack'. Probably should only
1269 be called from within `PUSH_FAILURE_POINT'. */
1270#define PUSH_FAILURE_INT(item) \
1271 fail_stack.stack[fail_stack.avail++].integer = (item)
1272
1273/* Push a fail_stack_elt_t value onto the failure stack.
1274 Assumes the variable `fail_stack'. Probably should only
1275 be called from within `PUSH_FAILURE_POINT'. */
1276#define PUSH_FAILURE_ELT(item) \
1277 fail_stack.stack[fail_stack.avail++] = (item)
1278
1279/* These three POP... operations complement the three PUSH... operations.
1280 All assume that `fail_stack' is nonempty. */
1281#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1282#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1283#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1284
1285/* Used to omit pushing failure point id's when we're not debugging. */
1286#ifdef DEBUG
1287# define DEBUG_PUSH PUSH_FAILURE_INT
1288# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1289#else
1290# define DEBUG_PUSH(item)
1291# define DEBUG_POP(item_addr)
1292#endif
1293
1294
1295/* Push the information about the state we will need
1296 if we ever fail back to it.
1297
1298 Requires variables fail_stack, regstart, regend, reg_info, and
1299 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1300 be declared.
1301
1302 Does `return FAILURE_CODE' if runs out of memory. */
1303
1304#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1305 do { \
1306 char *destination; \
1307 /* Must be int, so when we don't save any registers, the arithmetic \
1308 of 0 + -1 isn't done as unsigned. */ \
1309 /* Can't be int, since there is not a shred of a guarantee that int \
1310 is wide enough to hold a value of something to which pointer can \
1311 be assigned */ \
1312 active_reg_t this_reg; \
1313 \
1314 DEBUG_STATEMENT (failure_id++); \
1315 DEBUG_STATEMENT (nfailure_points_pushed++); \
1316 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1317 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1318 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1319 \
1320 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1321 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1322 \
1323 /* Ensure we have enough space allocated for what we will push. */ \
1324 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1325 { \
1326 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1327 return failure_code; \
1328 \
1329 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1330 (fail_stack).size); \
1331 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1332 } \
1333 \
1334 /* Push the info, starting with the registers. */ \
1335 DEBUG_PRINT1 ("\n"); \
1336 \
1337 if (1) \
1338 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1339 this_reg++) \
1340 { \
1341 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1342 DEBUG_STATEMENT (num_regs_pushed++); \
1343 \
1344 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1345 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1346 \
1347 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1348 PUSH_FAILURE_POINTER (regend[this_reg]); \
1349 \
1350 DEBUG_PRINT2 (" info: %p\n ", \
1351 reg_info[this_reg].word.pointer); \
1352 DEBUG_PRINT2 (" match_null=%d", \
1353 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1354 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1355 DEBUG_PRINT2 (" matched_something=%d", \
1356 MATCHED_SOMETHING (reg_info[this_reg])); \
1357 DEBUG_PRINT2 (" ever_matched=%d", \
1358 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1359 DEBUG_PRINT1 ("\n"); \
1360 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1361 } \
1362 \
1363 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1364 PUSH_FAILURE_INT (lowest_active_reg); \
1365 \
1366 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1367 PUSH_FAILURE_INT (highest_active_reg); \
1368 \
1369 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1370 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1371 PUSH_FAILURE_POINTER (pattern_place); \
1372 \
1373 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1374 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1375 size2); \
1376 DEBUG_PRINT1 ("'\n"); \
1377 PUSH_FAILURE_POINTER (string_place); \
1378 \
1379 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1380 DEBUG_PUSH (failure_id); \
1381 } while (0)
1382
1383/* This is the number of items that are pushed and popped on the stack
1384 for each register. */
1385#define NUM_REG_ITEMS 3
1386
1387/* Individual items aside from the registers. */
1388#ifdef DEBUG
1389# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1390#else
1391# define NUM_NONREG_ITEMS 4
1392#endif
1393
1394/* We push at most this many items on the stack. */
1395/* We used to use (num_regs - 1), which is the number of registers
1396 this regexp will save; but that was changed to 5
1397 to avoid stack overflow for a regexp with lots of parens. */
1398#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1399
1400/* We actually push this many items. */
1401#define NUM_FAILURE_ITEMS \
1402 (((0 \
1403 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1404 * NUM_REG_ITEMS) \
1405 + NUM_NONREG_ITEMS)
1406
1407/* How many items can still be added to the stack without overflowing it. */
1408#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1409
1410
1411/* Pops what PUSH_FAIL_STACK pushes.
1412
1413 We restore into the parameters, all of which should be lvalues:
1414 STR -- the saved data position.
1415 PAT -- the saved pattern position.
1416 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1417 REGSTART, REGEND -- arrays of string positions.
1418 REG_INFO -- array of information about each subexpression.
1419
1420 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1421 `pend', `string1', `size1', `string2', and `size2'. */
1422
1423#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1424{ \
1425 DEBUG_STATEMENT (unsigned failure_id;) \
1426 active_reg_t this_reg; \
1427 const unsigned char *string_temp; \
1428 \
1429 assert (!FAIL_STACK_EMPTY ()); \
1430 \
1431 /* Remove failure points and point to how many regs pushed. */ \
1432 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1433 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1434 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1435 \
1436 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1437 \
1438 DEBUG_POP (&failure_id); \
1439 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1440 \
1441 /* If the saved string location is NULL, it came from an \
1442 on_failure_keep_string_jump opcode, and we want to throw away the \
1443 saved NULL, thus retaining our current position in the string. */ \
1444 string_temp = POP_FAILURE_POINTER (); \
1445 if (string_temp != NULL) \
1446 str = (const char *) string_temp; \
1447 \
1448 DEBUG_PRINT2 (" Popping string %p: `", str); \
1449 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1450 DEBUG_PRINT1 ("'\n"); \
1451 \
1452 pat = (unsigned char *) POP_FAILURE_POINTER (); \
1453 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1454 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1455 \
1456 /* Restore register info. */ \
1457 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1458 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1459 \
1460 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1461 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1462 \
1463 if (1) \
1464 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1465 { \
1466 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1467 \
1468 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1469 DEBUG_PRINT2 (" info: %p\n", \
1470 reg_info[this_reg].word.pointer); \
1471 \
1472 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1473 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1474 \
1475 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \
1476 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1477 } \
1478 else \
1479 { \
1480 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1481 { \
1482 reg_info[this_reg].word.integer = 0; \
1483 regend[this_reg] = 0; \
1484 regstart[this_reg] = 0; \
1485 } \
1486 highest_active_reg = high_reg; \
1487 } \
1488 \
1489 set_regs_matched_done = 0; \
1490 DEBUG_STATEMENT (nfailure_points_popped++); \
1491} /* POP_FAILURE_POINT */
1492
1493
1494
1495/* Structure for per-register (a.k.a. per-group) information.
1496 Other register information, such as the
1497 starting and ending positions (which are addresses), and the list of
1498 inner groups (which is a bits list) are maintained in separate
1499 variables.
1500
1501 We are making a (strictly speaking) nonportable assumption here: that
1502 the compiler will pack our bit fields into something that fits into
1503 the type of `word', i.e., is something that fits into one item on the
1504 failure stack. */
1505
1506
1507/* Declarations and macros for re_match_2. */
1508
1509typedef union
1510{
1511 fail_stack_elt_t word;
1512 struct
1513 {
1514 /* This field is one if this group can match the empty string,
1515 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1516#define MATCH_NULL_UNSET_VALUE 3
1517 unsigned match_null_string_p : 2;
1518 unsigned is_active : 1;
1519 unsigned matched_something : 1;
1520 unsigned ever_matched_something : 1;
1521 } bits;
1522} register_info_type;
1523
1524#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1525#define IS_ACTIVE(R) ((R).bits.is_active)
1526#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1527#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1528
1529
1530/* Call this when have matched a real character; it sets `matched' flags
1531 for the subexpressions which we are currently inside. Also records
1532 that those subexprs have matched. */
1533#define SET_REGS_MATCHED() \
1534 do \
1535 { \
1536 if (!set_regs_matched_done) \
1537 { \
1538 active_reg_t r; \
1539 set_regs_matched_done = 1; \
1540 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1541 { \
1542 MATCHED_SOMETHING (reg_info[r]) \
1543 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1544 = 1; \
1545 } \
1546 } \
1547 } \
1548 while (0)
1549
1550/* Registers are set to a sentinel when they haven't yet matched. */
1551static char reg_unset_dummy;
1552#define REG_UNSET_VALUE (&reg_unset_dummy)
1553#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1554
1555/* Subroutine declarations and macros for regex_compile. */
1556
1557static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1558 reg_syntax_t syntax,
1559 struct re_pattern_buffer *bufp));
1560static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1561static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1562 int arg1, int arg2));
1563static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1564 int arg, unsigned char *end));
1565static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1566 int arg1, int arg2, unsigned char *end));
1567static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p,
1568 reg_syntax_t syntax));
1569static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend,
1570 reg_syntax_t syntax));
1571static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr,
1572 const char *pend,
1573 char *translate,
1574 reg_syntax_t syntax,
1575 unsigned char *b));
1576
1577/* Fetch the next character in the uncompiled pattern---translating it
1578 if necessary. Also cast from a signed character in the constant
1579 string passed to us by the user to an unsigned char that we can use
1580 as an array index (in, e.g., `translate'). */
1581#ifndef PATFETCH
1582# define PATFETCH(c) \
1583 do {if (p == pend) return REG_EEND; \
1584 c = (unsigned char) *p++; \
1585 if (translate) c = (unsigned char) translate[c]; \
1586 } while (0)
1587#endif
1588
1589/* Fetch the next character in the uncompiled pattern, with no
1590 translation. */
1591#define PATFETCH_RAW(c) \
1592 do {if (p == pend) return REG_EEND; \
1593 c = (unsigned char) *p++; \
1594 } while (0)
1595
1596/* Go backwards one character in the pattern. */
1597#define PATUNFETCH p--
1598
1599
1600/* If `translate' is non-null, return translate[D], else just D. We
1601 cast the subscript to translate because some data is declared as
1602 `char *', to avoid warnings when a string constant is passed. But
1603 when we use a character as a subscript we must make it unsigned. */
1604#ifndef TRANSLATE
1605# define TRANSLATE(d) \
1606 (translate ? (char) translate[(unsigned char) (d)] : (d))
1607#endif
1608
1609
1610/* Macros for outputting the compiled pattern into `buffer'. */
1611
1612/* If the buffer isn't allocated when it comes in, use this. */
1613#define INIT_BUF_SIZE 32
1614
1615/* Make sure we have at least N more bytes of space in buffer. */
1616#define GET_BUFFER_SPACE(n) \
1617 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1618 EXTEND_BUFFER ()
1619
1620/* Make sure we have one more byte of buffer space and then add C to it. */
1621#define BUF_PUSH(c) \
1622 do { \
1623 GET_BUFFER_SPACE (1); \
1624 *b++ = (unsigned char) (c); \
1625 } while (0)
1626
1627
1628/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1629#define BUF_PUSH_2(c1, c2) \
1630 do { \
1631 GET_BUFFER_SPACE (2); \
1632 *b++ = (unsigned char) (c1); \
1633 *b++ = (unsigned char) (c2); \
1634 } while (0)
1635
1636
1637/* As with BUF_PUSH_2, except for three bytes. */
1638#define BUF_PUSH_3(c1, c2, c3) \
1639 do { \
1640 GET_BUFFER_SPACE (3); \
1641 *b++ = (unsigned char) (c1); \
1642 *b++ = (unsigned char) (c2); \
1643 *b++ = (unsigned char) (c3); \
1644 } while (0)
1645
1646
1647/* Store a jump with opcode OP at LOC to location TO. We store a
1648 relative address offset by the three bytes the jump itself occupies. */
1649#define STORE_JUMP(op, loc, to) \
1650 store_op1 (op, loc, (int) ((to) - (loc) - 3))
1651
1652/* Likewise, for a two-argument jump. */
1653#define STORE_JUMP2(op, loc, to, arg) \
1654 store_op2 (op, loc, (int) ((to) - (loc) - 3), arg)
1655
1656/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1657#define INSERT_JUMP(op, loc, to) \
1658 insert_op1 (op, loc, (int) ((to) - (loc) - 3), b)
1659
1660/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1661#define INSERT_JUMP2(op, loc, to, arg) \
1662 insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b)
1663
1664
1665/* This is not an arbitrary limit: the arguments which represent offsets
1666 into the pattern are two bytes long. So if 2^16 bytes turns out to
1667 be too small, many things would have to change. */
1668/* Any other compiler which, like MSC, has allocation limit below 2^16
1669 bytes will have to use approach similar to what was done below for
1670 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1671 reallocating to 0 bytes. Such thing is not going to work too well.
1672 You have been warned!! */
1673#if defined _MSC_VER && !defined WIN32
1674/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1675 The REALLOC define eliminates a flurry of conversion warnings,
1676 but is not required. */
1677# define MAX_BUF_SIZE 65500L
1678# define REALLOC(p,s) realloc ((p), (size_t) (s))
1679#else
1680# define MAX_BUF_SIZE (1L << 16)
1681# define REALLOC(p,s) realloc ((p), (s))
1682#endif
1683
1684/* Extend the buffer by twice its current size via realloc and
1685 reset the pointers that pointed into the old block to point to the
1686 correct places in the new one. If extending the buffer results in it
1687 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1688#define EXTEND_BUFFER() \
1689 do { \
1690 unsigned char *old_buffer = bufp->buffer; \
1691 if (bufp->allocated == MAX_BUF_SIZE) \
1692 return REG_ESIZE; \
1693 bufp->allocated <<= 1; \
1694 if (bufp->allocated > MAX_BUF_SIZE) \
1695 bufp->allocated = MAX_BUF_SIZE; \
1696 bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\
1697 if (bufp->buffer == NULL) \
1698 return REG_ESPACE; \
1699 /* If the buffer moved, move all the pointers into it. */ \
1700 if (old_buffer != bufp->buffer) \
1701 { \
1702 b = (b - old_buffer) + bufp->buffer; \
1703 begalt = (begalt - old_buffer) + bufp->buffer; \
1704 if (fixup_alt_jump) \
1705 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1706 if (laststart) \
1707 laststart = (laststart - old_buffer) + bufp->buffer; \
1708 if (pending_exact) \
1709 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1710 } \
1711 } while (0)
1712
1713
1714/* Since we have one byte reserved for the register number argument to
1715 {start,stop}_memory, the maximum number of groups we can report
1716 things about is what fits in that byte. */
1717#define MAX_REGNUM 255
1718
1719/* But patterns can have more than `MAX_REGNUM' registers. We just
1720 ignore the excess. */
1721typedef unsigned regnum_t;
1722
1723
1724/* Macros for the compile stack. */
1725
1726/* Since offsets can go either forwards or backwards, this type needs to
1727 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1728/* int may be not enough when sizeof(int) == 2. */
1729typedef long pattern_offset_t;
1730
1731typedef struct
1732{
1733 pattern_offset_t begalt_offset;
1734 pattern_offset_t fixup_alt_jump;
1735 pattern_offset_t inner_group_offset;
1736 pattern_offset_t laststart_offset;
1737 regnum_t regnum;
1738} compile_stack_elt_t;
1739
1740
1741typedef struct
1742{
1743 compile_stack_elt_t *stack;
1744 unsigned size;
1745 unsigned avail; /* Offset of next open position. */
1746} compile_stack_type;
1747
1748
1749#define INIT_COMPILE_STACK_SIZE 32
1750
1751#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1752#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1753
1754/* The next available element. */
1755#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1756
1757
1758/* Set the bit for character C in a list. */
1759#define SET_LIST_BIT(c) \
1760 (b[((unsigned char) (c)) / BYTEWIDTH] \
1761 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1762
1763
1764/* Get the next unsigned number in the uncompiled pattern. */
1765#define GET_UNSIGNED_NUMBER(num) \
1766 { if (p != pend) \
1767 { \
1768 PATFETCH (c); \
1769 while (ISDIGIT (c)) \
1770 { \
1771 if (num < 0) \
1772 num = 0; \
1773 num = num * 10 + c - '0'; \
1774 if (p == pend) \
1775 break; \
1776 PATFETCH (c); \
1777 } \
1778 } \
1779 }
1780
1781#if defined _LIBC || WIDE_CHAR_SUPPORT
1782/* The GNU C library provides support for user-defined character classes
1783 and the functions from ISO C amendement 1. */
1784# ifdef CHARCLASS_NAME_MAX
1785# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1786# else
1787/* This shouldn't happen but some implementation might still have this
1788 problem. Use a reasonable default value. */
1789# define CHAR_CLASS_MAX_LENGTH 256
1790# endif
1791
1792# ifdef _LIBC
1793# define IS_CHAR_CLASS(string) __wctype (string)
1794# else
1795# define IS_CHAR_CLASS(string) wctype (string)
1796# endif
1797#else
1798# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1799
1800# define IS_CHAR_CLASS(string) \
1801 (STREQ (string, "alpha") || STREQ (string, "upper") \
1802 || STREQ (string, "lower") || STREQ (string, "digit") \
1803 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1804 || STREQ (string, "space") || STREQ (string, "print") \
1805 || STREQ (string, "punct") || STREQ (string, "graph") \
1806 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1807#endif
1808
1809#ifndef MATCH_MAY_ALLOCATE
1810
1811/* If we cannot allocate large objects within re_match_2_internal,
1812 we make the fail stack and register vectors global.
1813 The fail stack, we grow to the maximum size when a regexp
1814 is compiled.
1815 The register vectors, we adjust in size each time we
1816 compile a regexp, according to the number of registers it needs. */
1817
1818static fail_stack_type fail_stack;
1819
1820/* Size with which the following vectors are currently allocated.
1821 That is so we can make them bigger as needed,
1822 but never make them smaller. */
1823static int regs_allocated_size;
1824
1825static const char ** regstart, ** regend;
1826static const char ** old_regstart, ** old_regend;
1827static const char **best_regstart, **best_regend;
1828static register_info_type *reg_info;
1829static const char **reg_dummy;
1830static register_info_type *reg_info_dummy;
1831
1832/* Make the register vectors big enough for NUM_REGS registers,
1833 but don't make them smaller. */
1834
1835static
1836regex_grow_registers (num_regs)
1837 int num_regs;
1838{
1839 if (num_regs > regs_allocated_size)
1840 {
1841 RETALLOC_IF (regstart, num_regs, const char *);
1842 RETALLOC_IF (regend, num_regs, const char *);
1843 RETALLOC_IF (old_regstart, num_regs, const char *);
1844 RETALLOC_IF (old_regend, num_regs, const char *);
1845 RETALLOC_IF (best_regstart, num_regs, const char *);
1846 RETALLOC_IF (best_regend, num_regs, const char *);
1847 RETALLOC_IF (reg_info, num_regs, register_info_type);
1848 RETALLOC_IF (reg_dummy, num_regs, const char *);
1849 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
1850
1851 regs_allocated_size = num_regs;
1852 }
1853}
1854
1855#endif /* not MATCH_MAY_ALLOCATE */
1856
1857static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
1858 compile_stack,
1859 regnum_t regnum));
1860
1861/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1862 Returns one of error codes defined in `regex.h', or zero for success.
1863
1864 Assumes the `allocated' (and perhaps `buffer') and `translate'
1865 fields are set in BUFP on entry.
1866
1867 If it succeeds, results are put in BUFP (if it returns an error, the
1868 contents of BUFP are undefined):
1869 `buffer' is the compiled pattern;
1870 `syntax' is set to SYNTAX;
1871 `used' is set to the length of the compiled pattern;
1872 `fastmap_accurate' is zero;
1873 `re_nsub' is the number of subexpressions in PATTERN;
1874 `not_bol' and `not_eol' are zero;
1875
1876 The `fastmap' and `newline_anchor' fields are neither
1877 examined nor set. */
1878
1879/* Return, freeing storage we allocated. */
1880#define FREE_STACK_RETURN(value) \
1881 return (free (compile_stack.stack), value)
1882
1883static reg_errcode_t
1884regex_compile (pattern, size, syntax, bufp)
1885 const char *pattern;
1886 size_t size;
1887 reg_syntax_t syntax;
1888 struct re_pattern_buffer *bufp;
1889{
1890 /* We fetch characters from PATTERN here. Even though PATTERN is
1891 `char *' (i.e., signed), we declare these variables as unsigned, so
1892 they can be reliably used as array indices. */
1893 register unsigned char c, c1;
1894
1895 /* A random temporary spot in PATTERN. */
1896 const char *p1;
1897
1898 /* Points to the end of the buffer, where we should append. */
1899 register unsigned char *b;
1900
1901 /* Keeps track of unclosed groups. */
1902 compile_stack_type compile_stack;
1903
1904 /* Points to the current (ending) position in the pattern. */
1905 const char *p = pattern;
1906 const char *pend = pattern + size;
1907
1908 /* How to translate the characters in the pattern. */
1909 RE_TRANSLATE_TYPE translate = bufp->translate;
1910
1911 /* Address of the count-byte of the most recently inserted `exactn'
1912 command. This makes it possible to tell if a new exact-match
1913 character can be added to that command or if the character requires
1914 a new `exactn' command. */
1915 unsigned char *pending_exact = 0;
1916
1917 /* Address of start of the most recently finished expression.
1918 This tells, e.g., postfix * where to find the start of its
1919 operand. Reset at the beginning of groups and alternatives. */
1920 unsigned char *laststart = 0;
1921
1922 /* Address of beginning of regexp, or inside of last group. */
1923 unsigned char *begalt;
1924
1925 /* Place in the uncompiled pattern (i.e., the {) to
1926 which to go back if the interval is invalid. */
1927 const char *beg_interval;
1928
1929 /* Address of the place where a forward jump should go to the end of
1930 the containing expression. Each alternative of an `or' -- except the
1931 last -- ends with a forward jump of this sort. */
1932 unsigned char *fixup_alt_jump = 0;
1933
1934 /* Counts open-groups as they are encountered. Remembered for the
1935 matching close-group on the compile stack, so the same register
1936 number is put in the stop_memory as the start_memory. */
1937 regnum_t regnum = 0;
1938
1939#ifdef DEBUG
1940 DEBUG_PRINT1 ("\nCompiling pattern: ");
1941 if (debug)
1942 {
1943 unsigned debug_count;
1944
1945 for (debug_count = 0; debug_count < size; debug_count++)
1946 putchar (pattern[debug_count]);
1947 putchar ('\n');
1948 }
1949#endif /* DEBUG */
1950
1951 /* Initialize the compile stack. */
1952 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1953 if (compile_stack.stack == NULL)
1954 return REG_ESPACE;
1955
1956 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1957 compile_stack.avail = 0;
1958
1959 /* Initialize the pattern buffer. */
1960 bufp->syntax = syntax;
1961 bufp->fastmap_accurate = 0;
1962 bufp->not_bol = bufp->not_eol = 0;
1963
1964 /* Set `used' to zero, so that if we return an error, the pattern
1965 printer (for debugging) will think there's no pattern. We reset it
1966 at the end. */
1967 bufp->used = 0;
1968
1969 /* Always count groups, whether or not bufp->no_sub is set. */
1970 bufp->re_nsub = 0;
1971
1972#if !defined emacs && !defined SYNTAX_TABLE
1973 /* Initialize the syntax table. */
1974 init_syntax_once ();
1975#endif
1976
1977 if (bufp->allocated == 0)
1978 {
1979 if (bufp->buffer)
1980 { /* If zero allocated, but buffer is non-null, try to realloc
1981 enough space. This loses if buffer's address is bogus, but
1982 that is the user's responsibility. */
1983 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1984 }
1985 else
1986 { /* Caller did not allocate a buffer. Do it for them. */
1987 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1988 }
1989 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
1990
1991 bufp->allocated = INIT_BUF_SIZE;
1992 }
1993
1994 begalt = b = bufp->buffer;
1995
1996 /* Loop through the uncompiled pattern until we're at the end. */
1997 while (p != pend)
1998 {
1999 PATFETCH (c);
2000
2001 switch (c)
2002 {
2003 case '^':
2004 {
2005 if ( /* If at start of pattern, it's an operator. */
2006 p == pattern + 1
2007 /* If context independent, it's an operator. */
2008 || syntax & RE_CONTEXT_INDEP_ANCHORS
2009 /* Otherwise, depends on what's come before. */
2010 || at_begline_loc_p (pattern, p, syntax))
2011 BUF_PUSH (begline);
2012 else
2013 goto normal_char;
2014 }
2015 break;
2016
2017
2018 case '$':
2019 {
2020 if ( /* If at end of pattern, it's an operator. */
2021 p == pend
2022 /* If context independent, it's an operator. */
2023 || syntax & RE_CONTEXT_INDEP_ANCHORS
2024 /* Otherwise, depends on what's next. */
2025 || at_endline_loc_p (p, pend, syntax))
2026 BUF_PUSH (endline);
2027 else
2028 goto normal_char;
2029 }
2030 break;
2031
2032
2033 case '+':
2034 case '?':
2035 if ((syntax & RE_BK_PLUS_QM)
2036 || (syntax & RE_LIMITED_OPS))
2037 goto normal_char;
2038 handle_plus:
2039 case '*':
2040 /* If there is no previous pattern... */
2041 if (!laststart)
2042 {
2043 if (syntax & RE_CONTEXT_INVALID_OPS)
2044 FREE_STACK_RETURN (REG_BADRPT);
2045 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2046 goto normal_char;
2047 }
2048
2049 {
2050 /* Are we optimizing this jump? */
2051 boolean keep_string_p = false;
2052
2053 /* 1 means zero (many) matches is allowed. */
2054 char zero_times_ok = 0, many_times_ok = 0;
2055
2056 /* If there is a sequence of repetition chars, collapse it
2057 down to just one (the right one). We can't combine
2058 interval operators with these because of, e.g., `a{2}*',
2059 which should only match an even number of `a's. */
2060
2061 for (;;)
2062 {
2063 zero_times_ok |= c != '+';
2064 many_times_ok |= c != '?';
2065
2066 if (p == pend)
2067 break;
2068
2069 PATFETCH (c);
2070
2071 if (c == '*'
2072 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2073 ;
2074
2075 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2076 {
2077 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2078
2079 PATFETCH (c1);
2080 if (!(c1 == '+' || c1 == '?'))
2081 {
2082 PATUNFETCH;
2083 PATUNFETCH;
2084 break;
2085 }
2086
2087 c = c1;
2088 }
2089 else
2090 {
2091 PATUNFETCH;
2092 break;
2093 }
2094
2095 /* If we get here, we found another repeat character. */
2096 }
2097
2098 /* Star, etc. applied to an empty pattern is equivalent
2099 to an empty pattern. */
2100 if (!laststart)
2101 break;
2102
2103 /* Now we know whether or not zero matches is allowed
2104 and also whether or not two or more matches is allowed. */
2105 if (many_times_ok)
2106 { /* More than one repetition is allowed, so put in at the
2107 end a backward relative jump from `b' to before the next
2108 jump we're going to put in below (which jumps from
2109 laststart to after this jump).
2110
2111 But if we are at the `*' in the exact sequence `.*\n',
2112 insert an unconditional jump backwards to the .,
2113 instead of the beginning of the loop. This way we only
2114 push a failure point once, instead of every time
2115 through the loop. */
2116 assert (p - 1 > pattern);
2117
2118 /* Allocate the space for the jump. */
2119 GET_BUFFER_SPACE (3);
2120
2121 /* We know we are not at the first character of the pattern,
2122 because laststart was nonzero. And we've already
2123 incremented `p', by the way, to be the character after
2124 the `*'. Do we have to do something analogous here
2125 for null bytes, because of RE_DOT_NOT_NULL? */
2126 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2127 && zero_times_ok
2128 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2129 && !(syntax & RE_DOT_NEWLINE))
2130 { /* We have .*\n. */
2131 STORE_JUMP (jump, b, laststart);
2132 keep_string_p = true;
2133 }
2134 else
2135 /* Anything else. */
2136 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
2137
2138 /* We've added more stuff to the buffer. */
2139 b += 3;
2140 }
2141
2142 /* On failure, jump from laststart to b + 3, which will be the
2143 end of the buffer after this jump is inserted. */
2144 GET_BUFFER_SPACE (3);
2145 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2146 : on_failure_jump,
2147 laststart, b + 3);
2148 pending_exact = 0;
2149 b += 3;
2150
2151 if (!zero_times_ok)
2152 {
2153 /* At least one repetition is required, so insert a
2154 `dummy_failure_jump' before the initial
2155 `on_failure_jump' instruction of the loop. This
2156 effects a skip over that instruction the first time
2157 we hit that loop. */
2158 GET_BUFFER_SPACE (3);
2159 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
2160 b += 3;
2161 }
2162 }
2163 break;
2164
2165
2166 case '.':
2167 laststart = b;
2168 BUF_PUSH (anychar);
2169 break;
2170
2171
2172 case '[':
2173 {
2174 boolean had_char_class = false;
2175
2176 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2177
2178 /* Ensure that we have enough space to push a charset: the
2179 opcode, the length count, and the bitset; 34 bytes in all. */
2180 GET_BUFFER_SPACE (34);
2181
2182 laststart = b;
2183
2184 /* We test `*p == '^' twice, instead of using an if
2185 statement, so we only need one BUF_PUSH. */
2186 BUF_PUSH (*p == '^' ? charset_not : charset);
2187 if (*p == '^')
2188 p++;
2189
2190 /* Remember the first position in the bracket expression. */
2191 p1 = p;
2192
2193 /* Push the number of bytes in the bitmap. */
2194 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2195
2196 /* Clear the whole map. */
2197 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2198
2199 /* charset_not matches newline according to a syntax bit. */
2200 if ((re_opcode_t) b[-2] == charset_not
2201 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2202 SET_LIST_BIT ('\n');
2203
2204 /* Read in characters and ranges, setting map bits. */
2205 for (;;)
2206 {
2207 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2208
2209 PATFETCH (c);
2210
2211 /* \ might escape characters inside [...] and [^...]. */
2212 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2213 {
2214 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2215
2216 PATFETCH (c1);
2217 SET_LIST_BIT (c1);
2218 continue;
2219 }
2220
2221 /* Could be the end of the bracket expression. If it's
2222 not (i.e., when the bracket expression is `[]' so
2223 far), the ']' character bit gets set way below. */
2224 if (c == ']' && p != p1 + 1)
2225 break;
2226
2227 /* Look ahead to see if it's a range when the last thing
2228 was a character class. */
2229 if (had_char_class && c == '-' && *p != ']')
2230 FREE_STACK_RETURN (REG_ERANGE);
2231
2232 /* Look ahead to see if it's a range when the last thing
2233 was a character: if this is a hyphen not at the
2234 beginning or the end of a list, then it's the range
2235 operator. */
2236 if (c == '-'
2237 && !(p - 2 >= pattern && p[-2] == '[')
2238 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2239 && *p != ']')
2240 {
2241 reg_errcode_t ret
2242 = compile_range (&p, pend, translate, syntax, b);
2243 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2244 }
2245
2246 else if (p[0] == '-' && p[1] != ']')
2247 { /* This handles ranges made up of characters only. */
2248 reg_errcode_t ret;
2249
2250 /* Move past the `-'. */
2251 PATFETCH (c1);
2252
2253 ret = compile_range (&p, pend, translate, syntax, b);
2254 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2255 }
2256
2257 /* See if we're at the beginning of a possible character
2258 class. */
2259
2260 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2261 { /* Leave room for the null. */
2262 char str[CHAR_CLASS_MAX_LENGTH + 1];
2263
2264 PATFETCH (c);
2265 c1 = 0;
2266
2267 /* If pattern is `[[:'. */
2268 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2269
2270 for (;;)
2271 {
2272 PATFETCH (c);
2273 if ((c == ':' && *p == ']') || p == pend)
2274 break;
2275 if (c1 < CHAR_CLASS_MAX_LENGTH)
2276 str[c1++] = c;
2277 else
2278 /* This is in any case an invalid class name. */
2279 str[0] = '\0';
2280 }
2281 str[c1] = '\0';
2282
2283 /* If isn't a word bracketed by `[:' and `:]':
2284 undo the ending character, the letters, and leave
2285 the leading `:' and `[' (but set bits for them). */
2286 if (c == ':' && *p == ']')
2287 {
2288#if defined _LIBC || WIDE_CHAR_SUPPORT
2289 boolean is_lower = STREQ (str, "lower");
2290 boolean is_upper = STREQ (str, "upper");
2291 wctype_t wt;
2292 int ch;
2293
2294 wt = IS_CHAR_CLASS (str);
2295 if (wt == 0)
2296 FREE_STACK_RETURN (REG_ECTYPE);
2297
2298 /* Throw away the ] at the end of the character
2299 class. */
2300 PATFETCH (c);
2301
2302 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2303
2304 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2305 {
2306# ifdef _LIBC
2307 if (__iswctype (__btowc (ch), wt))
2308 SET_LIST_BIT (ch);
2309# else
2310 if (iswctype (btowc (ch), wt))
2311 SET_LIST_BIT (ch);
2312# endif
2313
2314 if (translate && (is_upper || is_lower)
2315 && (ISUPPER (ch) || ISLOWER (ch)))
2316 SET_LIST_BIT (ch);
2317 }
2318
2319 had_char_class = true;
2320#else
2321 int ch;
2322 boolean is_alnum = STREQ (str, "alnum");
2323 boolean is_alpha = STREQ (str, "alpha");
2324 boolean is_blank = STREQ (str, "blank");
2325 boolean is_cntrl = STREQ (str, "cntrl");
2326 boolean is_digit = STREQ (str, "digit");
2327 boolean is_graph = STREQ (str, "graph");
2328 boolean is_lower = STREQ (str, "lower");
2329 boolean is_print = STREQ (str, "print");
2330 boolean is_punct = STREQ (str, "punct");
2331 boolean is_space = STREQ (str, "space");
2332 boolean is_upper = STREQ (str, "upper");
2333 boolean is_xdigit = STREQ (str, "xdigit");
2334
2335 if (!IS_CHAR_CLASS (str))
2336 FREE_STACK_RETURN (REG_ECTYPE);
2337
2338 /* Throw away the ] at the end of the character
2339 class. */
2340 PATFETCH (c);
2341
2342 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2343
2344 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
2345 {
2346 /* This was split into 3 if's to
2347 avoid an arbitrary limit in some compiler. */
2348 if ( (is_alnum && ISALNUM (ch))
2349 || (is_alpha && ISALPHA (ch))
2350 || (is_blank && ISBLANK (ch))
2351 || (is_cntrl && ISCNTRL (ch)))
2352 SET_LIST_BIT (ch);
2353 if ( (is_digit && ISDIGIT (ch))
2354 || (is_graph && ISGRAPH (ch))
2355 || (is_lower && ISLOWER (ch))
2356 || (is_print && ISPRINT (ch)))
2357 SET_LIST_BIT (ch);
2358 if ( (is_punct && ISPUNCT (ch))
2359 || (is_space && ISSPACE (ch))
2360 || (is_upper && ISUPPER (ch))
2361 || (is_xdigit && ISXDIGIT (ch)))
2362 SET_LIST_BIT (ch);
2363 if ( translate && (is_upper || is_lower)
2364 && (ISUPPER (ch) || ISLOWER (ch)))
2365 SET_LIST_BIT (ch);
2366 }
2367 had_char_class = true;
2368#endif /* libc || wctype.h */
2369 }
2370 else
2371 {
2372 c1++;
2373 while (c1--)
2374 PATUNFETCH;
2375 SET_LIST_BIT ('[');
2376 SET_LIST_BIT (':');
2377 had_char_class = false;
2378 }
2379 }
2380 else
2381 {
2382 had_char_class = false;
2383 SET_LIST_BIT (c);
2384 }
2385 }
2386
2387 /* Discard any (non)matching list bytes that are all 0 at the
2388 end of the map. Decrease the map-length byte too. */
2389 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2390 b[-1]--;
2391 b += b[-1];
2392 }
2393 break;
2394
2395
2396 case '(':
2397 if (syntax & RE_NO_BK_PARENS)
2398 goto handle_open;
2399 else
2400 goto normal_char;
2401
2402
2403 case ')':
2404 if (syntax & RE_NO_BK_PARENS)
2405 goto handle_close;
2406 else
2407 goto normal_char;
2408
2409
2410 case '\n':
2411 if (syntax & RE_NEWLINE_ALT)
2412 goto handle_alt;
2413 else
2414 goto normal_char;
2415
2416
2417 case '|':
2418 if (syntax & RE_NO_BK_VBAR)
2419 goto handle_alt;
2420 else
2421 goto normal_char;
2422
2423
2424 case '{':
2425 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
2426 goto handle_interval;
2427 else
2428 goto normal_char;
2429
2430
2431 case '\\':
2432 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2433
2434 /* Do not translate the character after the \, so that we can
2435 distinguish, e.g., \B from \b, even if we normally would
2436 translate, e.g., B to b. */
2437 PATFETCH_RAW (c);
2438
2439 switch (c)
2440 {
2441 case '(':
2442 if (syntax & RE_NO_BK_PARENS)
2443 goto normal_backslash;
2444
2445 handle_open:
2446 bufp->re_nsub++;
2447 regnum++;
2448
2449 if (COMPILE_STACK_FULL)
2450 {
2451 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2452 compile_stack_elt_t);
2453 if (compile_stack.stack == NULL) return REG_ESPACE;
2454
2455 compile_stack.size <<= 1;
2456 }
2457
2458 /* These are the values to restore when we hit end of this
2459 group. They are all relative offsets, so that if the
2460 whole pattern moves because of realloc, they will still
2461 be valid. */
2462 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2463 COMPILE_STACK_TOP.fixup_alt_jump
2464 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2465 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2466 COMPILE_STACK_TOP.regnum = regnum;
2467
2468 /* We will eventually replace the 0 with the number of
2469 groups inner to this one. But do not push a
2470 start_memory for groups beyond the last one we can
2471 represent in the compiled pattern. */
2472 if (regnum <= MAX_REGNUM)
2473 {
2474 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2475 BUF_PUSH_3 (start_memory, regnum, 0);
2476 }
2477
2478 compile_stack.avail++;
2479
2480 fixup_alt_jump = 0;
2481 laststart = 0;
2482 begalt = b;
2483 /* If we've reached MAX_REGNUM groups, then this open
2484 won't actually generate any code, so we'll have to
2485 clear pending_exact explicitly. */
2486 pending_exact = 0;
2487 break;
2488
2489
2490 case ')':
2491 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2492
2493 if (COMPILE_STACK_EMPTY)
2494 {
2495 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2496 goto normal_backslash;
2497 else
2498 FREE_STACK_RETURN (REG_ERPAREN);
2499 }
2500
2501 handle_close:
2502 if (fixup_alt_jump)
2503 { /* Push a dummy failure point at the end of the
2504 alternative for a possible future
2505 `pop_failure_jump' to pop. See comments at
2506 `push_dummy_failure' in `re_match_2'. */
2507 BUF_PUSH (push_dummy_failure);
2508
2509 /* We allocated space for this jump when we assigned
2510 to `fixup_alt_jump', in the `handle_alt' case below. */
2511 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2512 }
2513
2514 /* See similar code for backslashed left paren above. */
2515 if (COMPILE_STACK_EMPTY)
2516 {
2517 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2518 goto normal_char;
2519 else
2520 FREE_STACK_RETURN (REG_ERPAREN);
2521 }
2522
2523 /* Since we just checked for an empty stack above, this
2524 ``can't happen''. */
2525 assert (compile_stack.avail != 0);
2526 {
2527 /* We don't just want to restore into `regnum', because
2528 later groups should continue to be numbered higher,
2529 as in `(ab)c(de)' -- the second group is #2. */
2530 regnum_t this_group_regnum;
2531
2532 compile_stack.avail--;
2533 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2534 fixup_alt_jump
2535 = COMPILE_STACK_TOP.fixup_alt_jump
2536 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2537 : 0;
2538 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2539 this_group_regnum = COMPILE_STACK_TOP.regnum;
2540 /* If we've reached MAX_REGNUM groups, then this open
2541 won't actually generate any code, so we'll have to
2542 clear pending_exact explicitly. */
2543 pending_exact = 0;
2544
2545 /* We're at the end of the group, so now we know how many
2546 groups were inside this one. */
2547 if (this_group_regnum <= MAX_REGNUM)
2548 {
2549 unsigned char *inner_group_loc
2550 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2551
2552 *inner_group_loc = regnum - this_group_regnum;
2553 BUF_PUSH_3 (stop_memory, this_group_regnum,
2554 regnum - this_group_regnum);
2555 }
2556 }
2557 break;
2558
2559
2560 case '|': /* `\|'. */
2561 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2562 goto normal_backslash;
2563 handle_alt:
2564 if (syntax & RE_LIMITED_OPS)
2565 goto normal_char;
2566
2567 /* Insert before the previous alternative a jump which
2568 jumps to this alternative if the former fails. */
2569 GET_BUFFER_SPACE (3);
2570 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2571 pending_exact = 0;
2572 b += 3;
2573
2574 /* The alternative before this one has a jump after it
2575 which gets executed if it gets matched. Adjust that
2576 jump so it will jump to this alternative's analogous
2577 jump (put in below, which in turn will jump to the next
2578 (if any) alternative's such jump, etc.). The last such
2579 jump jumps to the correct final destination. A picture:
2580 _____ _____
2581 | | | |
2582 | v | v
2583 a | b | c
2584
2585 If we are at `b', then fixup_alt_jump right now points to a
2586 three-byte space after `a'. We'll put in the jump, set
2587 fixup_alt_jump to right after `b', and leave behind three
2588 bytes which we'll fill in when we get to after `c'. */
2589
2590 if (fixup_alt_jump)
2591 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2592
2593 /* Mark and leave space for a jump after this alternative,
2594 to be filled in later either by next alternative or
2595 when know we're at the end of a series of alternatives. */
2596 fixup_alt_jump = b;
2597 GET_BUFFER_SPACE (3);
2598 b += 3;
2599
2600 laststart = 0;
2601 begalt = b;
2602 break;
2603
2604
2605 case '{':
2606 /* If \{ is a literal. */
2607 if (!(syntax & RE_INTERVALS)
2608 /* If we're at `\{' and it's not the open-interval
2609 operator. */
2610 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2611 || (p - 2 == pattern && p == pend))
2612 goto normal_backslash;
2613
2614 handle_interval:
2615 {
2616 /* If got here, then the syntax allows intervals. */
2617
2618 /* At least (most) this many matches must be made. */
2619 int lower_bound = -1, upper_bound = -1;
2620
2621 beg_interval = p - 1;
2622
2623 if (p == pend)
2624 {
2625 if (syntax & RE_NO_BK_BRACES)
2626 goto unfetch_interval;
2627 else
2628 FREE_STACK_RETURN (REG_EBRACE);
2629 }
2630
2631 GET_UNSIGNED_NUMBER (lower_bound);
2632
2633 if (c == ',')
2634 {
2635 GET_UNSIGNED_NUMBER (upper_bound);
2636 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2637 }
2638 else
2639 /* Interval such as `{1}' => match exactly once. */
2640 upper_bound = lower_bound;
2641
2642 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2643 || lower_bound > upper_bound)
2644 {
2645 if (syntax & RE_NO_BK_BRACES)
2646 goto unfetch_interval;
2647 else
2648 FREE_STACK_RETURN (REG_BADBR);
2649 }
2650
2651 if (!(syntax & RE_NO_BK_BRACES))
2652 {
2653 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
2654
2655 PATFETCH (c);
2656 }
2657
2658 if (c != '}')
2659 {
2660 if (syntax & RE_NO_BK_BRACES)
2661 goto unfetch_interval;
2662 else
2663 FREE_STACK_RETURN (REG_BADBR);
2664 }
2665
2666 /* We just parsed a valid interval. */
2667
2668 /* If it's invalid to have no preceding re. */
2669 if (!laststart)
2670 {
2671 if (syntax & RE_CONTEXT_INVALID_OPS)
2672 FREE_STACK_RETURN (REG_BADRPT);
2673 else if (syntax & RE_CONTEXT_INDEP_OPS)
2674 laststart = b;
2675 else
2676 goto unfetch_interval;
2677 }
2678
2679 /* If the upper bound is zero, don't want to succeed at
2680 all; jump from `laststart' to `b + 3', which will be
2681 the end of the buffer after we insert the jump. */
2682 if (upper_bound == 0)
2683 {
2684 GET_BUFFER_SPACE (3);
2685 INSERT_JUMP (jump, laststart, b + 3);
2686 b += 3;
2687 }
2688
2689 /* Otherwise, we have a nontrivial interval. When
2690 we're all done, the pattern will look like:
2691 set_number_at <jump count> <upper bound>
2692 set_number_at <succeed_n count> <lower bound>
2693 succeed_n <after jump addr> <succeed_n count>
2694 <body of loop>
2695 jump_n <succeed_n addr> <jump count>
2696 (The upper bound and `jump_n' are omitted if
2697 `upper_bound' is 1, though.) */
2698 else
2699 { /* If the upper bound is > 1, we need to insert
2700 more at the end of the loop. */
2701 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2702
2703 GET_BUFFER_SPACE (nbytes);
2704
2705 /* Initialize lower bound of the `succeed_n', even
2706 though it will be set during matching by its
2707 attendant `set_number_at' (inserted next),
2708 because `re_compile_fastmap' needs to know.
2709 Jump to the `jump_n' we might insert below. */
2710 INSERT_JUMP2 (succeed_n, laststart,
2711 b + 5 + (upper_bound > 1) * 5,
2712 lower_bound);
2713 b += 5;
2714
2715 /* Code to initialize the lower bound. Insert
2716 before the `succeed_n'. The `5' is the last two
2717 bytes of this `set_number_at', plus 3 bytes of
2718 the following `succeed_n'. */
2719 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2720 b += 5;
2721
2722 if (upper_bound > 1)
2723 { /* More than one repetition is allowed, so
2724 append a backward jump to the `succeed_n'
2725 that starts this interval.
2726
2727 When we've reached this during matching,
2728 we'll have matched the interval once, so
2729 jump back only `upper_bound - 1' times. */
2730 STORE_JUMP2 (jump_n, b, laststart + 5,
2731 upper_bound - 1);
2732 b += 5;
2733
2734 /* The location we want to set is the second
2735 parameter of the `jump_n'; that is `b-2' as
2736 an absolute address. `laststart' will be
2737 the `set_number_at' we're about to insert;
2738 `laststart+3' the number to set, the source
2739 for the relative address. But we are
2740 inserting into the middle of the pattern --
2741 so everything is getting moved up by 5.
2742 Conclusion: (b - 2) - (laststart + 3) + 5,
2743 i.e., b - laststart.
2744
2745 We insert this at the beginning of the loop
2746 so that if we fail during matching, we'll
2747 reinitialize the bounds. */
2748 insert_op2 (set_number_at, laststart, b - laststart,
2749 upper_bound - 1, b);
2750 b += 5;
2751 }
2752 }
2753 pending_exact = 0;
2754 beg_interval = NULL;
2755 }
2756 break;
2757
2758 unfetch_interval:
2759 /* If an invalid interval, match the characters as literals. */
2760 assert (beg_interval);
2761 p = beg_interval;
2762 beg_interval = NULL;
2763
2764 /* normal_char and normal_backslash need `c'. */
2765 PATFETCH (c);
2766
2767 if (!(syntax & RE_NO_BK_BRACES))
2768 {
2769 if (p > pattern && p[-1] == '\\')
2770 goto normal_backslash;
2771 }
2772 goto normal_char;
2773
2774#ifdef emacs
2775 /* There is no way to specify the before_dot and after_dot
2776 operators. rms says this is ok. --karl */
2777 case '=':
2778 BUF_PUSH (at_dot);
2779 break;
2780
2781 case 's':
2782 laststart = b;
2783 PATFETCH (c);
2784 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2785 break;
2786
2787 case 'S':
2788 laststart = b;
2789 PATFETCH (c);
2790 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2791 break;
2792#endif /* emacs */
2793
2794
2795 case 'w':
2796 if (syntax & RE_NO_GNU_OPS)
2797 goto normal_char;
2798 laststart = b;
2799 BUF_PUSH (wordchar);
2800 break;
2801
2802
2803 case 'W':
2804 if (syntax & RE_NO_GNU_OPS)
2805 goto normal_char;
2806 laststart = b;
2807 BUF_PUSH (notwordchar);
2808 break;
2809
2810
2811 case '<':
2812 if (syntax & RE_NO_GNU_OPS)
2813 goto normal_char;
2814 BUF_PUSH (wordbeg);
2815 break;
2816
2817 case '>':
2818 if (syntax & RE_NO_GNU_OPS)
2819 goto normal_char;
2820 BUF_PUSH (wordend);
2821 break;
2822
2823 case 'b':
2824 if (syntax & RE_NO_GNU_OPS)
2825 goto normal_char;
2826 BUF_PUSH (wordbound);
2827 break;
2828
2829 case 'B':
2830 if (syntax & RE_NO_GNU_OPS)
2831 goto normal_char;
2832 BUF_PUSH (notwordbound);
2833 break;
2834
2835 case '`':
2836 if (syntax & RE_NO_GNU_OPS)
2837 goto normal_char;
2838 BUF_PUSH (begbuf);
2839 break;
2840
2841 case '\'':
2842 if (syntax & RE_NO_GNU_OPS)
2843 goto normal_char;
2844 BUF_PUSH (endbuf);
2845 break;
2846
2847 case '1': case '2': case '3': case '4': case '5':
2848 case '6': case '7': case '8': case '9':
2849 if (syntax & RE_NO_BK_REFS)
2850 goto normal_char;
2851
2852 c1 = c - '0';
2853
2854 if (c1 > regnum)
2855 FREE_STACK_RETURN (REG_ESUBREG);
2856
2857 /* Can't back reference to a subexpression if inside of it. */
2858 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
2859 goto normal_char;
2860
2861 laststart = b;
2862 BUF_PUSH_2 (duplicate, c1);
2863 break;
2864
2865
2866 case '+':
2867 case '?':
2868 if (syntax & RE_BK_PLUS_QM)
2869 goto handle_plus;
2870 else
2871 goto normal_backslash;
2872
2873 default:
2874 normal_backslash:
2875 /* You might think it would be useful for \ to mean
2876 not to translate; but if we don't translate it
2877 it will never match anything. */
2878 c = TRANSLATE (c);
2879 goto normal_char;
2880 }
2881 break;
2882
2883
2884 default:
2885 /* Expects the character in `c'. */
2886 normal_char:
2887 /* If no exactn currently being built. */
2888 if (!pending_exact
2889
2890 /* If last exactn not at current position. */
2891 || pending_exact + *pending_exact + 1 != b
2892
2893 /* We have only one byte following the exactn for the count. */
2894 || *pending_exact == (1 << BYTEWIDTH) - 1
2895
2896 /* If followed by a repetition operator. */
2897 || *p == '*' || *p == '^'
2898 || ((syntax & RE_BK_PLUS_QM)
2899 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2900 : (*p == '+' || *p == '?'))
2901 || ((syntax & RE_INTERVALS)
2902 && ((syntax & RE_NO_BK_BRACES)
2903 ? *p == '{'
2904 : (p[0] == '\\' && p[1] == '{'))))
2905 {
2906 /* Start building a new exactn. */
2907
2908 laststart = b;
2909
2910 BUF_PUSH_2 (exactn, 0);
2911 pending_exact = b - 1;
2912 }
2913
2914 BUF_PUSH (c);
2915 (*pending_exact)++;
2916 break;
2917 } /* switch (c) */
2918 } /* while p != pend */
2919
2920
2921 /* Through the pattern now. */
2922
2923 if (fixup_alt_jump)
2924 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2925
2926 if (!COMPILE_STACK_EMPTY)
2927 FREE_STACK_RETURN (REG_EPAREN);
2928
2929 /* If we don't want backtracking, force success
2930 the first time we reach the end of the compiled pattern. */
2931 if (syntax & RE_NO_POSIX_BACKTRACKING)
2932 BUF_PUSH (succeed);
2933
2934 free (compile_stack.stack);
2935
2936 /* We have succeeded; set the length of the buffer. */
2937 bufp->used = b - bufp->buffer;
2938
2939#ifdef DEBUG
2940 if (debug)
2941 {
2942 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2943 print_compiled_pattern (bufp);
2944 }
2945#endif /* DEBUG */
2946
2947#ifndef MATCH_MAY_ALLOCATE
2948 /* Initialize the failure stack to the largest possible stack. This
2949 isn't necessary unless we're trying to avoid calling alloca in
2950 the search and match routines. */
2951 {
2952 int num_regs = bufp->re_nsub + 1;
2953
2954 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2955 is strictly greater than re_max_failures, the largest possible stack
2956 is 2 * re_max_failures failure points. */
2957 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
2958 {
2959 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
2960
2961# ifdef emacs
2962 if (! fail_stack.stack)
2963 fail_stack.stack
2964 = (fail_stack_elt_t *) xmalloc (fail_stack.size
2965 * sizeof (fail_stack_elt_t));
2966 else
2967 fail_stack.stack
2968 = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
2969 (fail_stack.size
2970 * sizeof (fail_stack_elt_t)));
2971# else /* not emacs */
2972 if (! fail_stack.stack)
2973 fail_stack.stack
2974 = (fail_stack_elt_t *) malloc (fail_stack.size
2975 * sizeof (fail_stack_elt_t));
2976 else
2977 fail_stack.stack
2978 = (fail_stack_elt_t *) realloc (fail_stack.stack,
2979 (fail_stack.size
2980 * sizeof (fail_stack_elt_t)));
2981# endif /* not emacs */
2982 }
2983
2984 regex_grow_registers (num_regs);
2985 }
2986#endif /* not MATCH_MAY_ALLOCATE */
2987
2988 return REG_NOERROR;
2989} /* regex_compile */
2990
2991/* Subroutines for `regex_compile'. */
2992
2993/* Store OP at LOC followed by two-byte integer parameter ARG. */
2994
2995static void
2996store_op1 (op, loc, arg)
2997 re_opcode_t op;
2998 unsigned char *loc;
2999 int arg;
3000{
3001 *loc = (unsigned char) op;
3002 STORE_NUMBER (loc + 1, arg);
3003}
3004
3005
3006/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3007
3008static void
3009store_op2 (op, loc, arg1, arg2)
3010 re_opcode_t op;
3011 unsigned char *loc;
3012 int arg1, arg2;
3013{
3014 *loc = (unsigned char) op;
3015 STORE_NUMBER (loc + 1, arg1);
3016 STORE_NUMBER (loc + 3, arg2);
3017}
3018
3019
3020/* Copy the bytes from LOC to END to open up three bytes of space at LOC
3021 for OP followed by two-byte integer parameter ARG. */
3022
3023static void
3024insert_op1 (op, loc, arg, end)
3025 re_opcode_t op;
3026 unsigned char *loc;
3027 int arg;
3028 unsigned char *end;
3029{
3030 register unsigned char *pfrom = end;
3031 register unsigned char *pto = end + 3;
3032
3033 while (pfrom != loc)
3034 *--pto = *--pfrom;
3035
3036 store_op1 (op, loc, arg);
3037}
3038
3039
3040/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3041
3042static void
3043insert_op2 (op, loc, arg1, arg2, end)
3044 re_opcode_t op;
3045 unsigned char *loc;
3046 int arg1, arg2;
3047 unsigned char *end;
3048{
3049 register unsigned char *pfrom = end;
3050 register unsigned char *pto = end + 5;
3051
3052 while (pfrom != loc)
3053 *--pto = *--pfrom;
3054
3055 store_op2 (op, loc, arg1, arg2);
3056}
3057
3058
3059/* P points to just after a ^ in PATTERN. Return true if that ^ comes
3060 after an alternative or a begin-subexpression. We assume there is at
3061 least one character before the ^. */
3062
3063static boolean
3064at_begline_loc_p (pattern, p, syntax)
3065 const char *pattern, *p;
3066 reg_syntax_t syntax;
3067{
3068 const char *prev = p - 2;
3069 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3070
3071 return
3072 /* After a subexpression? */
3073 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3074 /* After an alternative? */
3075 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
3076}
3077
3078
3079/* The dual of at_begline_loc_p. This one is for $. We assume there is
3080 at least one character after the $, i.e., `P < PEND'. */
3081
3082static boolean
3083at_endline_loc_p (p, pend, syntax)
3084 const char *p, *pend;
3085 reg_syntax_t syntax;
3086{
3087 const char *next = p;
3088 boolean next_backslash = *next == '\\';
3089 const char *next_next = p + 1 < pend ? p + 1 : 0;
3090
3091 return
3092 /* Before a subexpression? */
3093 (syntax & RE_NO_BK_PARENS ? *next == ')'
3094 : next_backslash && next_next && *next_next == ')')
3095 /* Before an alternative? */
3096 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3097 : next_backslash && next_next && *next_next == '|');
3098}
3099
3100
3101/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3102 false if it's not. */
3103
3104static boolean
3105group_in_compile_stack (compile_stack, regnum)
3106 compile_stack_type compile_stack;
3107 regnum_t regnum;
3108{
3109 int this_element;
3110
3111 for (this_element = compile_stack.avail - 1;
3112 this_element >= 0;
3113 this_element--)
3114 if (compile_stack.stack[this_element].regnum == regnum)
3115 return true;
3116
3117 return false;
3118}
3119
3120
3121/* Read the ending character of a range (in a bracket expression) from the
3122 uncompiled pattern *P_PTR (which ends at PEND). We assume the
3123 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
3124 Then we set the translation of all bits between the starting and
3125 ending characters (inclusive) in the compiled pattern B.
3126
3127 Return an error code.
3128
3129 We use these short variable names so we can use the same macros as
3130 `regex_compile' itself. */
3131
3132static reg_errcode_t
3133compile_range (p_ptr, pend, translate, syntax, b)
3134 const char **p_ptr, *pend;
3135 RE_TRANSLATE_TYPE translate;
3136 reg_syntax_t syntax;
3137 unsigned char *b;
3138{
3139 unsigned this_char;
3140
3141 const char *p = *p_ptr;
3142 unsigned int range_start, range_end;
3143
3144 if (p == pend)
3145 return REG_ERANGE;
3146
3147 /* Even though the pattern is a signed `char *', we need to fetch
3148 with unsigned char *'s; if the high bit of the pattern character
3149 is set, the range endpoints will be negative if we fetch using a
3150 signed char *.
3151
3152 We also want to fetch the endpoints without translating them; the
3153 appropriate translation is done in the bit-setting loop below. */
3154 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */
3155 range_start = ((const unsigned char *) p)[-2];
3156 range_end = ((const unsigned char *) p)[0];
3157
3158 /* Have to increment the pointer into the pattern string, so the
3159 caller isn't still at the ending character. */
3160 (*p_ptr)++;
3161
3162 /* If the start is after the end, the range is empty. */
3163 if (range_start > range_end)
3164 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
3165
3166 /* Here we see why `this_char' has to be larger than an `unsigned
3167 char' -- the range is inclusive, so if `range_end' == 0xff
3168 (assuming 8-bit characters), we would otherwise go into an infinite
3169 loop, since all characters <= 0xff. */
3170 for (this_char = range_start; this_char <= range_end; this_char++)
3171 {
3172 SET_LIST_BIT (TRANSLATE (this_char));
3173 }
3174
3175 return REG_NOERROR;
3176}
3177
3178/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3179 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3180 characters can start a string that matches the pattern. This fastmap
3181 is used by re_search to skip quickly over impossible starting points.
3182
3183 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3184 area as BUFP->fastmap.
3185
3186 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3187 the pattern buffer.
3188
3189 Returns 0 if we succeed, -2 if an internal error. */
3190
3191int
3192re_compile_fastmap (bufp)
3193 struct re_pattern_buffer *bufp;
3194{
3195 int j, k;
3196#ifdef MATCH_MAY_ALLOCATE
3197 fail_stack_type fail_stack;
3198#endif
3199#ifndef REGEX_MALLOC
3200 char *destination;
3201#endif
3202
3203 register char *fastmap = bufp->fastmap;
3204 unsigned char *pattern = bufp->buffer;
3205 unsigned char *p = pattern;
3206 register unsigned char *pend = pattern + bufp->used;
3207
3208#ifdef REL_ALLOC
3209 /* This holds the pointer to the failure stack, when
3210 it is allocated relocatably. */
3211 fail_stack_elt_t *failure_stack_ptr;
3212#endif
3213
3214 /* Assume that each path through the pattern can be null until
3215 proven otherwise. We set this false at the bottom of switch
3216 statement, to which we get only if a particular path doesn't
3217 match the empty string. */
3218 boolean path_can_be_null = true;
3219
3220 /* We aren't doing a `succeed_n' to begin with. */
3221 boolean succeed_n_p = false;
3222
3223 assert (fastmap != NULL && p != NULL);
3224
3225 INIT_FAIL_STACK ();
3226 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
3227 bufp->fastmap_accurate = 1; /* It will be when we're done. */
3228 bufp->can_be_null = 0;
3229
3230 while (1)
3231 {
3232 if (p == pend || *p == succeed)
3233 {
3234 /* We have reached the (effective) end of pattern. */
3235 if (!FAIL_STACK_EMPTY ())
3236 {
3237 bufp->can_be_null |= path_can_be_null;
3238
3239 /* Reset for next path. */
3240 path_can_be_null = true;
3241
3242 p = fail_stack.stack[--fail_stack.avail].pointer;
3243
3244 continue;
3245 }
3246 else
3247 break;
3248 }
3249
3250 /* We should never be about to go beyond the end of the pattern. */
3251 assert (p < pend);
3252
3253 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3254 {
3255
3256 /* I guess the idea here is to simply not bother with a fastmap
3257 if a backreference is used, since it's too hard to figure out
3258 the fastmap for the corresponding group. Setting
3259 `can_be_null' stops `re_search_2' from using the fastmap, so
3260 that is all we do. */
3261 case duplicate:
3262 bufp->can_be_null = 1;
3263 goto done;
3264
3265
3266 /* Following are the cases which match a character. These end
3267 with `break'. */
3268
3269 case exactn:
3270 fastmap[p[1]] = 1;
3271 break;
3272
3273
3274 case charset:
3275 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3276 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
3277 fastmap[j] = 1;
3278 break;
3279
3280
3281 case charset_not:
3282 /* Chars beyond end of map must be allowed. */
3283 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
3284 fastmap[j] = 1;
3285
3286 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
3287 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
3288 fastmap[j] = 1;
3289 break;
3290
3291
3292 case wordchar:
3293 for (j = 0; j < (1 << BYTEWIDTH); j++)
3294 if (SYNTAX (j) == Sword)
3295 fastmap[j] = 1;
3296 break;
3297
3298
3299 case notwordchar:
3300 for (j = 0; j < (1 << BYTEWIDTH); j++)
3301 if (SYNTAX (j) != Sword)
3302 fastmap[j] = 1;
3303 break;
3304
3305
3306 case anychar:
3307 {
3308 int fastmap_newline = fastmap['\n'];
3309
3310 /* `.' matches anything ... */
3311 for (j = 0; j < (1 << BYTEWIDTH); j++)
3312 fastmap[j] = 1;
3313
3314 /* ... except perhaps newline. */
3315 if (!(bufp->syntax & RE_DOT_NEWLINE))
3316 fastmap['\n'] = fastmap_newline;
3317
3318 /* Return if we have already set `can_be_null'; if we have,
3319 then the fastmap is irrelevant. Something's wrong here. */
3320 else if (bufp->can_be_null)
3321 goto done;
3322
3323 /* Otherwise, have to check alternative paths. */
3324 break;
3325 }
3326
3327#ifdef emacs
3328 case syntaxspec:
3329 k = *p++;
3330 for (j = 0; j < (1 << BYTEWIDTH); j++)
3331 if (SYNTAX (j) == (enum syntaxcode) k)
3332 fastmap[j] = 1;
3333 break;
3334
3335
3336 case notsyntaxspec:
3337 k = *p++;
3338 for (j = 0; j < (1 << BYTEWIDTH); j++)
3339 if (SYNTAX (j) != (enum syntaxcode) k)
3340 fastmap[j] = 1;
3341 break;
3342
3343
3344 /* All cases after this match the empty string. These end with
3345 `continue'. */
3346
3347
3348 case before_dot:
3349 case at_dot:
3350 case after_dot:
3351 continue;
3352#endif /* emacs */
3353
3354
3355 case no_op:
3356 case begline:
3357 case endline:
3358 case begbuf:
3359 case endbuf:
3360 case wordbound:
3361 case notwordbound:
3362 case wordbeg:
3363 case wordend:
3364 case push_dummy_failure:
3365 continue;
3366
3367
3368 case jump_n:
3369 case pop_failure_jump:
3370 case maybe_pop_jump:
3371 case jump:
3372 case jump_past_alt:
3373 case dummy_failure_jump:
3374 EXTRACT_NUMBER_AND_INCR (j, p);
3375 p += j;
3376 if (j > 0)
3377 continue;
3378
3379 /* Jump backward implies we just went through the body of a
3380 loop and matched nothing. Opcode jumped to should be
3381 `on_failure_jump' or `succeed_n'. Just treat it like an
3382 ordinary jump. For a * loop, it has pushed its failure
3383 point already; if so, discard that as redundant. */
3384 if ((re_opcode_t) *p != on_failure_jump
3385 && (re_opcode_t) *p != succeed_n)
3386 continue;
3387
3388 p++;
3389 EXTRACT_NUMBER_AND_INCR (j, p);
3390 p += j;
3391
3392 /* If what's on the stack is where we are now, pop it. */
3393 if (!FAIL_STACK_EMPTY ()
3394 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
3395 fail_stack.avail--;
3396
3397 continue;
3398
3399
3400 case on_failure_jump:
3401 case on_failure_keep_string_jump:
3402 handle_on_failure_jump:
3403 EXTRACT_NUMBER_AND_INCR (j, p);
3404
3405 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
3406 end of the pattern. We don't want to push such a point,
3407 since when we restore it above, entering the switch will
3408 increment `p' past the end of the pattern. We don't need
3409 to push such a point since we obviously won't find any more
3410 fastmap entries beyond `pend'. Such a pattern can match
3411 the null string, though. */
3412 if (p + j < pend)
3413 {
3414 if (!PUSH_PATTERN_OP (p + j, fail_stack))
3415 {
3416 RESET_FAIL_STACK ();
3417 return -2;
3418 }
3419 }
3420 else
3421 bufp->can_be_null = 1;
3422
3423 if (succeed_n_p)
3424 {
3425 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
3426 succeed_n_p = false;
3427 }
3428
3429 continue;
3430
3431
3432 case succeed_n:
3433 /* Get to the number of times to succeed. */
3434 p += 2;
3435
3436 /* Increment p past the n for when k != 0. */
3437 EXTRACT_NUMBER_AND_INCR (k, p);
3438 if (k == 0)
3439 {
3440 p -= 4;
3441 succeed_n_p = true; /* Spaghetti code alert. */
3442 goto handle_on_failure_jump;
3443 }
3444 continue;
3445
3446
3447 case set_number_at:
3448 p += 4;
3449 continue;
3450
3451
3452 case start_memory:
3453 case stop_memory:
3454 p += 2;
3455 continue;
3456
3457
3458 default:
3459 abort (); /* We have listed all the cases. */
3460 } /* switch *p++ */
3461
3462 /* Getting here means we have found the possible starting
3463 characters for one path of the pattern -- and that the empty
3464 string does not match. We need not follow this path further.
3465 Instead, look at the next alternative (remembered on the
3466 stack), or quit if no more. The test at the top of the loop
3467 does these things. */
3468 path_can_be_null = false;
3469 p = pend;
3470 } /* while p */
3471
3472 /* Set `can_be_null' for the last path (also the first path, if the
3473 pattern is empty). */
3474 bufp->can_be_null |= path_can_be_null;
3475
3476 done:
3477 RESET_FAIL_STACK ();
3478 return 0;
3479} /* re_compile_fastmap */
3480#ifdef _LIBC
3481weak_alias (__re_compile_fastmap, re_compile_fastmap)
3482#endif
3483
3484/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3485 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3486 this memory for recording register information. STARTS and ENDS
3487 must be allocated using the malloc library routine, and must each
3488 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3489
3490 If NUM_REGS == 0, then subsequent matches should allocate their own
3491 register data.
3492
3493 Unless this function is called, the first search or match using
3494 PATTERN_BUFFER will allocate its own register data, without
3495 freeing the old data. */
3496
3497void
3498re_set_registers (bufp, regs, num_regs, starts, ends)
3499 struct re_pattern_buffer *bufp;
3500 struct re_registers *regs;
3501 unsigned num_regs;
3502 regoff_t *starts, *ends;
3503{
3504 if (num_regs)
3505 {
3506 bufp->regs_allocated = REGS_REALLOCATE;
3507 regs->num_regs = num_regs;
3508 regs->start = starts;
3509 regs->end = ends;
3510 }
3511 else
3512 {
3513 bufp->regs_allocated = REGS_UNALLOCATED;
3514 regs->num_regs = 0;
3515 regs->start = regs->end = (regoff_t *) 0;
3516 }
3517}
3518#ifdef _LIBC
3519weak_alias (__re_set_registers, re_set_registers)
3520#endif
3521
3522/* Searching routines. */
3523
3524/* Like re_search_2, below, but only one string is specified, and
3525 doesn't let you say where to stop matching. */
3526
3527int
3528re_search (bufp, string, size, startpos, range, regs)
3529 struct re_pattern_buffer *bufp;
3530 const char *string;
3531 int size, startpos, range;
3532 struct re_registers *regs;
3533{
3534 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3535 regs, size);
3536}
3537#ifdef _LIBC
3538weak_alias (__re_search, re_search)
3539#endif
3540
3541
3542/* Using the compiled pattern in BUFP->buffer, first tries to match the
3543 virtual concatenation of STRING1 and STRING2, starting first at index
3544 STARTPOS, then at STARTPOS + 1, and so on.
3545
3546 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3547
3548 RANGE is how far to scan while trying to match. RANGE = 0 means try
3549 only at STARTPOS; in general, the last start tried is STARTPOS +
3550 RANGE.
3551
3552 In REGS, return the indices of the virtual concatenation of STRING1
3553 and STRING2 that matched the entire BUFP->buffer and its contained
3554 subexpressions.
3555
3556 Do not consider matching one past the index STOP in the virtual
3557 concatenation of STRING1 and STRING2.
3558
3559 We return either the position in the strings at which the match was
3560 found, -1 if no match, or -2 if error (such as failure
3561 stack overflow). */
3562
3563int
3564re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3565 struct re_pattern_buffer *bufp;
3566 const char *string1, *string2;
3567 int size1, size2;
3568 int startpos;
3569 int range;
3570 struct re_registers *regs;
3571 int stop;
3572{
3573 int val;
3574 register char *fastmap = bufp->fastmap;
3575 register RE_TRANSLATE_TYPE translate = bufp->translate;
3576 int total_size = size1 + size2;
3577 int endpos = startpos + range;
3578
3579 /* Check for out-of-range STARTPOS. */
3580 if (startpos < 0 || startpos > total_size)
3581 return -1;
3582
3583 /* Fix up RANGE if it might eventually take us outside
3584 the virtual concatenation of STRING1 and STRING2.
3585 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3586 if (endpos < 0)
3587 range = 0 - startpos;
3588 else if (endpos > total_size)
3589 range = total_size - startpos;
3590
3591 /* If the search isn't to be a backwards one, don't waste time in a
3592 search for a pattern that must be anchored. */
3593 if (bufp->used > 0 && range > 0
3594 && ((re_opcode_t) bufp->buffer[0] == begbuf
3595 /* `begline' is like `begbuf' if it cannot match at newlines. */
3596 || ((re_opcode_t) bufp->buffer[0] == begline
3597 && !bufp->newline_anchor)))
3598 {
3599 if (startpos > 0)
3600 return -1;
3601 else
3602 range = 1;
3603 }
3604
3605#ifdef emacs
3606 /* In a forward search for something that starts with \=.
3607 don't keep searching past point. */
3608 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
3609 {
3610 range = PT - startpos;
3611 if (range <= 0)
3612 return -1;
3613 }
3614#endif /* emacs */
3615
3616 /* Update the fastmap now if not correct already. */
3617 if (fastmap && !bufp->fastmap_accurate)
3618 if (re_compile_fastmap (bufp) == -2)
3619 return -2;
3620
3621 /* Loop through the string, looking for a place to start matching. */
3622 for (;;)
3623 {
3624 /* If a fastmap is supplied, skip quickly over characters that
3625 cannot be the start of a match. If the pattern can match the
3626 null string, however, we don't need to skip characters; we want
3627 the first null string. */
3628 if (fastmap && startpos < total_size && !bufp->can_be_null)
3629 {
3630 if (range > 0) /* Searching forwards. */
3631 {
3632 register const char *d;
3633 register int lim = 0;
3634 int irange = range;
3635
3636 if (startpos < size1 && startpos + range >= size1)
3637 lim = range - (size1 - startpos);
3638
3639 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3640
3641 /* Written out as an if-else to avoid testing `translate'
3642 inside the loop. */
3643 if (translate)
3644 while (range > lim
3645 && !fastmap[(unsigned char)
3646 translate[(unsigned char) *d++]])
3647 range--;
3648 else
3649 while (range > lim && !fastmap[(unsigned char) *d++])
3650 range--;
3651
3652 startpos += irange - range;
3653 }
3654 else /* Searching backwards. */
3655 {
3656 register char c = (size1 == 0 || startpos >= size1
3657 ? string2[startpos - size1]
3658 : string1[startpos]);
3659
3660 if (!fastmap[(unsigned char) TRANSLATE (c)])
3661 goto advance;
3662 }
3663 }
3664
3665 /* If can't match the null string, and that's all we have left, fail. */
3666 if (range >= 0 && startpos == total_size && fastmap
3667 && !bufp->can_be_null)
3668 return -1;
3669
3670 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3671 startpos, regs, stop);
3672#ifndef REGEX_MALLOC
3673# ifdef C_ALLOCA
3674 alloca (0);
3675# endif
3676#endif
3677
3678 if (val >= 0)
3679 return startpos;
3680
3681 if (val == -2)
3682 return -2;
3683
3684 advance:
3685 if (!range)
3686 break;
3687 else if (range > 0)
3688 {
3689 range--;
3690 startpos++;
3691 }
3692 else
3693 {
3694 range++;
3695 startpos--;
3696 }
3697 }
3698 return -1;
3699} /* re_search_2 */
3700#ifdef _LIBC
3701weak_alias (__re_search_2, re_search_2)
3702#endif
3703
3704/* This converts PTR, a pointer into one of the search strings `string1'
3705 and `string2' into an offset from the beginning of that string. */
3706#define POINTER_TO_OFFSET(ptr) \
3707 (FIRST_STRING_P (ptr) \
3708 ? ((regoff_t) ((ptr) - string1)) \
3709 : ((regoff_t) ((ptr) - string2 + size1)))
3710
3711/* Macros for dealing with the split strings in re_match_2. */
3712
3713#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3714
3715/* Call before fetching a character with *d. This switches over to
3716 string2 if necessary. */
3717#define PREFETCH() \
3718 while (d == dend) \
3719 { \
3720 /* End of string2 => fail. */ \
3721 if (dend == end_match_2) \
3722 goto fail; \
3723 /* End of string1 => advance to string2. */ \
3724 d = string2; \
3725 dend = end_match_2; \
3726 }
3727
3728
3729/* Test if at very beginning or at very end of the virtual concatenation
3730 of `string1' and `string2'. If only one string, it's `string2'. */
3731#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3732#define AT_STRINGS_END(d) ((d) == end2)
3733
3734
3735/* Test if D points to a character which is word-constituent. We have
3736 two special cases to check for: if past the end of string1, look at
3737 the first character in string2; and if before the beginning of
3738 string2, look at the last character in string1. */
3739#define WORDCHAR_P(d) \
3740 (SYNTAX ((d) == end1 ? *string2 \
3741 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3742 == Sword)
3743
3744/* Disabled due to a compiler bug -- see comment at case wordbound */
3745#if 0
3746/* Test if the character before D and the one at D differ with respect
3747 to being word-constituent. */
3748#define AT_WORD_BOUNDARY(d) \
3749 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3750 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3751#endif
3752
3753/* Free everything we malloc. */
3754#ifdef MATCH_MAY_ALLOCATE
3755# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
3756# define FREE_VARIABLES() \
3757 do { \
3758 REGEX_FREE_STACK (fail_stack.stack); \
3759 FREE_VAR (regstart); \
3760 FREE_VAR (regend); \
3761 FREE_VAR (old_regstart); \
3762 FREE_VAR (old_regend); \
3763 FREE_VAR (best_regstart); \
3764 FREE_VAR (best_regend); \
3765 FREE_VAR (reg_info); \
3766 FREE_VAR (reg_dummy); \
3767 FREE_VAR (reg_info_dummy); \
3768 } while (0)
3769#else
3770# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
3771#endif /* not MATCH_MAY_ALLOCATE */
3772
3773/* These values must meet several constraints. They must not be valid
3774 register values; since we have a limit of 255 registers (because
3775 we use only one byte in the pattern for the register number), we can
3776 use numbers larger than 255. They must differ by 1, because of
3777 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3778 be larger than the value for the highest register, so we do not try
3779 to actually save any registers when none are active. */
3780#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3781#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3782
3783/* Matching routines. */
3784
3785#ifndef emacs /* Emacs never uses this. */
3786/* re_match is like re_match_2 except it takes only a single string. */
3787
3788int
3789re_match (bufp, string, size, pos, regs)
3790 struct re_pattern_buffer *bufp;
3791 const char *string;
3792 int size, pos;
3793 struct re_registers *regs;
3794{
3795 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3796 pos, regs, size);
3797# ifndef REGEX_MALLOC
3798# ifdef C_ALLOCA
3799 alloca (0);
3800# endif
3801# endif
3802 return result;
3803}
3804# ifdef _LIBC
3805weak_alias (__re_match, re_match)
3806# endif
3807#endif /* not emacs */
3808
3809static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p,
3810 unsigned char *end,
3811 register_info_type *reg_info));
3812static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p,
3813 unsigned char *end,
3814 register_info_type *reg_info));
3815static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p,
3816 unsigned char *end,
3817 register_info_type *reg_info));
3818static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2,
3819 int len, char *translate));
3820
3821/* re_match_2 matches the compiled pattern in BUFP against the
3822 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3823 and SIZE2, respectively). We start matching at POS, and stop
3824 matching at STOP.
3825
3826 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3827 store offsets for the substring each group matched in REGS. See the
3828 documentation for exactly how many groups we fill.
3829
3830 We return -1 if no match, -2 if an internal error (such as the
3831 failure stack overflowing). Otherwise, we return the length of the
3832 matched substring. */
3833
3834int
3835re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3836 struct re_pattern_buffer *bufp;
3837 const char *string1, *string2;
3838 int size1, size2;
3839 int pos;
3840 struct re_registers *regs;
3841 int stop;
3842{
3843 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3844 pos, regs, stop);
3845#ifndef REGEX_MALLOC
3846# ifdef C_ALLOCA
3847 alloca (0);
3848# endif
3849#endif
3850 return result;
3851}
3852#ifdef _LIBC
3853weak_alias (__re_match_2, re_match_2)
3854#endif
3855
3856/* This is a separate function so that we can force an alloca cleanup
3857 afterwards. */
3858static int
3859re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3860 struct re_pattern_buffer *bufp;
3861 const char *string1, *string2;
3862 int size1, size2;
3863 int pos;
3864 struct re_registers *regs;
3865 int stop;
3866{
3867 /* General temporaries. */
3868 int mcnt;
3869 unsigned char *p1;
3870
3871 /* Just past the end of the corresponding string. */
3872 const char *end1, *end2;
3873
3874 /* Pointers into string1 and string2, just past the last characters in
3875 each to consider matching. */
3876 const char *end_match_1, *end_match_2;
3877
3878 /* Where we are in the data, and the end of the current string. */
3879 const char *d, *dend;
3880
3881 /* Where we are in the pattern, and the end of the pattern. */
3882 unsigned char *p = bufp->buffer;
3883 register unsigned char *pend = p + bufp->used;
3884
3885 /* Mark the opcode just after a start_memory, so we can test for an
3886 empty subpattern when we get to the stop_memory. */
3887 unsigned char *just_past_start_mem = 0;
3888
3889 /* We use this to map every character in the string. */
3890 RE_TRANSLATE_TYPE translate = bufp->translate;
3891
3892 /* Failure point stack. Each place that can handle a failure further
3893 down the line pushes a failure point on this stack. It consists of
3894 restart, regend, and reg_info for all registers corresponding to
3895 the subexpressions we're currently inside, plus the number of such
3896 registers, and, finally, two char *'s. The first char * is where
3897 to resume scanning the pattern; the second one is where to resume
3898 scanning the strings. If the latter is zero, the failure point is
3899 a ``dummy''; if a failure happens and the failure point is a dummy,
3900 it gets discarded and the next next one is tried. */
3901#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3902 fail_stack_type fail_stack;
3903#endif
3904#ifdef DEBUG
3905 static unsigned failure_id;
3906 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
3907#endif
3908
3909#ifdef REL_ALLOC
3910 /* This holds the pointer to the failure stack, when
3911 it is allocated relocatably. */
3912 fail_stack_elt_t *failure_stack_ptr;
3913#endif
3914
3915 /* We fill all the registers internally, independent of what we
3916 return, for use in backreferences. The number here includes
3917 an element for register zero. */
3918 size_t num_regs = bufp->re_nsub + 1;
3919
3920 /* The currently active registers. */
3921 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3922 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3923
3924 /* Information on the contents of registers. These are pointers into
3925 the input strings; they record just what was matched (on this
3926 attempt) by a subexpression part of the pattern, that is, the
3927 regnum-th regstart pointer points to where in the pattern we began
3928 matching and the regnum-th regend points to right after where we
3929 stopped matching the regnum-th subexpression. (The zeroth register
3930 keeps track of what the whole pattern matches.) */
3931#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3932 const char **regstart, **regend;
3933#endif
3934
3935 /* If a group that's operated upon by a repetition operator fails to
3936 match anything, then the register for its start will need to be
3937 restored because it will have been set to wherever in the string we
3938 are when we last see its open-group operator. Similarly for a
3939 register's end. */
3940#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3941 const char **old_regstart, **old_regend;
3942#endif
3943
3944 /* The is_active field of reg_info helps us keep track of which (possibly
3945 nested) subexpressions we are currently in. The matched_something
3946 field of reg_info[reg_num] helps us tell whether or not we have
3947 matched any of the pattern so far this time through the reg_num-th
3948 subexpression. These two fields get reset each time through any
3949 loop their register is in. */
3950#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3951 register_info_type *reg_info;
3952#endif
3953
3954 /* The following record the register info as found in the above
3955 variables when we find a match better than any we've seen before.
3956 This happens as we backtrack through the failure points, which in
3957 turn happens only if we have not yet matched the entire string. */
3958 unsigned best_regs_set = false;
3959#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3960 const char **best_regstart, **best_regend;
3961#endif
3962
3963 /* Logically, this is `best_regend[0]'. But we don't want to have to
3964 allocate space for that if we're not allocating space for anything
3965 else (see below). Also, we never need info about register 0 for
3966 any of the other register vectors, and it seems rather a kludge to
3967 treat `best_regend' differently than the rest. So we keep track of
3968 the end of the best match so far in a separate variable. We
3969 initialize this to NULL so that when we backtrack the first time
3970 and need to test it, it's not garbage. */
3971 const char *match_end = NULL;
3972
3973 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
3974 int set_regs_matched_done = 0;
3975
3976 /* Used when we pop values we don't care about. */
3977#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3978 const char **reg_dummy;
3979 register_info_type *reg_info_dummy;
3980#endif
3981
3982#ifdef DEBUG
3983 /* Counts the total number of registers pushed. */
3984 unsigned num_regs_pushed = 0;
3985#endif
3986
3987 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3988
3989 INIT_FAIL_STACK ();
3990
3991#ifdef MATCH_MAY_ALLOCATE
3992 /* Do not bother to initialize all the register variables if there are
3993 no groups in the pattern, as it takes a fair amount of time. If
3994 there are groups, we include space for register 0 (the whole
3995 pattern), even though we never use it, since it simplifies the
3996 array indexing. We should fix this. */
3997 if (bufp->re_nsub)
3998 {
3999 regstart = REGEX_TALLOC (num_regs, const char *);
4000 regend = REGEX_TALLOC (num_regs, const char *);
4001 old_regstart = REGEX_TALLOC (num_regs, const char *);
4002 old_regend = REGEX_TALLOC (num_regs, const char *);
4003 best_regstart = REGEX_TALLOC (num_regs, const char *);
4004 best_regend = REGEX_TALLOC (num_regs, const char *);
4005 reg_info = REGEX_TALLOC (num_regs, register_info_type);
4006 reg_dummy = REGEX_TALLOC (num_regs, const char *);
4007 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
4008
4009 if (!(regstart && regend && old_regstart && old_regend && reg_info
4010 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
4011 {
4012 FREE_VARIABLES ();
4013 return -2;
4014 }
4015 }
4016 else
4017 {
4018 /* We must initialize all our variables to NULL, so that
4019 `FREE_VARIABLES' doesn't try to free them. */
4020 regstart = regend = old_regstart = old_regend = best_regstart
4021 = best_regend = reg_dummy = NULL;
4022 reg_info = reg_info_dummy = (register_info_type *) NULL;
4023 }
4024#endif /* MATCH_MAY_ALLOCATE */
4025
4026 /* The starting position is bogus. */
4027 if (pos < 0 || pos > size1 + size2)
4028 {
4029 FREE_VARIABLES ();
4030 return -1;
4031 }
4032
4033 /* Initialize subexpression text positions to -1 to mark ones that no
4034 start_memory/stop_memory has been seen for. Also initialize the
4035 register information struct. */
4036 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4037 {
4038 regstart[mcnt] = regend[mcnt]
4039 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
4040
4041 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
4042 IS_ACTIVE (reg_info[mcnt]) = 0;
4043 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4044 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
4045 }
4046
4047 /* We move `string1' into `string2' if the latter's empty -- but not if
4048 `string1' is null. */
4049 if (size2 == 0 && string1 != NULL)
4050 {
4051 string2 = string1;
4052 size2 = size1;
4053 string1 = 0;
4054 size1 = 0;
4055 }
4056 end1 = string1 + size1;
4057 end2 = string2 + size2;
4058
4059 /* Compute where to stop matching, within the two strings. */
4060 if (stop <= size1)
4061 {
4062 end_match_1 = string1 + stop;
4063 end_match_2 = string2;
4064 }
4065 else
4066 {
4067 end_match_1 = end1;
4068 end_match_2 = string2 + stop - size1;
4069 }
4070
4071 /* `p' scans through the pattern as `d' scans through the data.
4072 `dend' is the end of the input string that `d' points within. `d'
4073 is advanced into the following input string whenever necessary, but
4074 this happens before fetching; therefore, at the beginning of the
4075 loop, `d' can be pointing at the end of a string, but it cannot
4076 equal `string2'. */
4077 if (size1 > 0 && pos <= size1)
4078 {
4079 d = string1 + pos;
4080 dend = end_match_1;
4081 }
4082 else
4083 {
4084 d = string2 + pos - size1;
4085 dend = end_match_2;
4086 }
4087
4088 DEBUG_PRINT1 ("The compiled pattern is:\n");
4089 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
4090 DEBUG_PRINT1 ("The string to match is: `");
4091 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
4092 DEBUG_PRINT1 ("'\n");
4093
4094 /* This loops over pattern commands. It exits by returning from the
4095 function if the match is complete, or it drops through if the match
4096 fails at this starting point in the input data. */
4097 for (;;)
4098 {
4099#ifdef _LIBC
4100 DEBUG_PRINT2 ("\n%p: ", p);
4101#else
4102 DEBUG_PRINT2 ("\n0x%x: ", p);
4103#endif
4104
4105 if (p == pend)
4106 { /* End of pattern means we might have succeeded. */
4107 DEBUG_PRINT1 ("end of pattern ... ");
4108
4109 /* If we haven't matched the entire string, and we want the
4110 longest match, try backtracking. */
4111 if (d != end_match_2)
4112 {
4113 /* 1 if this match ends in the same string (string1 or string2)
4114 as the best previous match. */
4115 boolean same_str_p = (FIRST_STRING_P (match_end)
4116 == MATCHING_IN_FIRST_STRING);
4117 /* 1 if this match is the best seen so far. */
4118 boolean best_match_p;
4119
4120 /* AIX compiler got confused when this was combined
4121 with the previous declaration. */
4122 if (same_str_p)
4123 best_match_p = d > match_end;
4124 else
4125 best_match_p = !MATCHING_IN_FIRST_STRING;
4126
4127 DEBUG_PRINT1 ("backtracking.\n");
4128
4129 if (!FAIL_STACK_EMPTY ())
4130 { /* More failure points to try. */
4131
4132 /* If exceeds best match so far, save it. */
4133 if (!best_regs_set || best_match_p)
4134 {
4135 best_regs_set = true;
4136 match_end = d;
4137
4138 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4139
4140 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4141 {
4142 best_regstart[mcnt] = regstart[mcnt];
4143 best_regend[mcnt] = regend[mcnt];
4144 }
4145 }
4146 goto fail;
4147 }
4148
4149 /* If no failure points, don't restore garbage. And if
4150 last match is real best match, don't restore second
4151 best one. */
4152 else if (best_regs_set && !best_match_p)
4153 {
4154 restore_best_regs:
4155 /* Restore best match. It may happen that `dend ==
4156 end_match_1' while the restored d is in string2.
4157 For example, the pattern `x.*y.*z' against the
4158 strings `x-' and `y-z-', if the two strings are
4159 not consecutive in memory. */
4160 DEBUG_PRINT1 ("Restoring best registers.\n");
4161
4162 d = match_end;
4163 dend = ((d >= string1 && d <= end1)
4164 ? end_match_1 : end_match_2);
4165
4166 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
4167 {
4168 regstart[mcnt] = best_regstart[mcnt];
4169 regend[mcnt] = best_regend[mcnt];
4170 }
4171 }
4172 } /* d != end_match_2 */
4173
4174 succeed_label:
4175 DEBUG_PRINT1 ("Accepting match.\n");
4176
4177 /* If caller wants register contents data back, do it. */
4178 if (regs && !bufp->no_sub)
4179 {
4180 /* Have the register data arrays been allocated? */
4181 if (bufp->regs_allocated == REGS_UNALLOCATED)
4182 { /* No. So allocate them with malloc. We need one
4183 extra element beyond `num_regs' for the `-1' marker
4184 GNU code uses. */
4185 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
4186 regs->start = TALLOC (regs->num_regs, regoff_t);
4187 regs->end = TALLOC (regs->num_regs, regoff_t);
4188 if (regs->start == NULL || regs->end == NULL)
4189 {
4190 FREE_VARIABLES ();
4191 return -2;
4192 }
4193 bufp->regs_allocated = REGS_REALLOCATE;
4194 }
4195 else if (bufp->regs_allocated == REGS_REALLOCATE)
4196 { /* Yes. If we need more elements than were already
4197 allocated, reallocate them. If we need fewer, just
4198 leave it alone. */
4199 if (regs->num_regs < num_regs + 1)
4200 {
4201 regs->num_regs = num_regs + 1;
4202 RETALLOC (regs->start, regs->num_regs, regoff_t);
4203 RETALLOC (regs->end, regs->num_regs, regoff_t);
4204 if (regs->start == NULL || regs->end == NULL)
4205 {
4206 FREE_VARIABLES ();
4207 return -2;
4208 }
4209 }
4210 }
4211 else
4212 {
4213 /* These braces fend off a "empty body in an else-statement"
4214 warning under GCC when assert expands to nothing. */
4215 assert (bufp->regs_allocated == REGS_FIXED);
4216 }
4217
4218 /* Convert the pointer data in `regstart' and `regend' to
4219 indices. Register zero has to be set differently,
4220 since we haven't kept track of any info for it. */
4221 if (regs->num_regs > 0)
4222 {
4223 regs->start[0] = pos;
4224 regs->end[0] = (MATCHING_IN_FIRST_STRING
4225 ? ((regoff_t) (d - string1))
4226 : ((regoff_t) (d - string2 + size1)));
4227 }
4228
4229 /* Go through the first `min (num_regs, regs->num_regs)'
4230 registers, since that is all we initialized. */
4231 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
4232 mcnt++)
4233 {
4234 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
4235 regs->start[mcnt] = regs->end[mcnt] = -1;
4236 else
4237 {
4238 regs->start[mcnt]
4239 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
4240 regs->end[mcnt]
4241 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
4242 }
4243 }
4244
4245 /* If the regs structure we return has more elements than
4246 were in the pattern, set the extra elements to -1. If
4247 we (re)allocated the registers, this is the case,
4248 because we always allocate enough to have at least one
4249 -1 at the end. */
4250 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
4251 regs->start[mcnt] = regs->end[mcnt] = -1;
4252 } /* regs && !bufp->no_sub */
4253
4254 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4255 nfailure_points_pushed, nfailure_points_popped,
4256 nfailure_points_pushed - nfailure_points_popped);
4257 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
4258
4259 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
4260 ? string1
4261 : string2 - size1);
4262
4263 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
4264
4265 FREE_VARIABLES ();
4266 return mcnt;
4267 }
4268
4269 /* Otherwise match next pattern command. */
4270 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4271 {
4272 /* Ignore these. Used to ignore the n of succeed_n's which
4273 currently have n == 0. */
4274 case no_op:
4275 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4276 break;
4277
4278 case succeed:
4279 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4280 goto succeed_label;
4281
4282 /* Match the next n pattern characters exactly. The following
4283 byte in the pattern defines n, and the n bytes after that
4284 are the characters to match. */
4285 case exactn:
4286 mcnt = *p++;
4287 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
4288
4289 /* This is written out as an if-else so we don't waste time
4290 testing `translate' inside the loop. */
4291 if (translate)
4292 {
4293 do
4294 {
4295 PREFETCH ();
4296 if ((unsigned char) translate[(unsigned char) *d++]
4297 != (unsigned char) *p++)
4298 goto fail;
4299 }
4300 while (--mcnt);
4301 }
4302 else
4303 {
4304 do
4305 {
4306 PREFETCH ();
4307 if (*d++ != (char) *p++) goto fail;
4308 }
4309 while (--mcnt);
4310 }
4311 SET_REGS_MATCHED ();
4312 break;
4313
4314
4315 /* Match any character except possibly a newline or a null. */
4316 case anychar:
4317 DEBUG_PRINT1 ("EXECUTING anychar.\n");
4318
4319 PREFETCH ();
4320
4321 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
4322 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
4323 goto fail;
4324
4325 SET_REGS_MATCHED ();
4326 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
4327 d++;
4328 break;
4329
4330
4331 case charset:
4332 case charset_not:
4333 {
4334 register unsigned char c;
4335 boolean not = (re_opcode_t) *(p - 1) == charset_not;
4336
4337 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
4338
4339 PREFETCH ();
4340 c = TRANSLATE (*d); /* The character to match. */
4341
4342 /* Cast to `unsigned' instead of `unsigned char' in case the
4343 bit list is a full 32 bytes long. */
4344 if (c < (unsigned) (*p * BYTEWIDTH)
4345 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4346 not = !not;
4347
4348 p += 1 + *p;
4349
4350 if (!not) goto fail;
4351
4352 SET_REGS_MATCHED ();
4353 d++;
4354 break;
4355 }
4356
4357
4358 /* The beginning of a group is represented by start_memory.
4359 The arguments are the register number in the next byte, and the
4360 number of groups inner to this one in the next. The text
4361 matched within the group is recorded (in the internal
4362 registers data structure) under the register number. */
4363 case start_memory:
4364 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
4365
4366 /* Find out if this group can match the empty string. */
4367 p1 = p; /* To send to group_match_null_string_p. */
4368
4369 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
4370 REG_MATCH_NULL_STRING_P (reg_info[*p])
4371 = group_match_null_string_p (&p1, pend, reg_info);
4372
4373 /* Save the position in the string where we were the last time
4374 we were at this open-group operator in case the group is
4375 operated upon by a repetition operator, e.g., with `(a*)*b'
4376 against `ab'; then we want to ignore where we are now in
4377 the string in case this attempt to match fails. */
4378 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4379 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
4380 : regstart[*p];
4381 DEBUG_PRINT2 (" old_regstart: %d\n",
4382 POINTER_TO_OFFSET (old_regstart[*p]));
4383
4384 regstart[*p] = d;
4385 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
4386
4387 IS_ACTIVE (reg_info[*p]) = 1;
4388 MATCHED_SOMETHING (reg_info[*p]) = 0;
4389
4390 /* Clear this whenever we change the register activity status. */
4391 set_regs_matched_done = 0;
4392
4393 /* This is the new highest active register. */
4394 highest_active_reg = *p;
4395
4396 /* If nothing was active before, this is the new lowest active
4397 register. */
4398 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4399 lowest_active_reg = *p;
4400
4401 /* Move past the register number and inner group count. */
4402 p += 2;
4403 just_past_start_mem = p;
4404
4405 break;
4406
4407
4408 /* The stop_memory opcode represents the end of a group. Its
4409 arguments are the same as start_memory's: the register
4410 number, and the number of inner groups. */
4411 case stop_memory:
4412 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
4413
4414 /* We need to save the string position the last time we were at
4415 this close-group operator in case the group is operated
4416 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
4417 against `aba'; then we want to ignore where we are now in
4418 the string in case this attempt to match fails. */
4419 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
4420 ? REG_UNSET (regend[*p]) ? d : regend[*p]
4421 : regend[*p];
4422 DEBUG_PRINT2 (" old_regend: %d\n",
4423 POINTER_TO_OFFSET (old_regend[*p]));
4424
4425 regend[*p] = d;
4426 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
4427
4428 /* This register isn't active anymore. */
4429 IS_ACTIVE (reg_info[*p]) = 0;
4430
4431 /* Clear this whenever we change the register activity status. */
4432 set_regs_matched_done = 0;
4433
4434 /* If this was the only register active, nothing is active
4435 anymore. */
4436 if (lowest_active_reg == highest_active_reg)
4437 {
4438 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4439 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4440 }
4441 else
4442 { /* We must scan for the new highest active register, since
4443 it isn't necessarily one less than now: consider
4444 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
4445 new highest active register is 1. */
4446 unsigned char r = *p - 1;
4447 while (r > 0 && !IS_ACTIVE (reg_info[r]))
4448 r--;
4449
4450 /* If we end up at register zero, that means that we saved
4451 the registers as the result of an `on_failure_jump', not
4452 a `start_memory', and we jumped to past the innermost
4453 `stop_memory'. For example, in ((.)*) we save
4454 registers 1 and 2 as a result of the *, but when we pop
4455 back to the second ), we are at the stop_memory 1.
4456 Thus, nothing is active. */
4457 if (r == 0)
4458 {
4459 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
4460 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
4461 }
4462 else
4463 highest_active_reg = r;
4464 }
4465
4466 /* If just failed to match something this time around with a
4467 group that's operated on by a repetition operator, try to
4468 force exit from the ``loop'', and restore the register
4469 information for this group that we had before trying this
4470 last match. */
4471 if ((!MATCHED_SOMETHING (reg_info[*p])
4472 || just_past_start_mem == p - 1)
4473 && (p + 2) < pend)
4474 {
4475 boolean is_a_jump_n = false;
4476
4477 p1 = p + 2;
4478 mcnt = 0;
4479 switch ((re_opcode_t) *p1++)
4480 {
4481 case jump_n:
4482 is_a_jump_n = true;
4483 case pop_failure_jump:
4484 case maybe_pop_jump:
4485 case jump:
4486 case dummy_failure_jump:
4487 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4488 if (is_a_jump_n)
4489 p1 += 2;
4490 break;
4491
4492 default:
4493 /* do nothing */ ;
4494 }
4495 p1 += mcnt;
4496
4497 /* If the next operation is a jump backwards in the pattern
4498 to an on_failure_jump right before the start_memory
4499 corresponding to this stop_memory, exit from the loop
4500 by forcing a failure after pushing on the stack the
4501 on_failure_jump's jump in the pattern, and d. */
4502 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
4503 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
4504 {
4505 /* If this group ever matched anything, then restore
4506 what its registers were before trying this last
4507 failed match, e.g., with `(a*)*b' against `ab' for
4508 regstart[1], and, e.g., with `((a*)*(b*)*)*'
4509 against `aba' for regend[3].
4510
4511 Also restore the registers for inner groups for,
4512 e.g., `((a*)(b*))*' against `aba' (register 3 would
4513 otherwise get trashed). */
4514
4515 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
4516 {
4517 unsigned r;
4518
4519 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
4520
4521 /* Restore this and inner groups' (if any) registers. */
4522 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
4523 r++)
4524 {
4525 regstart[r] = old_regstart[r];
4526
4527 /* xx why this test? */
4528 if (old_regend[r] >= regstart[r])
4529 regend[r] = old_regend[r];
4530 }
4531 }
4532 p1++;
4533 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4534 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
4535
4536 goto fail;
4537 }
4538 }
4539
4540 /* Move past the register number and the inner group count. */
4541 p += 2;
4542 break;
4543
4544
4545 /* \<digit> has been turned into a `duplicate' command which is
4546 followed by the numeric value of <digit> as the register number. */
4547 case duplicate:
4548 {
4549 register const char *d2, *dend2;
4550 int regno = *p++; /* Get which register to match against. */
4551 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
4552
4553 /* Can't back reference a group which we've never matched. */
4554 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
4555 goto fail;
4556
4557 /* Where in input to try to start matching. */
4558 d2 = regstart[regno];
4559
4560 /* Where to stop matching; if both the place to start and
4561 the place to stop matching are in the same string, then
4562 set to the place to stop, otherwise, for now have to use
4563 the end of the first string. */
4564
4565 dend2 = ((FIRST_STRING_P (regstart[regno])
4566 == FIRST_STRING_P (regend[regno]))
4567 ? regend[regno] : end_match_1);
4568 for (;;)
4569 {
4570 /* If necessary, advance to next segment in register
4571 contents. */
4572 while (d2 == dend2)
4573 {
4574 if (dend2 == end_match_2) break;
4575 if (dend2 == regend[regno]) break;
4576
4577 /* End of string1 => advance to string2. */
4578 d2 = string2;
4579 dend2 = regend[regno];
4580 }
4581 /* At end of register contents => success */
4582 if (d2 == dend2) break;
4583
4584 /* If necessary, advance to next segment in data. */
4585 PREFETCH ();
4586
4587 /* How many characters left in this segment to match. */
4588 mcnt = dend - d;
4589
4590 /* Want how many consecutive characters we can match in
4591 one shot, so, if necessary, adjust the count. */
4592 if (mcnt > dend2 - d2)
4593 mcnt = dend2 - d2;
4594
4595 /* Compare that many; failure if mismatch, else move
4596 past them. */
4597 if (translate
4598 ? bcmp_translate (d, d2, mcnt, translate)
4599 : memcmp (d, d2, mcnt))
4600 goto fail;
4601 d += mcnt, d2 += mcnt;
4602
4603 /* Do this because we've match some characters. */
4604 SET_REGS_MATCHED ();
4605 }
4606 }
4607 break;
4608
4609
4610 /* begline matches the empty string at the beginning of the string
4611 (unless `not_bol' is set in `bufp'), and, if
4612 `newline_anchor' is set, after newlines. */
4613 case begline:
4614 DEBUG_PRINT1 ("EXECUTING begline.\n");
4615
4616 if (AT_STRINGS_BEG (d))
4617 {
4618 if (!bufp->not_bol) break;
4619 }
4620 else if (d[-1] == '\n' && bufp->newline_anchor)
4621 {
4622 break;
4623 }
4624 /* In all other cases, we fail. */
4625 goto fail;
4626
4627
4628 /* endline is the dual of begline. */
4629 case endline:
4630 DEBUG_PRINT1 ("EXECUTING endline.\n");
4631
4632 if (AT_STRINGS_END (d))
4633 {
4634 if (!bufp->not_eol) break;
4635 }
4636
4637 /* We have to ``prefetch'' the next character. */
4638 else if ((d == end1 ? *string2 : *d) == '\n'
4639 && bufp->newline_anchor)
4640 {
4641 break;
4642 }
4643 goto fail;
4644
4645
4646 /* Match at the very beginning of the data. */
4647 case begbuf:
4648 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4649 if (AT_STRINGS_BEG (d))
4650 break;
4651 goto fail;
4652
4653
4654 /* Match at the very end of the data. */
4655 case endbuf:
4656 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4657 if (AT_STRINGS_END (d))
4658 break;
4659 goto fail;
4660
4661
4662 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4663 pushes NULL as the value for the string on the stack. Then
4664 `pop_failure_point' will keep the current value for the
4665 string, instead of restoring it. To see why, consider
4666 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4667 then the . fails against the \n. But the next thing we want
4668 to do is match the \n against the \n; if we restored the
4669 string value, we would be back at the foo.
4670
4671 Because this is used only in specific cases, we don't need to
4672 check all the things that `on_failure_jump' does, to make
4673 sure the right things get saved on the stack. Hence we don't
4674 share its code. The only reason to push anything on the
4675 stack at all is that otherwise we would have to change
4676 `anychar's code to do something besides goto fail in this
4677 case; that seems worse than this. */
4678 case on_failure_keep_string_jump:
4679 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4680
4681 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4682#ifdef _LIBC
4683 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
4684#else
4685 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4686#endif
4687
4688 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4689 break;
4690
4691
4692 /* Uses of on_failure_jump:
4693
4694 Each alternative starts with an on_failure_jump that points
4695 to the beginning of the next alternative. Each alternative
4696 except the last ends with a jump that in effect jumps past
4697 the rest of the alternatives. (They really jump to the
4698 ending jump of the following alternative, because tensioning
4699 these jumps is a hassle.)
4700
4701 Repeats start with an on_failure_jump that points past both
4702 the repetition text and either the following jump or
4703 pop_failure_jump back to this on_failure_jump. */
4704 case on_failure_jump:
4705 on_failure:
4706 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4707
4708 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4709#ifdef _LIBC
4710 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
4711#else
4712 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4713#endif
4714
4715 /* If this on_failure_jump comes right before a group (i.e.,
4716 the original * applied to a group), save the information
4717 for that group and all inner ones, so that if we fail back
4718 to this point, the group's information will be correct.
4719 For example, in \(a*\)*\1, we need the preceding group,
4720 and in \(zz\(a*\)b*\)\2, we need the inner group. */
4721
4722 /* We can't use `p' to check ahead because we push
4723 a failure point to `p + mcnt' after we do this. */
4724 p1 = p;
4725
4726 /* We need to skip no_op's before we look for the
4727 start_memory in case this on_failure_jump is happening as
4728 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4729 against aba. */
4730 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4731 p1++;
4732
4733 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4734 {
4735 /* We have a new highest active register now. This will
4736 get reset at the start_memory we are about to get to,
4737 but we will have saved all the registers relevant to
4738 this repetition op, as described above. */
4739 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4740 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4741 lowest_active_reg = *(p1 + 1);
4742 }
4743
4744 DEBUG_PRINT1 (":\n");
4745 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4746 break;
4747
4748
4749 /* A smart repeat ends with `maybe_pop_jump'.
4750 We change it to either `pop_failure_jump' or `jump'. */
4751 case maybe_pop_jump:
4752 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4753 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4754 {
4755 register unsigned char *p2 = p;
4756
4757 /* Compare the beginning of the repeat with what in the
4758 pattern follows its end. If we can establish that there
4759 is nothing that they would both match, i.e., that we
4760 would have to backtrack because of (as in, e.g., `a*a')
4761 then we can change to pop_failure_jump, because we'll
4762 never have to backtrack.
4763
4764 This is not true in the case of alternatives: in
4765 `(a|ab)*' we do need to backtrack to the `ab' alternative
4766 (e.g., if the string was `ab'). But instead of trying to
4767 detect that here, the alternative has put on a dummy
4768 failure point which is what we will end up popping. */
4769
4770 /* Skip over open/close-group commands.
4771 If what follows this loop is a ...+ construct,
4772 look at what begins its body, since we will have to
4773 match at least one of that. */
4774 while (1)
4775 {
4776 if (p2 + 2 < pend
4777 && ((re_opcode_t) *p2 == stop_memory
4778 || (re_opcode_t) *p2 == start_memory))
4779 p2 += 3;
4780 else if (p2 + 6 < pend
4781 && (re_opcode_t) *p2 == dummy_failure_jump)
4782 p2 += 6;
4783 else
4784 break;
4785 }
4786
4787 p1 = p + mcnt;
4788 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4789 to the `maybe_finalize_jump' of this case. Examine what
4790 follows. */
4791
4792 /* If we're at the end of the pattern, we can change. */
4793 if (p2 == pend)
4794 {
4795 /* Consider what happens when matching ":\(.*\)"
4796 against ":/". I don't really understand this code
4797 yet. */
4798 p[-3] = (unsigned char) pop_failure_jump;
4799 DEBUG_PRINT1
4800 (" End of pattern: change to `pop_failure_jump'.\n");
4801 }
4802
4803 else if ((re_opcode_t) *p2 == exactn
4804 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4805 {
4806 register unsigned char c
4807 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4808
4809 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
4810 {
4811 p[-3] = (unsigned char) pop_failure_jump;
4812 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4813 c, p1[5]);
4814 }
4815
4816 else if ((re_opcode_t) p1[3] == charset
4817 || (re_opcode_t) p1[3] == charset_not)
4818 {
4819 int not = (re_opcode_t) p1[3] == charset_not;
4820
4821 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4822 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4823 not = !not;
4824
4825 /* `not' is equal to 1 if c would match, which means
4826 that we can't change to pop_failure_jump. */
4827 if (!not)
4828 {
4829 p[-3] = (unsigned char) pop_failure_jump;
4830 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4831 }
4832 }
4833 }
4834 else if ((re_opcode_t) *p2 == charset)
4835 {
4836#ifdef DEBUG
4837 register unsigned char c
4838 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4839#endif
4840
4841#if 0
4842 if ((re_opcode_t) p1[3] == exactn
4843 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
4844 && (p2[2 + p1[5] / BYTEWIDTH]
4845 & (1 << (p1[5] % BYTEWIDTH)))))
4846#else
4847 if ((re_opcode_t) p1[3] == exactn
4848 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4]
4849 && (p2[2 + p1[4] / BYTEWIDTH]
4850 & (1 << (p1[4] % BYTEWIDTH)))))
4851#endif
4852 {
4853 p[-3] = (unsigned char) pop_failure_jump;
4854 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4855 c, p1[5]);
4856 }
4857
4858 else if ((re_opcode_t) p1[3] == charset_not)
4859 {
4860 int idx;
4861 /* We win if the charset_not inside the loop
4862 lists every character listed in the charset after. */
4863 for (idx = 0; idx < (int) p2[1]; idx++)
4864 if (! (p2[2 + idx] == 0
4865 || (idx < (int) p1[4]
4866 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4867 break;
4868
4869 if (idx == p2[1])
4870 {
4871 p[-3] = (unsigned char) pop_failure_jump;
4872 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4873 }
4874 }
4875 else if ((re_opcode_t) p1[3] == charset)
4876 {
4877 int idx;
4878 /* We win if the charset inside the loop
4879 has no overlap with the one after the loop. */
4880 for (idx = 0;
4881 idx < (int) p2[1] && idx < (int) p1[4];
4882 idx++)
4883 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4884 break;
4885
4886 if (idx == p2[1] || idx == p1[4])
4887 {
4888 p[-3] = (unsigned char) pop_failure_jump;
4889 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4890 }
4891 }
4892 }
4893 }
4894 p -= 2; /* Point at relative address again. */
4895 if ((re_opcode_t) p[-1] != pop_failure_jump)
4896 {
4897 p[-1] = (unsigned char) jump;
4898 DEBUG_PRINT1 (" Match => jump.\n");
4899 goto unconditional_jump;
4900 }
4901 /* Note fall through. */
4902
4903
4904 /* The end of a simple repeat has a pop_failure_jump back to
4905 its matching on_failure_jump, where the latter will push a
4906 failure point. The pop_failure_jump takes off failure
4907 points put on by this pop_failure_jump's matching
4908 on_failure_jump; we got through the pattern to here from the
4909 matching on_failure_jump, so didn't fail. */
4910 case pop_failure_jump:
4911 {
4912 /* We need to pass separate storage for the lowest and
4913 highest registers, even though we don't care about the
4914 actual values. Otherwise, we will restore only one
4915 register from the stack, since lowest will == highest in
4916 `pop_failure_point'. */
4917 active_reg_t dummy_low_reg, dummy_high_reg;
4918 unsigned char *pdummy;
4919 const char *sdummy;
4920
4921 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4922 POP_FAILURE_POINT (sdummy, pdummy,
4923 dummy_low_reg, dummy_high_reg,
4924 reg_dummy, reg_dummy, reg_info_dummy);
4925 }
4926 /* Note fall through. */
4927
4928 unconditional_jump:
4929#ifdef _LIBC
4930 DEBUG_PRINT2 ("\n%p: ", p);
4931#else
4932 DEBUG_PRINT2 ("\n0x%x: ", p);
4933#endif
4934 /* Note fall through. */
4935
4936 /* Unconditionally jump (without popping any failure points). */
4937 case jump:
4938 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4939 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4940 p += mcnt; /* Do the jump. */
4941#ifdef _LIBC
4942 DEBUG_PRINT2 ("(to %p).\n", p);
4943#else
4944 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4945#endif
4946 break;
4947
4948
4949 /* We need this opcode so we can detect where alternatives end
4950 in `group_match_null_string_p' et al. */
4951 case jump_past_alt:
4952 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4953 goto unconditional_jump;
4954
4955
4956 /* Normally, the on_failure_jump pushes a failure point, which
4957 then gets popped at pop_failure_jump. We will end up at
4958 pop_failure_jump, also, and with a pattern of, say, `a+', we
4959 are skipping over the on_failure_jump, so we have to push
4960 something meaningless for pop_failure_jump to pop. */
4961 case dummy_failure_jump:
4962 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4963 /* It doesn't matter what we push for the string here. What
4964 the code at `fail' tests is the value for the pattern. */
4965 PUSH_FAILURE_POINT (NULL, NULL, -2);
4966 goto unconditional_jump;
4967
4968
4969 /* At the end of an alternative, we need to push a dummy failure
4970 point in case we are followed by a `pop_failure_jump', because
4971 we don't want the failure point for the alternative to be
4972 popped. For example, matching `(a|ab)*' against `aab'
4973 requires that we match the `ab' alternative. */
4974 case push_dummy_failure:
4975 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4976 /* See comments just above at `dummy_failure_jump' about the
4977 two zeroes. */
4978 PUSH_FAILURE_POINT (NULL, NULL, -2);
4979 break;
4980
4981 /* Have to succeed matching what follows at least n times.
4982 After that, handle like `on_failure_jump'. */
4983 case succeed_n:
4984 EXTRACT_NUMBER (mcnt, p + 2);
4985 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4986
4987 assert (mcnt >= 0);
4988 /* Originally, this is how many times we HAVE to succeed. */
4989 if (mcnt > 0)
4990 {
4991 mcnt--;
4992 p += 2;
4993 STORE_NUMBER_AND_INCR (p, mcnt);
4994#ifdef _LIBC
4995 DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt);
4996#else
4997 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt);
4998#endif
4999 }
5000 else if (mcnt == 0)
5001 {
5002#ifdef _LIBC
5003 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2);
5004#else
5005 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
5006#endif
5007 p[2] = (unsigned char) no_op;
5008 p[3] = (unsigned char) no_op;
5009 goto on_failure;
5010 }
5011 break;
5012
5013 case jump_n:
5014 EXTRACT_NUMBER (mcnt, p + 2);
5015 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5016
5017 /* Originally, this is how many times we CAN jump. */
5018 if (mcnt)
5019 {
5020 mcnt--;
5021 STORE_NUMBER (p + 2, mcnt);
5022#ifdef _LIBC
5023 DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt);
5024#else
5025 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt);
5026#endif
5027 goto unconditional_jump;
5028 }
5029 /* If don't have to jump any more, skip over the rest of command. */
5030 else
5031 p += 4;
5032 break;
5033
5034 case set_number_at:
5035 {
5036 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5037
5038 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5039 p1 = p + mcnt;
5040 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5041#ifdef _LIBC
5042 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
5043#else
5044 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
5045#endif
5046 STORE_NUMBER (p1, mcnt);
5047 break;
5048 }
5049
5050#if 0
5051 /* The DEC Alpha C compiler 3.x generates incorrect code for the
5052 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
5053 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
5054 macro and introducing temporary variables works around the bug. */
5055
5056 case wordbound:
5057 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5058 if (AT_WORD_BOUNDARY (d))
5059 break;
5060 goto fail;
5061
5062 case notwordbound:
5063 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5064 if (AT_WORD_BOUNDARY (d))
5065 goto fail;
5066 break;
5067#else
5068 case wordbound:
5069 {
5070 boolean prevchar, thischar;
5071
5072 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
5073 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5074 break;
5075
5076 prevchar = WORDCHAR_P (d - 1);
5077 thischar = WORDCHAR_P (d);
5078 if (prevchar != thischar)
5079 break;
5080 goto fail;
5081 }
5082
5083 case notwordbound:
5084 {
5085 boolean prevchar, thischar;
5086
5087 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
5088 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5089 goto fail;
5090
5091 prevchar = WORDCHAR_P (d - 1);
5092 thischar = WORDCHAR_P (d);
5093 if (prevchar != thischar)
5094 goto fail;
5095 break;
5096 }
5097#endif
5098
5099 case wordbeg:
5100 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5101 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
5102 break;
5103 goto fail;
5104
5105 case wordend:
5106 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5107 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
5108 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
5109 break;
5110 goto fail;
5111
5112#ifdef emacs
5113 case before_dot:
5114 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5115 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
5116 goto fail;
5117 break;
5118
5119 case at_dot:
5120 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5121 if (PTR_CHAR_POS ((unsigned char *) d) != point)
5122 goto fail;
5123 break;
5124
5125 case after_dot:
5126 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5127 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
5128 goto fail;
5129 break;
5130
5131 case syntaxspec:
5132 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
5133 mcnt = *p++;
5134 goto matchsyntax;
5135
5136 case wordchar:
5137 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
5138 mcnt = (int) Sword;
5139 matchsyntax:
5140 PREFETCH ();
5141 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5142 d++;
5143 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
5144 goto fail;
5145 SET_REGS_MATCHED ();
5146 break;
5147
5148 case notsyntaxspec:
5149 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
5150 mcnt = *p++;
5151 goto matchnotsyntax;
5152
5153 case notwordchar:
5154 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
5155 mcnt = (int) Sword;
5156 matchnotsyntax:
5157 PREFETCH ();
5158 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
5159 d++;
5160 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
5161 goto fail;
5162 SET_REGS_MATCHED ();
5163 break;
5164
5165#else /* not emacs */
5166 case wordchar:
5167 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
5168 PREFETCH ();
5169 if (!WORDCHAR_P (d))
5170 goto fail;
5171 SET_REGS_MATCHED ();
5172 d++;
5173 break;
5174
5175 case notwordchar:
5176 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
5177 PREFETCH ();
5178 if (WORDCHAR_P (d))
5179 goto fail;
5180 SET_REGS_MATCHED ();
5181 d++;
5182 break;
5183#endif /* not emacs */
5184
5185 default:
5186 abort ();
5187 }
5188 continue; /* Successfully executed one pattern command; keep going. */
5189
5190
5191 /* We goto here if a matching operation fails. */
5192 fail:
5193 if (!FAIL_STACK_EMPTY ())
5194 { /* A restart point is known. Restore to that state. */
5195 DEBUG_PRINT1 ("\nFAIL:\n");
5196 POP_FAILURE_POINT (d, p,
5197 lowest_active_reg, highest_active_reg,
5198 regstart, regend, reg_info);
5199
5200 /* If this failure point is a dummy, try the next one. */
5201 if (!p)
5202 goto fail;
5203
5204 /* If we failed to the end of the pattern, don't examine *p. */
5205 assert (p <= pend);
5206 if (p < pend)
5207 {
5208 boolean is_a_jump_n = false;
5209
5210 /* If failed to a backwards jump that's part of a repetition
5211 loop, need to pop this failure point and use the next one. */
5212 switch ((re_opcode_t) *p)
5213 {
5214 case jump_n:
5215 is_a_jump_n = true;
5216 case maybe_pop_jump:
5217 case pop_failure_jump:
5218 case jump:
5219 p1 = p + 1;
5220 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5221 p1 += mcnt;
5222
5223 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
5224 || (!is_a_jump_n
5225 && (re_opcode_t) *p1 == on_failure_jump))
5226 goto fail;
5227 break;
5228 default:
5229 /* do nothing */ ;
5230 }
5231 }
5232
5233 if (d >= string1 && d <= end1)
5234 dend = end_match_1;
5235 }
5236 else
5237 break; /* Matching at this starting point really fails. */
5238 } /* for (;;) */
5239
5240 if (best_regs_set)
5241 goto restore_best_regs;
5242
5243 FREE_VARIABLES ();
5244
5245 return -1; /* Failure to match. */
5246} /* re_match_2 */
5247
5248/* Subroutine definitions for re_match_2. */
5249
5250
5251/* We are passed P pointing to a register number after a start_memory.
5252
5253 Return true if the pattern up to the corresponding stop_memory can
5254 match the empty string, and false otherwise.
5255
5256 If we find the matching stop_memory, sets P to point to one past its number.
5257 Otherwise, sets P to an undefined byte less than or equal to END.
5258
5259 We don't handle duplicates properly (yet). */
5260
5261static boolean
5262group_match_null_string_p (p, end, reg_info)
5263 unsigned char **p, *end;
5264 register_info_type *reg_info;
5265{
5266 int mcnt;
5267 /* Point to after the args to the start_memory. */
5268 unsigned char *p1 = *p + 2;
5269
5270 while (p1 < end)
5271 {
5272 /* Skip over opcodes that can match nothing, and return true or
5273 false, as appropriate, when we get to one that can't, or to the
5274 matching stop_memory. */
5275
5276 switch ((re_opcode_t) *p1)
5277 {
5278 /* Could be either a loop or a series of alternatives. */
5279 case on_failure_jump:
5280 p1++;
5281 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5282
5283 /* If the next operation is not a jump backwards in the
5284 pattern. */
5285
5286 if (mcnt >= 0)
5287 {
5288 /* Go through the on_failure_jumps of the alternatives,
5289 seeing if any of the alternatives cannot match nothing.
5290 The last alternative starts with only a jump,
5291 whereas the rest start with on_failure_jump and end
5292 with a jump, e.g., here is the pattern for `a|b|c':
5293
5294 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
5295 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
5296 /exactn/1/c
5297
5298 So, we have to first go through the first (n-1)
5299 alternatives and then deal with the last one separately. */
5300
5301
5302 /* Deal with the first (n-1) alternatives, which start
5303 with an on_failure_jump (see above) that jumps to right
5304 past a jump_past_alt. */
5305
5306 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
5307 {
5308 /* `mcnt' holds how many bytes long the alternative
5309 is, including the ending `jump_past_alt' and
5310 its number. */
5311
5312 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
5313 reg_info))
5314 return false;
5315
5316 /* Move to right after this alternative, including the
5317 jump_past_alt. */
5318 p1 += mcnt;
5319
5320 /* Break if it's the beginning of an n-th alternative
5321 that doesn't begin with an on_failure_jump. */
5322 if ((re_opcode_t) *p1 != on_failure_jump)
5323 break;
5324
5325 /* Still have to check that it's not an n-th
5326 alternative that starts with an on_failure_jump. */
5327 p1++;
5328 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5329 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
5330 {
5331 /* Get to the beginning of the n-th alternative. */
5332 p1 -= 3;
5333 break;
5334 }
5335 }
5336
5337 /* Deal with the last alternative: go back and get number
5338 of the `jump_past_alt' just before it. `mcnt' contains
5339 the length of the alternative. */
5340 EXTRACT_NUMBER (mcnt, p1 - 2);
5341
5342 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
5343 return false;
5344
5345 p1 += mcnt; /* Get past the n-th alternative. */
5346 } /* if mcnt > 0 */
5347 break;
5348
5349
5350 case stop_memory:
5351 assert (p1[1] == **p);
5352 *p = p1 + 2;
5353 return true;
5354
5355
5356 default:
5357 if (!common_op_match_null_string_p (&p1, end, reg_info))
5358 return false;
5359 }
5360 } /* while p1 < end */
5361
5362 return false;
5363} /* group_match_null_string_p */
5364
5365
5366/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
5367 It expects P to be the first byte of a single alternative and END one
5368 byte past the last. The alternative can contain groups. */
5369
5370static boolean
5371alt_match_null_string_p (p, end, reg_info)
5372 unsigned char *p, *end;
5373 register_info_type *reg_info;
5374{
5375 int mcnt;
5376 unsigned char *p1 = p;
5377
5378 while (p1 < end)
5379 {
5380 /* Skip over opcodes that can match nothing, and break when we get
5381 to one that can't. */
5382
5383 switch ((re_opcode_t) *p1)
5384 {
5385 /* It's a loop. */
5386 case on_failure_jump:
5387 p1++;
5388 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5389 p1 += mcnt;
5390 break;
5391
5392 default:
5393 if (!common_op_match_null_string_p (&p1, end, reg_info))
5394 return false;
5395 }
5396 } /* while p1 < end */
5397
5398 return true;
5399} /* alt_match_null_string_p */
5400
5401
5402/* Deals with the ops common to group_match_null_string_p and
5403 alt_match_null_string_p.
5404
5405 Sets P to one after the op and its arguments, if any. */
5406
5407static boolean
5408common_op_match_null_string_p (p, end, reg_info)
5409 unsigned char **p, *end;
5410 register_info_type *reg_info;
5411{
5412 int mcnt;
5413 boolean ret;
5414 int reg_no;
5415 unsigned char *p1 = *p;
5416
5417 switch ((re_opcode_t) *p1++)
5418 {
5419 case no_op:
5420 case begline:
5421 case endline:
5422 case begbuf:
5423 case endbuf:
5424 case wordbeg:
5425 case wordend:
5426 case wordbound:
5427 case notwordbound:
5428#ifdef emacs
5429 case before_dot:
5430 case at_dot:
5431 case after_dot:
5432#endif
5433 break;
5434
5435 case start_memory:
5436 reg_no = *p1;
5437 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
5438 ret = group_match_null_string_p (&p1, end, reg_info);
5439
5440 /* Have to set this here in case we're checking a group which
5441 contains a group and a back reference to it. */
5442
5443 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
5444 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
5445
5446 if (!ret)
5447 return false;
5448 break;
5449
5450 /* If this is an optimized succeed_n for zero times, make the jump. */
5451 case jump:
5452 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5453 if (mcnt >= 0)
5454 p1 += mcnt;
5455 else
5456 return false;
5457 break;
5458
5459 case succeed_n:
5460 /* Get to the number of times to succeed. */
5461 p1 += 2;
5462 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5463
5464 if (mcnt == 0)
5465 {
5466 p1 -= 4;
5467 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
5468 p1 += mcnt;
5469 }
5470 else
5471 return false;
5472 break;
5473
5474 case duplicate:
5475 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
5476 return false;
5477 break;
5478
5479 case set_number_at:
5480 p1 += 4;
5481
5482 default:
5483 /* All other opcodes mean we cannot match the empty string. */
5484 return false;
5485 }
5486
5487 *p = p1;
5488 return true;
5489} /* common_op_match_null_string_p */
5490
5491
5492/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5493 bytes; nonzero otherwise. */
5494
5495static int
5496bcmp_translate (s1, s2, len, translate)
5497 const char *s1, *s2;
5498 register int len;
5499 RE_TRANSLATE_TYPE translate;
5500{
5501 register const unsigned char *p1 = (const unsigned char *) s1;
5502 register const unsigned char *p2 = (const unsigned char *) s2;
5503 while (len)
5504 {
5505 if (translate[*p1++] != translate[*p2++]) return 1;
5506 len--;
5507 }
5508 return 0;
5509}
5510
5511/* Entry points for GNU code. */
5512
5513/* re_compile_pattern is the GNU regular expression compiler: it
5514 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5515 Returns 0 if the pattern was valid, otherwise an error string.
5516
5517 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5518 are set in BUFP on entry.
5519
5520 We call regex_compile to do the actual compilation. */
5521
5522const char *
5523re_compile_pattern (pattern, length, bufp)
5524 const char *pattern;
5525 size_t length;
5526 struct re_pattern_buffer *bufp;
5527{
5528 reg_errcode_t ret;
5529
5530 /* GNU code is written to assume at least RE_NREGS registers will be set
5531 (and at least one extra will be -1). */
5532 bufp->regs_allocated = REGS_UNALLOCATED;
5533
5534 /* And GNU code determines whether or not to get register information
5535 by passing null for the REGS argument to re_match, etc., not by
5536 setting no_sub. */
5537 bufp->no_sub = 0;
5538
5539 /* Match anchors at newline. */
5540 bufp->newline_anchor = 1;
5541
5542 ret = regex_compile (pattern, length, re_syntax_options, bufp);
5543
5544 if (!ret)
5545 return NULL;
5546 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5547}
5548#ifdef _LIBC
5549weak_alias (__re_compile_pattern, re_compile_pattern)
5550#endif
5551
5552/* Entry points compatible with 4.2 BSD regex library. We don't define
5553 them unless specifically requested. */
5554
5555#if defined _REGEX_RE_COMP || defined _LIBC
5556
5557/* BSD has one and only one pattern buffer. */
5558static struct re_pattern_buffer re_comp_buf;
5559
5560char *
5561#ifdef _LIBC
5562/* Make these definitions weak in libc, so POSIX programs can redefine
5563 these names if they don't use our functions, and still use
5564 regcomp/regexec below without link errors. */
5565weak_function
5566#endif
5567re_comp (s)
5568 const char *s;
5569{
5570 reg_errcode_t ret;
5571
5572 if (!s)
5573 {
5574 if (!re_comp_buf.buffer)
5575 return gettext ("No previous regular expression");
5576 return 0;
5577 }
5578
5579 if (!re_comp_buf.buffer)
5580 {
5581 re_comp_buf.buffer = (unsigned char *) malloc (200);
5582 if (re_comp_buf.buffer == NULL)
5583 return (char *) gettext (re_error_msgid
5584 + re_error_msgid_idx[(int) REG_ESPACE]);
5585 re_comp_buf.allocated = 200;
5586
5587 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
5588 if (re_comp_buf.fastmap == NULL)
5589 return (char *) gettext (re_error_msgid
5590 + re_error_msgid_idx[(int) REG_ESPACE]);
5591 }
5592
5593 /* Since `re_exec' always passes NULL for the `regs' argument, we
5594 don't need to initialize the pattern buffer fields which affect it. */
5595
5596 /* Match anchors at newlines. */
5597 re_comp_buf.newline_anchor = 1;
5598
5599 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
5600
5601 if (!ret)
5602 return NULL;
5603
5604 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5605 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
5606}
5607
5608
5609int
5610#ifdef _LIBC
5611weak_function
5612#endif
5613re_exec (s)
5614 const char *s;
5615{
5616 const int len = strlen (s);
5617 return
5618 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
5619}
5620
5621#endif /* _REGEX_RE_COMP */
5622
5623/* POSIX.2 functions. Don't define these for Emacs. */
5624
5625#ifndef emacs
5626
5627/* regcomp takes a regular expression as a string and compiles it.
5628
5629 PREG is a regex_t *. We do not expect any fields to be initialized,
5630 since POSIX says we shouldn't. Thus, we set
5631
5632 `buffer' to the compiled pattern;
5633 `used' to the length of the compiled pattern;
5634 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5635 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5636 RE_SYNTAX_POSIX_BASIC;
5637 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
5638 `fastmap' to an allocated space for the fastmap;
5639 `fastmap_accurate' to zero;
5640 `re_nsub' to the number of subexpressions in PATTERN.
5641
5642 PATTERN is the address of the pattern string.
5643
5644 CFLAGS is a series of bits which affect compilation.
5645
5646 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5647 use POSIX basic syntax.
5648
5649 If REG_NEWLINE is set, then . and [^...] don't match newline.
5650 Also, regexec will try a match beginning after every newline.
5651
5652 If REG_ICASE is set, then we considers upper- and lowercase
5653 versions of letters to be equivalent when matching.
5654
5655 If REG_NOSUB is set, then when PREG is passed to regexec, that
5656 routine will report only success or failure, and nothing about the
5657 registers.
5658
5659 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5660 the return codes and their meanings.) */
5661
5662int
5663regcomp (preg, pattern, cflags)
5664 regex_t *preg;
5665 const char *pattern;
5666 int cflags;
5667{
5668 reg_errcode_t ret;
5669 reg_syntax_t syntax
5670 = (cflags & REG_EXTENDED) ?
5671 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
5672
5673 /* regex_compile will allocate the space for the compiled pattern. */
5674 preg->buffer = 0;
5675 preg->allocated = 0;
5676 preg->used = 0;
5677
5678 /* Try to allocate space for the fastmap. */
5679 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
5680
5681 if (cflags & REG_ICASE)
5682 {
5683 unsigned i;
5684
5685 preg->translate
5686 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
5687 * sizeof (*(RE_TRANSLATE_TYPE)0));
5688 if (preg->translate == NULL)
5689 return (int) REG_ESPACE;
5690
5691 /* Map uppercase characters to corresponding lowercase ones. */
5692 for (i = 0; i < CHAR_SET_SIZE; i++)
5693 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
5694 }
5695 else
5696 preg->translate = NULL;
5697
5698 /* If REG_NEWLINE is set, newlines are treated differently. */
5699 if (cflags & REG_NEWLINE)
5700 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5701 syntax &= ~RE_DOT_NEWLINE;
5702 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5703 /* It also changes the matching behavior. */
5704 preg->newline_anchor = 1;
5705 }
5706 else
5707 preg->newline_anchor = 0;
5708
5709 preg->no_sub = !!(cflags & REG_NOSUB);
5710
5711 /* POSIX says a null character in the pattern terminates it, so we
5712 can use strlen here in compiling the pattern. */
5713 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5714
5715 /* POSIX doesn't distinguish between an unmatched open-group and an
5716 unmatched close-group: both are REG_EPAREN. */
5717 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5718
5719 if (ret == REG_NOERROR && preg->fastmap)
5720 {
5721 /* Compute the fastmap now, since regexec cannot modify the pattern
5722 buffer. */
5723 if (re_compile_fastmap (preg) == -2)
5724 {
5725 /* Some error occured while computing the fastmap, just forget
5726 about it. */
5727 free (preg->fastmap);
5728 preg->fastmap = NULL;
5729 }
5730 }
5731
5732 return (int) ret;
5733}
5734#ifdef _LIBC
5735weak_alias (__regcomp, regcomp)
5736#endif
5737
5738
5739/* regexec searches for a given pattern, specified by PREG, in the
5740 string STRING.
5741
5742 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5743 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5744 least NMATCH elements, and we set them to the offsets of the
5745 corresponding matched substrings.
5746
5747 EFLAGS specifies `execution flags' which affect matching: if
5748 REG_NOTBOL is set, then ^ does not match at the beginning of the
5749 string; if REG_NOTEOL is set, then $ does not match at the end.
5750
5751 We return 0 if we find a match and REG_NOMATCH if not. */
5752
5753int
5754regexec (preg, string, nmatch, pmatch, eflags)
5755 const regex_t *preg;
5756 const char *string;
5757 size_t nmatch;
5758 regmatch_t pmatch[];
5759 int eflags;
5760{
5761 int ret;
5762 struct re_registers regs;
5763 regex_t private_preg;
5764 int len = strlen (string);
5765 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5766
5767 private_preg = *preg;
5768
5769 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5770 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5771
5772 /* The user has told us exactly how many registers to return
5773 information about, via `nmatch'. We have to pass that on to the
5774 matching routines. */
5775 private_preg.regs_allocated = REGS_FIXED;
5776
5777 if (want_reg_info)
5778 {
5779 regs.num_regs = nmatch;
5780 regs.start = TALLOC (nmatch * 2, regoff_t);
5781 if (regs.start == NULL)
5782 return (int) REG_NOMATCH;
5783 regs.end = regs.start + nmatch;
5784 }
5785
5786 /* Perform the searching operation. */
5787 ret = re_search (&private_preg, string, len,
5788 /* start: */ 0, /* range: */ len,
5789 want_reg_info ? &regs : (struct re_registers *) 0);
5790
5791 /* Copy the register information to the POSIX structure. */
5792 if (want_reg_info)
5793 {
5794 if (ret >= 0)
5795 {
5796 unsigned r;
5797
5798 for (r = 0; r < nmatch; r++)
5799 {
5800 pmatch[r].rm_so = regs.start[r];
5801 pmatch[r].rm_eo = regs.end[r];
5802 }
5803 }
5804
5805 /* If we needed the temporary register info, free the space now. */
5806 free (regs.start);
5807 }
5808
5809 /* We want zero return to mean success, unlike `re_search'. */
5810 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5811}
5812#ifdef _LIBC
5813weak_alias (__regexec, regexec)
5814#endif
5815
5816
5817/* Returns a message corresponding to an error code, ERRCODE, returned
5818 from either regcomp or regexec. We don't use PREG here. */
5819
5820size_t
5821regerror (errcode, preg, errbuf, errbuf_size)
5822 int errcode;
5823 const regex_t *preg;
5824 char *errbuf;
5825 size_t errbuf_size;
5826{
5827 const char *msg;
5828 size_t msg_size;
5829
5830 if (errcode < 0
5831 || errcode >= (int) (sizeof (re_error_msgid_idx)
5832 / sizeof (re_error_msgid_idx[0])))
5833 /* Only error codes returned by the rest of the code should be passed
5834 to this routine. If we are given anything else, or if other regex
5835 code generates an invalid error code, then the program has a bug.
5836 Dump core so we can fix it. */
5837 abort ();
5838
5839 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
5840
5841 msg_size = strlen (msg) + 1; /* Includes the null. */
5842
5843 if (errbuf_size != 0)
5844 {
5845 if (msg_size > errbuf_size)
5846 {
5847#if defined HAVE_MEMPCPY || defined _LIBC
5848 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
5849#else
5850 memcpy (errbuf, msg, errbuf_size - 1);
5851 errbuf[errbuf_size - 1] = 0;
5852#endif
5853 }
5854 else
5855 memcpy (errbuf, msg, msg_size);
5856 }
5857
5858 return msg_size;
5859}
5860#ifdef _LIBC
5861weak_alias (__regerror, regerror)
5862#endif
5863
5864
5865/* Free dynamically allocated space used by PREG. */
5866
5867void
5868regfree (preg)
5869 regex_t *preg;
5870{
5871 if (preg->buffer != NULL)
5872 free (preg->buffer);
5873 preg->buffer = NULL;
5874
5875 preg->allocated = 0;
5876 preg->used = 0;
5877
5878 if (preg->fastmap != NULL)
5879 free (preg->fastmap);
5880 preg->fastmap = NULL;
5881 preg->fastmap_accurate = 0;
5882
5883 if (preg->translate != NULL)
5884 free (preg->translate);
5885 preg->translate = NULL;
5886}
5887#ifdef _LIBC
5888weak_alias (__regfree, regfree)
5889#endif
5890
5891#endif /* not emacs */