paul | 718e374 | 2002-12-13 20:15:29 +0000 | [diff] [blame] | 1 | /* Extended regular expression matching and search library, |
| 2 | version 0.12. |
| 3 | (Implements POSIX draft P1003.2/D11.2, except for some of the |
| 4 | internationalization features.) |
| 5 | Copyright (C) 1993, 94, 95, 96, 97, 98, 99 Free Software Foundation, Inc. |
| 6 | |
| 7 | The GNU C Library is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU Library General Public License as |
| 9 | published by the Free Software Foundation; either version 2 of the |
| 10 | License, or (at your option) any later version. |
| 11 | |
| 12 | The GNU C Library is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 15 | Library General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU Library General Public |
| 18 | License along with the GNU C Library; see the file COPYING.LIB. If not, |
| 19 | write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 20 | Boston, MA 02111-1307, USA. */ |
| 21 | |
| 22 | /* AIX requires this to be the first thing in the file. */ |
| 23 | #if defined _AIX && !defined REGEX_MALLOC |
| 24 | #pragma alloca |
| 25 | #endif |
| 26 | |
| 27 | #undef _GNU_SOURCE |
| 28 | #define _GNU_SOURCE |
| 29 | |
| 30 | #ifdef HAVE_CONFIG_H |
| 31 | # include <config.h> |
| 32 | #endif |
| 33 | |
| 34 | #ifndef PARAMS |
| 35 | # if defined __GNUC__ || (defined __STDC__ && __STDC__) |
| 36 | # define PARAMS(args) args |
| 37 | # else |
| 38 | # define PARAMS(args) () |
| 39 | # endif /* GCC. */ |
| 40 | #endif /* Not PARAMS. */ |
| 41 | |
| 42 | #if defined STDC_HEADERS && !defined emacs |
| 43 | # include <stddef.h> |
| 44 | #else |
| 45 | /* We need this for `regex.h', and perhaps for the Emacs include files. */ |
| 46 | # include <sys/types.h> |
| 47 | #endif |
| 48 | |
| 49 | #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC) |
| 50 | |
| 51 | /* For platform which support the ISO C amendement 1 functionality we |
| 52 | support user defined character classes. */ |
| 53 | #if defined _LIBC || WIDE_CHAR_SUPPORT |
| 54 | /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */ |
| 55 | # include <wchar.h> |
| 56 | # include <wctype.h> |
| 57 | #endif |
| 58 | |
| 59 | #ifdef _LIBC |
| 60 | /* We have to keep the namespace clean. */ |
| 61 | # define regfree(preg) __regfree (preg) |
| 62 | # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef) |
| 63 | # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags) |
| 64 | # define regerror(errcode, preg, errbuf, errbuf_size) \ |
| 65 | __regerror(errcode, preg, errbuf, errbuf_size) |
| 66 | # define re_set_registers(bu, re, nu, st, en) \ |
| 67 | __re_set_registers (bu, re, nu, st, en) |
| 68 | # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \ |
| 69 | __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
| 70 | # define re_match(bufp, string, size, pos, regs) \ |
| 71 | __re_match (bufp, string, size, pos, regs) |
| 72 | # define re_search(bufp, string, size, startpos, range, regs) \ |
| 73 | __re_search (bufp, string, size, startpos, range, regs) |
| 74 | # define re_compile_pattern(pattern, length, bufp) \ |
| 75 | __re_compile_pattern (pattern, length, bufp) |
| 76 | # define re_set_syntax(syntax) __re_set_syntax (syntax) |
| 77 | # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \ |
| 78 | __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop) |
| 79 | # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp) |
| 80 | |
| 81 | #define btowc __btowc |
| 82 | #endif |
| 83 | |
| 84 | /* This is for other GNU distributions with internationalized messages. */ |
| 85 | #if HAVE_LIBINTL_H || defined _LIBC |
| 86 | # include <libintl.h> |
| 87 | #else |
| 88 | # define gettext(msgid) (msgid) |
| 89 | #endif |
| 90 | |
| 91 | #ifndef gettext_noop |
| 92 | /* This define is so xgettext can find the internationalizable |
| 93 | strings. */ |
| 94 | # define gettext_noop(String) String |
| 95 | #endif |
| 96 | |
| 97 | /* The `emacs' switch turns on certain matching commands |
| 98 | that make sense only in Emacs. */ |
| 99 | #ifdef emacs |
| 100 | |
| 101 | # include "lisp.h" |
| 102 | # include "buffer.h" |
| 103 | # include "syntax.h" |
| 104 | |
| 105 | #else /* not emacs */ |
| 106 | |
| 107 | /* If we are not linking with Emacs proper, |
| 108 | we can't use the relocating allocator |
| 109 | even if config.h says that we can. */ |
| 110 | # undef REL_ALLOC |
| 111 | |
| 112 | # if defined STDC_HEADERS || defined _LIBC |
| 113 | # include <stdlib.h> |
| 114 | # else |
| 115 | char *malloc (); |
| 116 | char *realloc (); |
| 117 | # endif |
| 118 | |
| 119 | /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. |
| 120 | If nothing else has been done, use the method below. */ |
| 121 | # ifdef INHIBIT_STRING_HEADER |
| 122 | # if !(defined HAVE_BZERO && defined HAVE_BCOPY) |
| 123 | # if !defined bzero && !defined bcopy |
| 124 | # undef INHIBIT_STRING_HEADER |
| 125 | # endif |
| 126 | # endif |
| 127 | # endif |
| 128 | |
| 129 | /* This is the normal way of making sure we have a bcopy and a bzero. |
| 130 | This is used in most programs--a few other programs avoid this |
| 131 | by defining INHIBIT_STRING_HEADER. */ |
| 132 | # ifndef INHIBIT_STRING_HEADER |
| 133 | # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC |
| 134 | # include <string.h> |
| 135 | # ifndef bzero |
| 136 | # ifndef _LIBC |
| 137 | # define bzero(s, n) (memset (s, '\0', n), (s)) |
| 138 | # else |
| 139 | # define bzero(s, n) __bzero (s, n) |
| 140 | # endif |
| 141 | # endif |
| 142 | # else |
| 143 | # include <strings.h> |
| 144 | # ifndef memcmp |
| 145 | # define memcmp(s1, s2, n) bcmp (s1, s2, n) |
| 146 | # endif |
| 147 | # ifndef memcpy |
| 148 | # define memcpy(d, s, n) (bcopy (s, d, n), (d)) |
| 149 | # endif |
| 150 | # endif |
| 151 | # endif |
| 152 | |
| 153 | /* Define the syntax stuff for \<, \>, etc. */ |
| 154 | |
| 155 | /* This must be nonzero for the wordchar and notwordchar pattern |
| 156 | commands in re_match_2. */ |
| 157 | # ifndef Sword |
| 158 | # define Sword 1 |
| 159 | # endif |
| 160 | |
| 161 | # ifdef SWITCH_ENUM_BUG |
| 162 | # define SWITCH_ENUM_CAST(x) ((int)(x)) |
| 163 | # else |
| 164 | # define SWITCH_ENUM_CAST(x) (x) |
| 165 | # endif |
| 166 | |
| 167 | /* How many characters in the character set. */ |
| 168 | # define CHAR_SET_SIZE 256 |
| 169 | |
| 170 | # ifdef SYNTAX_TABLE |
| 171 | |
| 172 | extern char *re_syntax_table; |
| 173 | |
| 174 | # else /* not SYNTAX_TABLE */ |
| 175 | |
| 176 | static char re_syntax_table[CHAR_SET_SIZE]; |
| 177 | |
| 178 | static void |
| 179 | init_syntax_once () |
| 180 | { |
| 181 | register int c; |
| 182 | static int done; |
| 183 | |
| 184 | if (done) |
| 185 | return; |
| 186 | |
paul | d1724b6 | 2003-10-22 02:41:52 +0000 | [diff] [blame] | 187 | memset (re_syntax_table, 0, sizeof re_syntax_table); |
paul | 718e374 | 2002-12-13 20:15:29 +0000 | [diff] [blame] | 188 | |
| 189 | for (c = 'a'; c <= 'z'; c++) |
| 190 | re_syntax_table[c] = Sword; |
| 191 | |
| 192 | for (c = 'A'; c <= 'Z'; c++) |
| 193 | re_syntax_table[c] = Sword; |
| 194 | |
| 195 | for (c = '0'; c <= '9'; c++) |
| 196 | re_syntax_table[c] = Sword; |
| 197 | |
| 198 | re_syntax_table['_'] = Sword; |
| 199 | |
| 200 | done = 1; |
| 201 | } |
| 202 | |
| 203 | # endif /* not SYNTAX_TABLE */ |
| 204 | |
| 205 | # define SYNTAX(c) re_syntax_table[c] |
| 206 | |
| 207 | #endif /* not emacs */ |
| 208 | |
| 209 | /* Get the interface, including the syntax bits. */ |
| 210 | #include <regex-gnu.h> |
| 211 | |
| 212 | /* isalpha etc. are used for the character classes. */ |
| 213 | #include <ctype.h> |
| 214 | |
| 215 | /* Jim Meyering writes: |
| 216 | |
| 217 | "... Some ctype macros are valid only for character codes that |
| 218 | isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when |
| 219 | using /bin/cc or gcc but without giving an ansi option). So, all |
| 220 | ctype uses should be through macros like ISPRINT... If |
| 221 | STDC_HEADERS is defined, then autoconf has verified that the ctype |
| 222 | macros don't need to be guarded with references to isascii. ... |
| 223 | Defining isascii to 1 should let any compiler worth its salt |
| 224 | eliminate the && through constant folding." |
| 225 | Solaris defines some of these symbols so we must undefine them first. */ |
| 226 | |
| 227 | #undef ISASCII |
| 228 | #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII) |
| 229 | # define ISASCII(c) 1 |
| 230 | #else |
| 231 | # define ISASCII(c) isascii(c) |
| 232 | #endif |
| 233 | |
| 234 | #ifdef isblank |
| 235 | # define ISBLANK(c) (ISASCII (c) && isblank (c)) |
| 236 | #else |
| 237 | # define ISBLANK(c) ((c) == ' ' || (c) == '\t') |
| 238 | #endif |
| 239 | #ifdef isgraph |
| 240 | # define ISGRAPH(c) (ISASCII (c) && isgraph (c)) |
| 241 | #else |
| 242 | # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) |
| 243 | #endif |
| 244 | |
| 245 | #undef ISPRINT |
| 246 | #define ISPRINT(c) (ISASCII (c) && isprint (c)) |
| 247 | #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) |
| 248 | #define ISALNUM(c) (ISASCII (c) && isalnum (c)) |
| 249 | #define ISALPHA(c) (ISASCII (c) && isalpha (c)) |
| 250 | #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) |
| 251 | #define ISLOWER(c) (ISASCII (c) && islower (c)) |
| 252 | #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) |
| 253 | #define ISSPACE(c) (ISASCII (c) && isspace (c)) |
| 254 | #define ISUPPER(c) (ISASCII (c) && isupper (c)) |
| 255 | #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) |
| 256 | |
| 257 | #ifdef _tolower |
| 258 | # define TOLOWER(c) _tolower(c) |
| 259 | #else |
| 260 | # define TOLOWER(c) tolower(c) |
| 261 | #endif |
| 262 | |
| 263 | #ifndef NULL |
| 264 | # define NULL (void *)0 |
| 265 | #endif |
| 266 | |
| 267 | /* We remove any previous definition of `SIGN_EXTEND_CHAR', |
| 268 | since ours (we hope) works properly with all combinations of |
| 269 | machines, compilers, `char' and `unsigned char' argument types. |
| 270 | (Per Bothner suggested the basic approach.) */ |
| 271 | #undef SIGN_EXTEND_CHAR |
| 272 | #if __STDC__ |
| 273 | # define SIGN_EXTEND_CHAR(c) ((signed char) (c)) |
| 274 | #else /* not __STDC__ */ |
| 275 | /* As in Harbison and Steele. */ |
| 276 | # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) |
| 277 | #endif |
| 278 | |
| 279 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we |
| 280 | use `alloca' instead of `malloc'. This is because using malloc in |
| 281 | re_search* or re_match* could cause memory leaks when C-g is used in |
| 282 | Emacs; also, malloc is slower and causes storage fragmentation. On |
| 283 | the other hand, malloc is more portable, and easier to debug. |
| 284 | |
| 285 | Because we sometimes use alloca, some routines have to be macros, |
| 286 | not functions -- `alloca'-allocated space disappears at the end of the |
| 287 | function it is called in. */ |
| 288 | |
| 289 | #ifdef REGEX_MALLOC |
| 290 | |
| 291 | # define REGEX_ALLOCATE malloc |
| 292 | # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) |
| 293 | # define REGEX_FREE free |
| 294 | |
| 295 | #else /* not REGEX_MALLOC */ |
| 296 | |
| 297 | /* Emacs already defines alloca, sometimes. */ |
| 298 | # ifndef alloca |
| 299 | |
| 300 | /* Make alloca work the best possible way. */ |
| 301 | # ifdef __GNUC__ |
| 302 | # define alloca __builtin_alloca |
| 303 | # else /* not __GNUC__ */ |
| 304 | # if HAVE_ALLOCA_H |
| 305 | # include <alloca.h> |
| 306 | # endif /* HAVE_ALLOCA_H */ |
| 307 | # endif /* not __GNUC__ */ |
| 308 | |
| 309 | # endif /* not alloca */ |
| 310 | |
| 311 | # define REGEX_ALLOCATE alloca |
| 312 | |
| 313 | /* Assumes a `char *destination' variable. */ |
| 314 | # define REGEX_REALLOCATE(source, osize, nsize) \ |
| 315 | (destination = (char *) alloca (nsize), \ |
| 316 | memcpy (destination, source, osize)) |
| 317 | |
| 318 | /* No need to do anything to free, after alloca. */ |
| 319 | # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ |
| 320 | |
| 321 | #endif /* not REGEX_MALLOC */ |
| 322 | |
| 323 | /* Define how to allocate the failure stack. */ |
| 324 | |
| 325 | #if defined REL_ALLOC && defined REGEX_MALLOC |
| 326 | |
| 327 | # define REGEX_ALLOCATE_STACK(size) \ |
| 328 | r_alloc (&failure_stack_ptr, (size)) |
| 329 | # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
| 330 | r_re_alloc (&failure_stack_ptr, (nsize)) |
| 331 | # define REGEX_FREE_STACK(ptr) \ |
| 332 | r_alloc_free (&failure_stack_ptr) |
| 333 | |
| 334 | #else /* not using relocating allocator */ |
| 335 | |
| 336 | # ifdef REGEX_MALLOC |
| 337 | |
| 338 | # define REGEX_ALLOCATE_STACK malloc |
| 339 | # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) |
| 340 | # define REGEX_FREE_STACK free |
| 341 | |
| 342 | # else /* not REGEX_MALLOC */ |
| 343 | |
| 344 | # define REGEX_ALLOCATE_STACK alloca |
| 345 | |
| 346 | # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
| 347 | REGEX_REALLOCATE (source, osize, nsize) |
| 348 | /* No need to explicitly free anything. */ |
| 349 | # define REGEX_FREE_STACK(arg) |
| 350 | |
| 351 | # endif /* not REGEX_MALLOC */ |
| 352 | #endif /* not using relocating allocator */ |
| 353 | |
| 354 | |
| 355 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside |
| 356 | `string1' or just past its end. This works if PTR is NULL, which is |
| 357 | a good thing. */ |
| 358 | #define FIRST_STRING_P(ptr) \ |
| 359 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) |
| 360 | |
| 361 | /* (Re)Allocate N items of type T using malloc, or fail. */ |
| 362 | #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) |
| 363 | #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) |
| 364 | #define RETALLOC_IF(addr, n, t) \ |
| 365 | if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) |
| 366 | #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
| 367 | |
| 368 | #define BYTEWIDTH 8 /* In bits. */ |
| 369 | |
| 370 | #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) |
| 371 | |
| 372 | #undef MAX |
| 373 | #undef MIN |
| 374 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
| 375 | #define MIN(a, b) ((a) < (b) ? (a) : (b)) |
| 376 | |
| 377 | typedef char boolean; |
| 378 | #define false 0 |
| 379 | #define true 1 |
| 380 | |
| 381 | static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp, |
| 382 | const char *string1, int size1, |
| 383 | const char *string2, int size2, |
| 384 | int pos, |
| 385 | struct re_registers *regs, |
| 386 | int stop)); |
| 387 | |
| 388 | /* These are the command codes that appear in compiled regular |
| 389 | expressions. Some opcodes are followed by argument bytes. A |
| 390 | command code can specify any interpretation whatsoever for its |
| 391 | arguments. Zero bytes may appear in the compiled regular expression. */ |
| 392 | |
| 393 | typedef enum |
| 394 | { |
| 395 | no_op = 0, |
| 396 | |
| 397 | /* Succeed right away--no more backtracking. */ |
| 398 | succeed, |
| 399 | |
| 400 | /* Followed by one byte giving n, then by n literal bytes. */ |
| 401 | exactn, |
| 402 | |
| 403 | /* Matches any (more or less) character. */ |
| 404 | anychar, |
| 405 | |
| 406 | /* Matches any one char belonging to specified set. First |
| 407 | following byte is number of bitmap bytes. Then come bytes |
| 408 | for a bitmap saying which chars are in. Bits in each byte |
| 409 | are ordered low-bit-first. A character is in the set if its |
| 410 | bit is 1. A character too large to have a bit in the map is |
| 411 | automatically not in the set. */ |
| 412 | charset, |
| 413 | |
| 414 | /* Same parameters as charset, but match any character that is |
| 415 | not one of those specified. */ |
| 416 | charset_not, |
| 417 | |
| 418 | /* Start remembering the text that is matched, for storing in a |
| 419 | register. Followed by one byte with the register number, in |
| 420 | the range 0 to one less than the pattern buffer's re_nsub |
| 421 | field. Then followed by one byte with the number of groups |
| 422 | inner to this one. (This last has to be part of the |
| 423 | start_memory only because we need it in the on_failure_jump |
| 424 | of re_match_2.) */ |
| 425 | start_memory, |
| 426 | |
| 427 | /* Stop remembering the text that is matched and store it in a |
| 428 | memory register. Followed by one byte with the register |
| 429 | number, in the range 0 to one less than `re_nsub' in the |
| 430 | pattern buffer, and one byte with the number of inner groups, |
| 431 | just like `start_memory'. (We need the number of inner |
| 432 | groups here because we don't have any easy way of finding the |
| 433 | corresponding start_memory when we're at a stop_memory.) */ |
| 434 | stop_memory, |
| 435 | |
| 436 | /* Match a duplicate of something remembered. Followed by one |
| 437 | byte containing the register number. */ |
| 438 | duplicate, |
| 439 | |
| 440 | /* Fail unless at beginning of line. */ |
| 441 | begline, |
| 442 | |
| 443 | /* Fail unless at end of line. */ |
| 444 | endline, |
| 445 | |
| 446 | /* Succeeds if at beginning of buffer (if emacs) or at beginning |
| 447 | of string to be matched (if not). */ |
| 448 | begbuf, |
| 449 | |
| 450 | /* Analogously, for end of buffer/string. */ |
| 451 | endbuf, |
| 452 | |
| 453 | /* Followed by two byte relative address to which to jump. */ |
| 454 | jump, |
| 455 | |
| 456 | /* Same as jump, but marks the end of an alternative. */ |
| 457 | jump_past_alt, |
| 458 | |
| 459 | /* Followed by two-byte relative address of place to resume at |
| 460 | in case of failure. */ |
| 461 | on_failure_jump, |
| 462 | |
| 463 | /* Like on_failure_jump, but pushes a placeholder instead of the |
| 464 | current string position when executed. */ |
| 465 | on_failure_keep_string_jump, |
| 466 | |
| 467 | /* Throw away latest failure point and then jump to following |
| 468 | two-byte relative address. */ |
| 469 | pop_failure_jump, |
| 470 | |
| 471 | /* Change to pop_failure_jump if know won't have to backtrack to |
| 472 | match; otherwise change to jump. This is used to jump |
| 473 | back to the beginning of a repeat. If what follows this jump |
| 474 | clearly won't match what the repeat does, such that we can be |
| 475 | sure that there is no use backtracking out of repetitions |
| 476 | already matched, then we change it to a pop_failure_jump. |
| 477 | Followed by two-byte address. */ |
| 478 | maybe_pop_jump, |
| 479 | |
| 480 | /* Jump to following two-byte address, and push a dummy failure |
| 481 | point. This failure point will be thrown away if an attempt |
| 482 | is made to use it for a failure. A `+' construct makes this |
| 483 | before the first repeat. Also used as an intermediary kind |
| 484 | of jump when compiling an alternative. */ |
| 485 | dummy_failure_jump, |
| 486 | |
| 487 | /* Push a dummy failure point and continue. Used at the end of |
| 488 | alternatives. */ |
| 489 | push_dummy_failure, |
| 490 | |
| 491 | /* Followed by two-byte relative address and two-byte number n. |
| 492 | After matching N times, jump to the address upon failure. */ |
| 493 | succeed_n, |
| 494 | |
| 495 | /* Followed by two-byte relative address, and two-byte number n. |
| 496 | Jump to the address N times, then fail. */ |
| 497 | jump_n, |
| 498 | |
| 499 | /* Set the following two-byte relative address to the |
| 500 | subsequent two-byte number. The address *includes* the two |
| 501 | bytes of number. */ |
| 502 | set_number_at, |
| 503 | |
| 504 | wordchar, /* Matches any word-constituent character. */ |
| 505 | notwordchar, /* Matches any char that is not a word-constituent. */ |
| 506 | |
| 507 | wordbeg, /* Succeeds if at word beginning. */ |
| 508 | wordend, /* Succeeds if at word end. */ |
| 509 | |
| 510 | wordbound, /* Succeeds if at a word boundary. */ |
| 511 | notwordbound /* Succeeds if not at a word boundary. */ |
| 512 | |
| 513 | #ifdef emacs |
| 514 | ,before_dot, /* Succeeds if before point. */ |
| 515 | at_dot, /* Succeeds if at point. */ |
| 516 | after_dot, /* Succeeds if after point. */ |
| 517 | |
| 518 | /* Matches any character whose syntax is specified. Followed by |
| 519 | a byte which contains a syntax code, e.g., Sword. */ |
| 520 | syntaxspec, |
| 521 | |
| 522 | /* Matches any character whose syntax is not that specified. */ |
| 523 | notsyntaxspec |
| 524 | #endif /* emacs */ |
| 525 | } re_opcode_t; |
| 526 | |
| 527 | /* Common operations on the compiled pattern. */ |
| 528 | |
| 529 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ |
| 530 | |
| 531 | #define STORE_NUMBER(destination, number) \ |
| 532 | do { \ |
| 533 | (destination)[0] = (number) & 0377; \ |
| 534 | (destination)[1] = (number) >> 8; \ |
| 535 | } while (0) |
| 536 | |
| 537 | /* Same as STORE_NUMBER, except increment DESTINATION to |
| 538 | the byte after where the number is stored. Therefore, DESTINATION |
| 539 | must be an lvalue. */ |
| 540 | |
| 541 | #define STORE_NUMBER_AND_INCR(destination, number) \ |
| 542 | do { \ |
| 543 | STORE_NUMBER (destination, number); \ |
| 544 | (destination) += 2; \ |
| 545 | } while (0) |
| 546 | |
| 547 | /* Put into DESTINATION a number stored in two contiguous bytes starting |
| 548 | at SOURCE. */ |
| 549 | |
| 550 | #define EXTRACT_NUMBER(destination, source) \ |
| 551 | do { \ |
| 552 | (destination) = *(source) & 0377; \ |
| 553 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ |
| 554 | } while (0) |
| 555 | |
| 556 | #ifdef DEBUG |
| 557 | static void extract_number _RE_ARGS ((int *dest, unsigned char *source)); |
| 558 | static void |
| 559 | extract_number (dest, source) |
| 560 | int *dest; |
| 561 | unsigned char *source; |
| 562 | { |
| 563 | int temp = SIGN_EXTEND_CHAR (*(source + 1)); |
| 564 | *dest = *source & 0377; |
| 565 | *dest += temp << 8; |
| 566 | } |
| 567 | |
| 568 | # ifndef EXTRACT_MACROS /* To debug the macros. */ |
| 569 | # undef EXTRACT_NUMBER |
| 570 | # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) |
| 571 | # endif /* not EXTRACT_MACROS */ |
| 572 | |
| 573 | #endif /* DEBUG */ |
| 574 | |
| 575 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. |
| 576 | SOURCE must be an lvalue. */ |
| 577 | |
| 578 | #define EXTRACT_NUMBER_AND_INCR(destination, source) \ |
| 579 | do { \ |
| 580 | EXTRACT_NUMBER (destination, source); \ |
| 581 | (source) += 2; \ |
| 582 | } while (0) |
| 583 | |
| 584 | #ifdef DEBUG |
| 585 | static void extract_number_and_incr _RE_ARGS ((int *destination, |
| 586 | unsigned char **source)); |
| 587 | static void |
| 588 | extract_number_and_incr (destination, source) |
| 589 | int *destination; |
| 590 | unsigned char **source; |
| 591 | { |
| 592 | extract_number (destination, *source); |
| 593 | *source += 2; |
| 594 | } |
| 595 | |
| 596 | # ifndef EXTRACT_MACROS |
| 597 | # undef EXTRACT_NUMBER_AND_INCR |
| 598 | # define EXTRACT_NUMBER_AND_INCR(dest, src) \ |
| 599 | extract_number_and_incr (&dest, &src) |
| 600 | # endif /* not EXTRACT_MACROS */ |
| 601 | |
| 602 | #endif /* DEBUG */ |
| 603 | |
| 604 | /* If DEBUG is defined, Regex prints many voluminous messages about what |
| 605 | it is doing (if the variable `debug' is nonzero). If linked with the |
| 606 | main program in `iregex.c', you can enter patterns and strings |
| 607 | interactively. And if linked with the main program in `main.c' and |
| 608 | the other test files, you can run the already-written tests. */ |
| 609 | |
| 610 | #ifdef DEBUG |
| 611 | |
| 612 | /* We use standard I/O for debugging. */ |
| 613 | # include <stdio.h> |
| 614 | |
| 615 | /* It is useful to test things that ``must'' be true when debugging. */ |
| 616 | # include <assert.h> |
| 617 | |
| 618 | static int debug; |
| 619 | |
| 620 | # define DEBUG_STATEMENT(e) e |
| 621 | # define DEBUG_PRINT1(x) if (debug) printf (x) |
| 622 | # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) |
| 623 | # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) |
| 624 | # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) |
| 625 | # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
| 626 | if (debug) print_partial_compiled_pattern (s, e) |
| 627 | # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ |
| 628 | if (debug) print_double_string (w, s1, sz1, s2, sz2) |
| 629 | |
| 630 | |
| 631 | /* Print the fastmap in human-readable form. */ |
| 632 | |
| 633 | void |
| 634 | print_fastmap (fastmap) |
| 635 | char *fastmap; |
| 636 | { |
| 637 | unsigned was_a_range = 0; |
| 638 | unsigned i = 0; |
| 639 | |
| 640 | while (i < (1 << BYTEWIDTH)) |
| 641 | { |
| 642 | if (fastmap[i++]) |
| 643 | { |
| 644 | was_a_range = 0; |
| 645 | putchar (i - 1); |
| 646 | while (i < (1 << BYTEWIDTH) && fastmap[i]) |
| 647 | { |
| 648 | was_a_range = 1; |
| 649 | i++; |
| 650 | } |
| 651 | if (was_a_range) |
| 652 | { |
| 653 | printf ("-"); |
| 654 | putchar (i - 1); |
| 655 | } |
| 656 | } |
| 657 | } |
| 658 | putchar ('\n'); |
| 659 | } |
| 660 | |
| 661 | |
| 662 | /* Print a compiled pattern string in human-readable form, starting at |
| 663 | the START pointer into it and ending just before the pointer END. */ |
| 664 | |
| 665 | void |
| 666 | print_partial_compiled_pattern (start, end) |
| 667 | unsigned char *start; |
| 668 | unsigned char *end; |
| 669 | { |
| 670 | int mcnt, mcnt2; |
| 671 | unsigned char *p1; |
| 672 | unsigned char *p = start; |
| 673 | unsigned char *pend = end; |
| 674 | |
| 675 | if (start == NULL) |
| 676 | { |
| 677 | printf ("(null)\n"); |
| 678 | return; |
| 679 | } |
| 680 | |
| 681 | /* Loop over pattern commands. */ |
| 682 | while (p < pend) |
| 683 | { |
| 684 | printf ("%d:\t", p - start); |
| 685 | |
| 686 | switch ((re_opcode_t) *p++) |
| 687 | { |
| 688 | case no_op: |
| 689 | printf ("/no_op"); |
| 690 | break; |
| 691 | |
| 692 | case exactn: |
| 693 | mcnt = *p++; |
| 694 | printf ("/exactn/%d", mcnt); |
| 695 | do |
| 696 | { |
| 697 | putchar ('/'); |
| 698 | putchar (*p++); |
| 699 | } |
| 700 | while (--mcnt); |
| 701 | break; |
| 702 | |
| 703 | case start_memory: |
| 704 | mcnt = *p++; |
| 705 | printf ("/start_memory/%d/%d", mcnt, *p++); |
| 706 | break; |
| 707 | |
| 708 | case stop_memory: |
| 709 | mcnt = *p++; |
| 710 | printf ("/stop_memory/%d/%d", mcnt, *p++); |
| 711 | break; |
| 712 | |
| 713 | case duplicate: |
| 714 | printf ("/duplicate/%d", *p++); |
| 715 | break; |
| 716 | |
| 717 | case anychar: |
| 718 | printf ("/anychar"); |
| 719 | break; |
| 720 | |
| 721 | case charset: |
| 722 | case charset_not: |
| 723 | { |
| 724 | register int c, last = -100; |
| 725 | register int in_range = 0; |
| 726 | |
| 727 | printf ("/charset [%s", |
| 728 | (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); |
| 729 | |
| 730 | assert (p + *p < pend); |
| 731 | |
| 732 | for (c = 0; c < 256; c++) |
| 733 | if (c / 8 < *p |
| 734 | && (p[1 + (c/8)] & (1 << (c % 8)))) |
| 735 | { |
| 736 | /* Are we starting a range? */ |
| 737 | if (last + 1 == c && ! in_range) |
| 738 | { |
| 739 | putchar ('-'); |
| 740 | in_range = 1; |
| 741 | } |
| 742 | /* Have we broken a range? */ |
| 743 | else if (last + 1 != c && in_range) |
| 744 | { |
| 745 | putchar (last); |
| 746 | in_range = 0; |
| 747 | } |
| 748 | |
| 749 | if (! in_range) |
| 750 | putchar (c); |
| 751 | |
| 752 | last = c; |
| 753 | } |
| 754 | |
| 755 | if (in_range) |
| 756 | putchar (last); |
| 757 | |
| 758 | putchar (']'); |
| 759 | |
| 760 | p += 1 + *p; |
| 761 | } |
| 762 | break; |
| 763 | |
| 764 | case begline: |
| 765 | printf ("/begline"); |
| 766 | break; |
| 767 | |
| 768 | case endline: |
| 769 | printf ("/endline"); |
| 770 | break; |
| 771 | |
| 772 | case on_failure_jump: |
| 773 | extract_number_and_incr (&mcnt, &p); |
| 774 | printf ("/on_failure_jump to %d", p + mcnt - start); |
| 775 | break; |
| 776 | |
| 777 | case on_failure_keep_string_jump: |
| 778 | extract_number_and_incr (&mcnt, &p); |
| 779 | printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); |
| 780 | break; |
| 781 | |
| 782 | case dummy_failure_jump: |
| 783 | extract_number_and_incr (&mcnt, &p); |
| 784 | printf ("/dummy_failure_jump to %d", p + mcnt - start); |
| 785 | break; |
| 786 | |
| 787 | case push_dummy_failure: |
| 788 | printf ("/push_dummy_failure"); |
| 789 | break; |
| 790 | |
| 791 | case maybe_pop_jump: |
| 792 | extract_number_and_incr (&mcnt, &p); |
| 793 | printf ("/maybe_pop_jump to %d", p + mcnt - start); |
| 794 | break; |
| 795 | |
| 796 | case pop_failure_jump: |
| 797 | extract_number_and_incr (&mcnt, &p); |
| 798 | printf ("/pop_failure_jump to %d", p + mcnt - start); |
| 799 | break; |
| 800 | |
| 801 | case jump_past_alt: |
| 802 | extract_number_and_incr (&mcnt, &p); |
| 803 | printf ("/jump_past_alt to %d", p + mcnt - start); |
| 804 | break; |
| 805 | |
| 806 | case jump: |
| 807 | extract_number_and_incr (&mcnt, &p); |
| 808 | printf ("/jump to %d", p + mcnt - start); |
| 809 | break; |
| 810 | |
| 811 | case succeed_n: |
| 812 | extract_number_and_incr (&mcnt, &p); |
| 813 | p1 = p + mcnt; |
| 814 | extract_number_and_incr (&mcnt2, &p); |
| 815 | printf ("/succeed_n to %d, %d times", p1 - start, mcnt2); |
| 816 | break; |
| 817 | |
| 818 | case jump_n: |
| 819 | extract_number_and_incr (&mcnt, &p); |
| 820 | p1 = p + mcnt; |
| 821 | extract_number_and_incr (&mcnt2, &p); |
| 822 | printf ("/jump_n to %d, %d times", p1 - start, mcnt2); |
| 823 | break; |
| 824 | |
| 825 | case set_number_at: |
| 826 | extract_number_and_incr (&mcnt, &p); |
| 827 | p1 = p + mcnt; |
| 828 | extract_number_and_incr (&mcnt2, &p); |
| 829 | printf ("/set_number_at location %d to %d", p1 - start, mcnt2); |
| 830 | break; |
| 831 | |
| 832 | case wordbound: |
| 833 | printf ("/wordbound"); |
| 834 | break; |
| 835 | |
| 836 | case notwordbound: |
| 837 | printf ("/notwordbound"); |
| 838 | break; |
| 839 | |
| 840 | case wordbeg: |
| 841 | printf ("/wordbeg"); |
| 842 | break; |
| 843 | |
| 844 | case wordend: |
| 845 | printf ("/wordend"); |
| 846 | |
| 847 | # ifdef emacs |
| 848 | case before_dot: |
| 849 | printf ("/before_dot"); |
| 850 | break; |
| 851 | |
| 852 | case at_dot: |
| 853 | printf ("/at_dot"); |
| 854 | break; |
| 855 | |
| 856 | case after_dot: |
| 857 | printf ("/after_dot"); |
| 858 | break; |
| 859 | |
| 860 | case syntaxspec: |
| 861 | printf ("/syntaxspec"); |
| 862 | mcnt = *p++; |
| 863 | printf ("/%d", mcnt); |
| 864 | break; |
| 865 | |
| 866 | case notsyntaxspec: |
| 867 | printf ("/notsyntaxspec"); |
| 868 | mcnt = *p++; |
| 869 | printf ("/%d", mcnt); |
| 870 | break; |
| 871 | # endif /* emacs */ |
| 872 | |
| 873 | case wordchar: |
| 874 | printf ("/wordchar"); |
| 875 | break; |
| 876 | |
| 877 | case notwordchar: |
| 878 | printf ("/notwordchar"); |
| 879 | break; |
| 880 | |
| 881 | case begbuf: |
| 882 | printf ("/begbuf"); |
| 883 | break; |
| 884 | |
| 885 | case endbuf: |
| 886 | printf ("/endbuf"); |
| 887 | break; |
| 888 | |
| 889 | default: |
| 890 | printf ("?%d", *(p-1)); |
| 891 | } |
| 892 | |
| 893 | putchar ('\n'); |
| 894 | } |
| 895 | |
| 896 | printf ("%d:\tend of pattern.\n", p - start); |
| 897 | } |
| 898 | |
| 899 | |
| 900 | void |
| 901 | print_compiled_pattern (bufp) |
| 902 | struct re_pattern_buffer *bufp; |
| 903 | { |
| 904 | unsigned char *buffer = bufp->buffer; |
| 905 | |
| 906 | print_partial_compiled_pattern (buffer, buffer + bufp->used); |
| 907 | printf ("%ld bytes used/%ld bytes allocated.\n", |
| 908 | bufp->used, bufp->allocated); |
| 909 | |
| 910 | if (bufp->fastmap_accurate && bufp->fastmap) |
| 911 | { |
| 912 | printf ("fastmap: "); |
| 913 | print_fastmap (bufp->fastmap); |
| 914 | } |
| 915 | |
| 916 | printf ("re_nsub: %d\t", bufp->re_nsub); |
| 917 | printf ("regs_alloc: %d\t", bufp->regs_allocated); |
| 918 | printf ("can_be_null: %d\t", bufp->can_be_null); |
| 919 | printf ("newline_anchor: %d\n", bufp->newline_anchor); |
| 920 | printf ("no_sub: %d\t", bufp->no_sub); |
| 921 | printf ("not_bol: %d\t", bufp->not_bol); |
| 922 | printf ("not_eol: %d\t", bufp->not_eol); |
| 923 | printf ("syntax: %lx\n", bufp->syntax); |
| 924 | /* Perhaps we should print the translate table? */ |
| 925 | } |
| 926 | |
| 927 | |
| 928 | void |
| 929 | print_double_string (where, string1, size1, string2, size2) |
| 930 | const char *where; |
| 931 | const char *string1; |
| 932 | const char *string2; |
| 933 | int size1; |
| 934 | int size2; |
| 935 | { |
| 936 | int this_char; |
| 937 | |
| 938 | if (where == NULL) |
| 939 | printf ("(null)"); |
| 940 | else |
| 941 | { |
| 942 | if (FIRST_STRING_P (where)) |
| 943 | { |
| 944 | for (this_char = where - string1; this_char < size1; this_char++) |
| 945 | putchar (string1[this_char]); |
| 946 | |
| 947 | where = string2; |
| 948 | } |
| 949 | |
| 950 | for (this_char = where - string2; this_char < size2; this_char++) |
| 951 | putchar (string2[this_char]); |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | void |
| 956 | printchar (c) |
| 957 | int c; |
| 958 | { |
| 959 | putc (c, stderr); |
| 960 | } |
| 961 | |
| 962 | #else /* not DEBUG */ |
| 963 | |
| 964 | # undef assert |
| 965 | # define assert(e) |
| 966 | |
| 967 | # define DEBUG_STATEMENT(e) |
| 968 | # define DEBUG_PRINT1(x) |
| 969 | # define DEBUG_PRINT2(x1, x2) |
| 970 | # define DEBUG_PRINT3(x1, x2, x3) |
| 971 | # define DEBUG_PRINT4(x1, x2, x3, x4) |
| 972 | # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) |
| 973 | # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) |
| 974 | |
| 975 | #endif /* not DEBUG */ |
| 976 | |
| 977 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can |
| 978 | also be assigned to arbitrarily: each pattern buffer stores its own |
| 979 | syntax, so it can be changed between regex compilations. */ |
| 980 | /* This has no initializer because initialized variables in Emacs |
| 981 | become read-only after dumping. */ |
| 982 | reg_syntax_t re_syntax_options; |
| 983 | |
| 984 | |
| 985 | /* Specify the precise syntax of regexps for compilation. This provides |
| 986 | for compatibility for various utilities which historically have |
| 987 | different, incompatible syntaxes. |
| 988 | |
| 989 | The argument SYNTAX is a bit mask comprised of the various bits |
| 990 | defined in regex.h. We return the old syntax. */ |
| 991 | |
| 992 | reg_syntax_t |
| 993 | re_set_syntax (syntax) |
| 994 | reg_syntax_t syntax; |
| 995 | { |
| 996 | reg_syntax_t ret = re_syntax_options; |
| 997 | |
| 998 | re_syntax_options = syntax; |
| 999 | #ifdef DEBUG |
| 1000 | if (syntax & RE_DEBUG) |
| 1001 | debug = 1; |
| 1002 | else if (debug) /* was on but now is not */ |
| 1003 | debug = 0; |
| 1004 | #endif /* DEBUG */ |
| 1005 | return ret; |
| 1006 | } |
| 1007 | #ifdef _LIBC |
| 1008 | weak_alias (__re_set_syntax, re_set_syntax) |
| 1009 | #endif |
| 1010 | |
| 1011 | /* This table gives an error message for each of the error codes listed |
| 1012 | in regex.h. Obviously the order here has to be same as there. |
| 1013 | POSIX doesn't require that we do anything for REG_NOERROR, |
| 1014 | but why not be nice? */ |
| 1015 | |
| 1016 | static const char re_error_msgid[] = |
| 1017 | { |
| 1018 | #define REG_NOERROR_IDX 0 |
| 1019 | gettext_noop ("Success") /* REG_NOERROR */ |
| 1020 | "\0" |
| 1021 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") |
| 1022 | gettext_noop ("No match") /* REG_NOMATCH */ |
| 1023 | "\0" |
| 1024 | #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") |
| 1025 | gettext_noop ("Invalid regular expression") /* REG_BADPAT */ |
| 1026 | "\0" |
| 1027 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") |
| 1028 | gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */ |
| 1029 | "\0" |
| 1030 | #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") |
| 1031 | gettext_noop ("Invalid character class name") /* REG_ECTYPE */ |
| 1032 | "\0" |
| 1033 | #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") |
| 1034 | gettext_noop ("Trailing backslash") /* REG_EESCAPE */ |
| 1035 | "\0" |
| 1036 | #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") |
| 1037 | gettext_noop ("Invalid back reference") /* REG_ESUBREG */ |
| 1038 | "\0" |
| 1039 | #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") |
| 1040 | gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ |
| 1041 | "\0" |
| 1042 | #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") |
| 1043 | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ |
| 1044 | "\0" |
| 1045 | #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") |
| 1046 | gettext_noop ("Unmatched \\{") /* REG_EBRACE */ |
| 1047 | "\0" |
| 1048 | #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") |
| 1049 | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ |
| 1050 | "\0" |
| 1051 | #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") |
| 1052 | gettext_noop ("Invalid range end") /* REG_ERANGE */ |
| 1053 | "\0" |
| 1054 | #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") |
| 1055 | gettext_noop ("Memory exhausted") /* REG_ESPACE */ |
| 1056 | "\0" |
| 1057 | #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") |
| 1058 | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ |
| 1059 | "\0" |
| 1060 | #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") |
| 1061 | gettext_noop ("Premature end of regular expression") /* REG_EEND */ |
| 1062 | "\0" |
| 1063 | #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") |
| 1064 | gettext_noop ("Regular expression too big") /* REG_ESIZE */ |
| 1065 | "\0" |
| 1066 | #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") |
| 1067 | gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ |
| 1068 | }; |
| 1069 | |
| 1070 | static const size_t re_error_msgid_idx[] = |
| 1071 | { |
| 1072 | REG_NOERROR_IDX, |
| 1073 | REG_NOMATCH_IDX, |
| 1074 | REG_BADPAT_IDX, |
| 1075 | REG_ECOLLATE_IDX, |
| 1076 | REG_ECTYPE_IDX, |
| 1077 | REG_EESCAPE_IDX, |
| 1078 | REG_ESUBREG_IDX, |
| 1079 | REG_EBRACK_IDX, |
| 1080 | REG_EPAREN_IDX, |
| 1081 | REG_EBRACE_IDX, |
| 1082 | REG_BADBR_IDX, |
| 1083 | REG_ERANGE_IDX, |
| 1084 | REG_ESPACE_IDX, |
| 1085 | REG_BADRPT_IDX, |
| 1086 | REG_EEND_IDX, |
| 1087 | REG_ESIZE_IDX, |
| 1088 | REG_ERPAREN_IDX |
| 1089 | }; |
| 1090 | |
| 1091 | /* Avoiding alloca during matching, to placate r_alloc. */ |
| 1092 | |
| 1093 | /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
| 1094 | searching and matching functions should not call alloca. On some |
| 1095 | systems, alloca is implemented in terms of malloc, and if we're |
| 1096 | using the relocating allocator routines, then malloc could cause a |
| 1097 | relocation, which might (if the strings being searched are in the |
| 1098 | ralloc heap) shift the data out from underneath the regexp |
| 1099 | routines. |
| 1100 | |
| 1101 | Here's another reason to avoid allocation: Emacs |
| 1102 | processes input from X in a signal handler; processing X input may |
| 1103 | call malloc; if input arrives while a matching routine is calling |
| 1104 | malloc, then we're scrod. But Emacs can't just block input while |
| 1105 | calling matching routines; then we don't notice interrupts when |
| 1106 | they come in. So, Emacs blocks input around all regexp calls |
| 1107 | except the matching calls, which it leaves unprotected, in the |
| 1108 | faith that they will not malloc. */ |
| 1109 | |
| 1110 | /* Normally, this is fine. */ |
| 1111 | #define MATCH_MAY_ALLOCATE |
| 1112 | |
| 1113 | /* When using GNU C, we are not REALLY using the C alloca, no matter |
| 1114 | what config.h may say. So don't take precautions for it. */ |
| 1115 | #ifdef __GNUC__ |
| 1116 | # undef C_ALLOCA |
| 1117 | #endif |
| 1118 | |
| 1119 | /* The match routines may not allocate if (1) they would do it with malloc |
| 1120 | and (2) it's not safe for them to use malloc. |
| 1121 | Note that if REL_ALLOC is defined, matching would not use malloc for the |
| 1122 | failure stack, but we would still use it for the register vectors; |
| 1123 | so REL_ALLOC should not affect this. */ |
| 1124 | #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs |
| 1125 | # undef MATCH_MAY_ALLOCATE |
| 1126 | #endif |
| 1127 | |
| 1128 | |
| 1129 | /* Failure stack declarations and macros; both re_compile_fastmap and |
| 1130 | re_match_2 use a failure stack. These have to be macros because of |
| 1131 | REGEX_ALLOCATE_STACK. */ |
| 1132 | |
| 1133 | |
| 1134 | /* Number of failure points for which to initially allocate space |
| 1135 | when matching. If this number is exceeded, we allocate more |
| 1136 | space, so it is not a hard limit. */ |
| 1137 | #ifndef INIT_FAILURE_ALLOC |
| 1138 | # define INIT_FAILURE_ALLOC 5 |
| 1139 | #endif |
| 1140 | |
| 1141 | /* Roughly the maximum number of failure points on the stack. Would be |
| 1142 | exactly that if always used MAX_FAILURE_ITEMS items each time we failed. |
| 1143 | This is a variable only so users of regex can assign to it; we never |
| 1144 | change it ourselves. */ |
| 1145 | |
| 1146 | #ifdef INT_IS_16BIT |
| 1147 | |
| 1148 | # if defined MATCH_MAY_ALLOCATE |
| 1149 | /* 4400 was enough to cause a crash on Alpha OSF/1, |
| 1150 | whose default stack limit is 2mb. */ |
| 1151 | long int re_max_failures = 4000; |
| 1152 | # else |
| 1153 | long int re_max_failures = 2000; |
| 1154 | # endif |
| 1155 | |
| 1156 | union fail_stack_elt |
| 1157 | { |
| 1158 | unsigned char *pointer; |
| 1159 | long int integer; |
| 1160 | }; |
| 1161 | |
| 1162 | typedef union fail_stack_elt fail_stack_elt_t; |
| 1163 | |
| 1164 | typedef struct |
| 1165 | { |
| 1166 | fail_stack_elt_t *stack; |
| 1167 | unsigned long int size; |
| 1168 | unsigned long int avail; /* Offset of next open position. */ |
| 1169 | } fail_stack_type; |
| 1170 | |
| 1171 | #else /* not INT_IS_16BIT */ |
| 1172 | |
| 1173 | # if defined MATCH_MAY_ALLOCATE |
| 1174 | /* 4400 was enough to cause a crash on Alpha OSF/1, |
| 1175 | whose default stack limit is 2mb. */ |
| 1176 | int re_max_failures = 20000; |
| 1177 | # else |
| 1178 | int re_max_failures = 2000; |
| 1179 | # endif |
| 1180 | |
| 1181 | union fail_stack_elt |
| 1182 | { |
| 1183 | unsigned char *pointer; |
| 1184 | int integer; |
| 1185 | }; |
| 1186 | |
| 1187 | typedef union fail_stack_elt fail_stack_elt_t; |
| 1188 | |
| 1189 | typedef struct |
| 1190 | { |
| 1191 | fail_stack_elt_t *stack; |
| 1192 | unsigned size; |
| 1193 | unsigned avail; /* Offset of next open position. */ |
| 1194 | } fail_stack_type; |
| 1195 | |
| 1196 | #endif /* INT_IS_16BIT */ |
| 1197 | |
| 1198 | #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) |
| 1199 | #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) |
| 1200 | #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) |
| 1201 | |
| 1202 | |
| 1203 | /* Define macros to initialize and free the failure stack. |
| 1204 | Do `return -2' if the alloc fails. */ |
| 1205 | |
| 1206 | #ifdef MATCH_MAY_ALLOCATE |
| 1207 | # define INIT_FAIL_STACK() \ |
| 1208 | do { \ |
| 1209 | fail_stack.stack = (fail_stack_elt_t *) \ |
| 1210 | REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ |
| 1211 | \ |
| 1212 | if (fail_stack.stack == NULL) \ |
| 1213 | return -2; \ |
| 1214 | \ |
| 1215 | fail_stack.size = INIT_FAILURE_ALLOC; \ |
| 1216 | fail_stack.avail = 0; \ |
| 1217 | } while (0) |
| 1218 | |
| 1219 | # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) |
| 1220 | #else |
| 1221 | # define INIT_FAIL_STACK() \ |
| 1222 | do { \ |
| 1223 | fail_stack.avail = 0; \ |
| 1224 | } while (0) |
| 1225 | |
| 1226 | # define RESET_FAIL_STACK() |
| 1227 | #endif |
| 1228 | |
| 1229 | |
| 1230 | /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. |
| 1231 | |
| 1232 | Return 1 if succeeds, and 0 if either ran out of memory |
| 1233 | allocating space for it or it was already too large. |
| 1234 | |
| 1235 | REGEX_REALLOCATE_STACK requires `destination' be declared. */ |
| 1236 | |
| 1237 | #define DOUBLE_FAIL_STACK(fail_stack) \ |
| 1238 | ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \ |
| 1239 | ? 0 \ |
| 1240 | : ((fail_stack).stack = (fail_stack_elt_t *) \ |
| 1241 | REGEX_REALLOCATE_STACK ((fail_stack).stack, \ |
| 1242 | (fail_stack).size * sizeof (fail_stack_elt_t), \ |
| 1243 | ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ |
| 1244 | \ |
| 1245 | (fail_stack).stack == NULL \ |
| 1246 | ? 0 \ |
| 1247 | : ((fail_stack).size <<= 1, \ |
| 1248 | 1))) |
| 1249 | |
| 1250 | |
| 1251 | /* Push pointer POINTER on FAIL_STACK. |
| 1252 | Return 1 if was able to do so and 0 if ran out of memory allocating |
| 1253 | space to do so. */ |
| 1254 | #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ |
| 1255 | ((FAIL_STACK_FULL () \ |
| 1256 | && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ |
| 1257 | ? 0 \ |
| 1258 | : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ |
| 1259 | 1)) |
| 1260 | |
| 1261 | /* Push a pointer value onto the failure stack. |
| 1262 | Assumes the variable `fail_stack'. Probably should only |
| 1263 | be called from within `PUSH_FAILURE_POINT'. */ |
| 1264 | #define PUSH_FAILURE_POINTER(item) \ |
| 1265 | fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) |
| 1266 | |
| 1267 | /* This pushes an integer-valued item onto the failure stack. |
| 1268 | Assumes the variable `fail_stack'. Probably should only |
| 1269 | be called from within `PUSH_FAILURE_POINT'. */ |
| 1270 | #define PUSH_FAILURE_INT(item) \ |
| 1271 | fail_stack.stack[fail_stack.avail++].integer = (item) |
| 1272 | |
| 1273 | /* Push a fail_stack_elt_t value onto the failure stack. |
| 1274 | Assumes the variable `fail_stack'. Probably should only |
| 1275 | be called from within `PUSH_FAILURE_POINT'. */ |
| 1276 | #define PUSH_FAILURE_ELT(item) \ |
| 1277 | fail_stack.stack[fail_stack.avail++] = (item) |
| 1278 | |
| 1279 | /* These three POP... operations complement the three PUSH... operations. |
| 1280 | All assume that `fail_stack' is nonempty. */ |
| 1281 | #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer |
| 1282 | #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer |
| 1283 | #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] |
| 1284 | |
| 1285 | /* Used to omit pushing failure point id's when we're not debugging. */ |
| 1286 | #ifdef DEBUG |
| 1287 | # define DEBUG_PUSH PUSH_FAILURE_INT |
| 1288 | # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () |
| 1289 | #else |
| 1290 | # define DEBUG_PUSH(item) |
| 1291 | # define DEBUG_POP(item_addr) |
| 1292 | #endif |
| 1293 | |
| 1294 | |
| 1295 | /* Push the information about the state we will need |
| 1296 | if we ever fail back to it. |
| 1297 | |
| 1298 | Requires variables fail_stack, regstart, regend, reg_info, and |
| 1299 | num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination' |
| 1300 | be declared. |
| 1301 | |
| 1302 | Does `return FAILURE_CODE' if runs out of memory. */ |
| 1303 | |
| 1304 | #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ |
| 1305 | do { \ |
| 1306 | char *destination; \ |
| 1307 | /* Must be int, so when we don't save any registers, the arithmetic \ |
| 1308 | of 0 + -1 isn't done as unsigned. */ \ |
| 1309 | /* Can't be int, since there is not a shred of a guarantee that int \ |
| 1310 | is wide enough to hold a value of something to which pointer can \ |
| 1311 | be assigned */ \ |
| 1312 | active_reg_t this_reg; \ |
| 1313 | \ |
| 1314 | DEBUG_STATEMENT (failure_id++); \ |
| 1315 | DEBUG_STATEMENT (nfailure_points_pushed++); \ |
| 1316 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ |
| 1317 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ |
| 1318 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ |
| 1319 | \ |
| 1320 | DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \ |
| 1321 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ |
| 1322 | \ |
| 1323 | /* Ensure we have enough space allocated for what we will push. */ \ |
| 1324 | while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ |
| 1325 | { \ |
| 1326 | if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
| 1327 | return failure_code; \ |
| 1328 | \ |
| 1329 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ |
| 1330 | (fail_stack).size); \ |
| 1331 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ |
| 1332 | } \ |
| 1333 | \ |
| 1334 | /* Push the info, starting with the registers. */ \ |
| 1335 | DEBUG_PRINT1 ("\n"); \ |
| 1336 | \ |
| 1337 | if (1) \ |
| 1338 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ |
| 1339 | this_reg++) \ |
| 1340 | { \ |
| 1341 | DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \ |
| 1342 | DEBUG_STATEMENT (num_regs_pushed++); \ |
| 1343 | \ |
| 1344 | DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ |
| 1345 | PUSH_FAILURE_POINTER (regstart[this_reg]); \ |
| 1346 | \ |
| 1347 | DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ |
| 1348 | PUSH_FAILURE_POINTER (regend[this_reg]); \ |
| 1349 | \ |
| 1350 | DEBUG_PRINT2 (" info: %p\n ", \ |
| 1351 | reg_info[this_reg].word.pointer); \ |
| 1352 | DEBUG_PRINT2 (" match_null=%d", \ |
| 1353 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ |
| 1354 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ |
| 1355 | DEBUG_PRINT2 (" matched_something=%d", \ |
| 1356 | MATCHED_SOMETHING (reg_info[this_reg])); \ |
| 1357 | DEBUG_PRINT2 (" ever_matched=%d", \ |
| 1358 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ |
| 1359 | DEBUG_PRINT1 ("\n"); \ |
| 1360 | PUSH_FAILURE_ELT (reg_info[this_reg].word); \ |
| 1361 | } \ |
| 1362 | \ |
| 1363 | DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\ |
| 1364 | PUSH_FAILURE_INT (lowest_active_reg); \ |
| 1365 | \ |
| 1366 | DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\ |
| 1367 | PUSH_FAILURE_INT (highest_active_reg); \ |
| 1368 | \ |
| 1369 | DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \ |
| 1370 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ |
| 1371 | PUSH_FAILURE_POINTER (pattern_place); \ |
| 1372 | \ |
| 1373 | DEBUG_PRINT2 (" Pushing string %p: `", string_place); \ |
| 1374 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ |
| 1375 | size2); \ |
| 1376 | DEBUG_PRINT1 ("'\n"); \ |
| 1377 | PUSH_FAILURE_POINTER (string_place); \ |
| 1378 | \ |
| 1379 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
| 1380 | DEBUG_PUSH (failure_id); \ |
| 1381 | } while (0) |
| 1382 | |
| 1383 | /* This is the number of items that are pushed and popped on the stack |
| 1384 | for each register. */ |
| 1385 | #define NUM_REG_ITEMS 3 |
| 1386 | |
| 1387 | /* Individual items aside from the registers. */ |
| 1388 | #ifdef DEBUG |
| 1389 | # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ |
| 1390 | #else |
| 1391 | # define NUM_NONREG_ITEMS 4 |
| 1392 | #endif |
| 1393 | |
| 1394 | /* We push at most this many items on the stack. */ |
| 1395 | /* We used to use (num_regs - 1), which is the number of registers |
| 1396 | this regexp will save; but that was changed to 5 |
| 1397 | to avoid stack overflow for a regexp with lots of parens. */ |
| 1398 | #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) |
| 1399 | |
| 1400 | /* We actually push this many items. */ |
| 1401 | #define NUM_FAILURE_ITEMS \ |
| 1402 | (((0 \ |
| 1403 | ? 0 : highest_active_reg - lowest_active_reg + 1) \ |
| 1404 | * NUM_REG_ITEMS) \ |
| 1405 | + NUM_NONREG_ITEMS) |
| 1406 | |
| 1407 | /* How many items can still be added to the stack without overflowing it. */ |
| 1408 | #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) |
| 1409 | |
| 1410 | |
| 1411 | /* Pops what PUSH_FAIL_STACK pushes. |
| 1412 | |
| 1413 | We restore into the parameters, all of which should be lvalues: |
| 1414 | STR -- the saved data position. |
| 1415 | PAT -- the saved pattern position. |
| 1416 | LOW_REG, HIGH_REG -- the highest and lowest active registers. |
| 1417 | REGSTART, REGEND -- arrays of string positions. |
| 1418 | REG_INFO -- array of information about each subexpression. |
| 1419 | |
| 1420 | Also assumes the variables `fail_stack' and (if debugging), `bufp', |
| 1421 | `pend', `string1', `size1', `string2', and `size2'. */ |
| 1422 | |
| 1423 | #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ |
| 1424 | { \ |
| 1425 | DEBUG_STATEMENT (unsigned failure_id;) \ |
| 1426 | active_reg_t this_reg; \ |
| 1427 | const unsigned char *string_temp; \ |
| 1428 | \ |
| 1429 | assert (!FAIL_STACK_EMPTY ()); \ |
| 1430 | \ |
| 1431 | /* Remove failure points and point to how many regs pushed. */ \ |
| 1432 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ |
| 1433 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ |
| 1434 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ |
| 1435 | \ |
| 1436 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ |
| 1437 | \ |
| 1438 | DEBUG_POP (&failure_id); \ |
| 1439 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ |
| 1440 | \ |
| 1441 | /* If the saved string location is NULL, it came from an \ |
| 1442 | on_failure_keep_string_jump opcode, and we want to throw away the \ |
| 1443 | saved NULL, thus retaining our current position in the string. */ \ |
| 1444 | string_temp = POP_FAILURE_POINTER (); \ |
| 1445 | if (string_temp != NULL) \ |
| 1446 | str = (const char *) string_temp; \ |
| 1447 | \ |
| 1448 | DEBUG_PRINT2 (" Popping string %p: `", str); \ |
| 1449 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ |
| 1450 | DEBUG_PRINT1 ("'\n"); \ |
| 1451 | \ |
| 1452 | pat = (unsigned char *) POP_FAILURE_POINTER (); \ |
| 1453 | DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \ |
| 1454 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ |
| 1455 | \ |
| 1456 | /* Restore register info. */ \ |
| 1457 | high_reg = (active_reg_t) POP_FAILURE_INT (); \ |
| 1458 | DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \ |
| 1459 | \ |
| 1460 | low_reg = (active_reg_t) POP_FAILURE_INT (); \ |
| 1461 | DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \ |
| 1462 | \ |
| 1463 | if (1) \ |
| 1464 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ |
| 1465 | { \ |
| 1466 | DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \ |
| 1467 | \ |
| 1468 | reg_info[this_reg].word = POP_FAILURE_ELT (); \ |
| 1469 | DEBUG_PRINT2 (" info: %p\n", \ |
| 1470 | reg_info[this_reg].word.pointer); \ |
| 1471 | \ |
| 1472 | regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
| 1473 | DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ |
| 1474 | \ |
| 1475 | regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
| 1476 | DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ |
| 1477 | } \ |
| 1478 | else \ |
| 1479 | { \ |
| 1480 | for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ |
| 1481 | { \ |
| 1482 | reg_info[this_reg].word.integer = 0; \ |
| 1483 | regend[this_reg] = 0; \ |
| 1484 | regstart[this_reg] = 0; \ |
| 1485 | } \ |
| 1486 | highest_active_reg = high_reg; \ |
| 1487 | } \ |
| 1488 | \ |
| 1489 | set_regs_matched_done = 0; \ |
| 1490 | DEBUG_STATEMENT (nfailure_points_popped++); \ |
| 1491 | } /* POP_FAILURE_POINT */ |
| 1492 | |
| 1493 | |
| 1494 | |
| 1495 | /* Structure for per-register (a.k.a. per-group) information. |
| 1496 | Other register information, such as the |
| 1497 | starting and ending positions (which are addresses), and the list of |
| 1498 | inner groups (which is a bits list) are maintained in separate |
| 1499 | variables. |
| 1500 | |
| 1501 | We are making a (strictly speaking) nonportable assumption here: that |
| 1502 | the compiler will pack our bit fields into something that fits into |
| 1503 | the type of `word', i.e., is something that fits into one item on the |
| 1504 | failure stack. */ |
| 1505 | |
| 1506 | |
| 1507 | /* Declarations and macros for re_match_2. */ |
| 1508 | |
| 1509 | typedef union |
| 1510 | { |
| 1511 | fail_stack_elt_t word; |
| 1512 | struct |
| 1513 | { |
| 1514 | /* This field is one if this group can match the empty string, |
| 1515 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ |
| 1516 | #define MATCH_NULL_UNSET_VALUE 3 |
| 1517 | unsigned match_null_string_p : 2; |
| 1518 | unsigned is_active : 1; |
| 1519 | unsigned matched_something : 1; |
| 1520 | unsigned ever_matched_something : 1; |
| 1521 | } bits; |
| 1522 | } register_info_type; |
| 1523 | |
| 1524 | #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) |
| 1525 | #define IS_ACTIVE(R) ((R).bits.is_active) |
| 1526 | #define MATCHED_SOMETHING(R) ((R).bits.matched_something) |
| 1527 | #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) |
| 1528 | |
| 1529 | |
| 1530 | /* Call this when have matched a real character; it sets `matched' flags |
| 1531 | for the subexpressions which we are currently inside. Also records |
| 1532 | that those subexprs have matched. */ |
| 1533 | #define SET_REGS_MATCHED() \ |
| 1534 | do \ |
| 1535 | { \ |
| 1536 | if (!set_regs_matched_done) \ |
| 1537 | { \ |
| 1538 | active_reg_t r; \ |
| 1539 | set_regs_matched_done = 1; \ |
| 1540 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \ |
| 1541 | { \ |
| 1542 | MATCHED_SOMETHING (reg_info[r]) \ |
| 1543 | = EVER_MATCHED_SOMETHING (reg_info[r]) \ |
| 1544 | = 1; \ |
| 1545 | } \ |
| 1546 | } \ |
| 1547 | } \ |
| 1548 | while (0) |
| 1549 | |
| 1550 | /* Registers are set to a sentinel when they haven't yet matched. */ |
| 1551 | static char reg_unset_dummy; |
| 1552 | #define REG_UNSET_VALUE (®_unset_dummy) |
| 1553 | #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) |
| 1554 | |
| 1555 | /* Subroutine declarations and macros for regex_compile. */ |
| 1556 | |
| 1557 | static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size, |
| 1558 | reg_syntax_t syntax, |
| 1559 | struct re_pattern_buffer *bufp)); |
| 1560 | static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg)); |
| 1561 | static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc, |
| 1562 | int arg1, int arg2)); |
| 1563 | static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, |
| 1564 | int arg, unsigned char *end)); |
| 1565 | static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc, |
| 1566 | int arg1, int arg2, unsigned char *end)); |
| 1567 | static boolean at_begline_loc_p _RE_ARGS ((const char *pattern, const char *p, |
| 1568 | reg_syntax_t syntax)); |
| 1569 | static boolean at_endline_loc_p _RE_ARGS ((const char *p, const char *pend, |
| 1570 | reg_syntax_t syntax)); |
| 1571 | static reg_errcode_t compile_range _RE_ARGS ((const char **p_ptr, |
| 1572 | const char *pend, |
| 1573 | char *translate, |
| 1574 | reg_syntax_t syntax, |
| 1575 | unsigned char *b)); |
| 1576 | |
| 1577 | /* Fetch the next character in the uncompiled pattern---translating it |
| 1578 | if necessary. Also cast from a signed character in the constant |
| 1579 | string passed to us by the user to an unsigned char that we can use |
| 1580 | as an array index (in, e.g., `translate'). */ |
| 1581 | #ifndef PATFETCH |
| 1582 | # define PATFETCH(c) \ |
| 1583 | do {if (p == pend) return REG_EEND; \ |
| 1584 | c = (unsigned char) *p++; \ |
| 1585 | if (translate) c = (unsigned char) translate[c]; \ |
| 1586 | } while (0) |
| 1587 | #endif |
| 1588 | |
| 1589 | /* Fetch the next character in the uncompiled pattern, with no |
| 1590 | translation. */ |
| 1591 | #define PATFETCH_RAW(c) \ |
| 1592 | do {if (p == pend) return REG_EEND; \ |
| 1593 | c = (unsigned char) *p++; \ |
| 1594 | } while (0) |
| 1595 | |
| 1596 | /* Go backwards one character in the pattern. */ |
| 1597 | #define PATUNFETCH p-- |
| 1598 | |
| 1599 | |
| 1600 | /* If `translate' is non-null, return translate[D], else just D. We |
| 1601 | cast the subscript to translate because some data is declared as |
| 1602 | `char *', to avoid warnings when a string constant is passed. But |
| 1603 | when we use a character as a subscript we must make it unsigned. */ |
| 1604 | #ifndef TRANSLATE |
| 1605 | # define TRANSLATE(d) \ |
| 1606 | (translate ? (char) translate[(unsigned char) (d)] : (d)) |
| 1607 | #endif |
| 1608 | |
| 1609 | |
| 1610 | /* Macros for outputting the compiled pattern into `buffer'. */ |
| 1611 | |
| 1612 | /* If the buffer isn't allocated when it comes in, use this. */ |
| 1613 | #define INIT_BUF_SIZE 32 |
| 1614 | |
| 1615 | /* Make sure we have at least N more bytes of space in buffer. */ |
| 1616 | #define GET_BUFFER_SPACE(n) \ |
| 1617 | while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \ |
| 1618 | EXTEND_BUFFER () |
| 1619 | |
| 1620 | /* Make sure we have one more byte of buffer space and then add C to it. */ |
| 1621 | #define BUF_PUSH(c) \ |
| 1622 | do { \ |
| 1623 | GET_BUFFER_SPACE (1); \ |
| 1624 | *b++ = (unsigned char) (c); \ |
| 1625 | } while (0) |
| 1626 | |
| 1627 | |
| 1628 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ |
| 1629 | #define BUF_PUSH_2(c1, c2) \ |
| 1630 | do { \ |
| 1631 | GET_BUFFER_SPACE (2); \ |
| 1632 | *b++ = (unsigned char) (c1); \ |
| 1633 | *b++ = (unsigned char) (c2); \ |
| 1634 | } while (0) |
| 1635 | |
| 1636 | |
| 1637 | /* As with BUF_PUSH_2, except for three bytes. */ |
| 1638 | #define BUF_PUSH_3(c1, c2, c3) \ |
| 1639 | do { \ |
| 1640 | GET_BUFFER_SPACE (3); \ |
| 1641 | *b++ = (unsigned char) (c1); \ |
| 1642 | *b++ = (unsigned char) (c2); \ |
| 1643 | *b++ = (unsigned char) (c3); \ |
| 1644 | } while (0) |
| 1645 | |
| 1646 | |
| 1647 | /* Store a jump with opcode OP at LOC to location TO. We store a |
| 1648 | relative address offset by the three bytes the jump itself occupies. */ |
| 1649 | #define STORE_JUMP(op, loc, to) \ |
| 1650 | store_op1 (op, loc, (int) ((to) - (loc) - 3)) |
| 1651 | |
| 1652 | /* Likewise, for a two-argument jump. */ |
| 1653 | #define STORE_JUMP2(op, loc, to, arg) \ |
| 1654 | store_op2 (op, loc, (int) ((to) - (loc) - 3), arg) |
| 1655 | |
| 1656 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ |
| 1657 | #define INSERT_JUMP(op, loc, to) \ |
| 1658 | insert_op1 (op, loc, (int) ((to) - (loc) - 3), b) |
| 1659 | |
| 1660 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ |
| 1661 | #define INSERT_JUMP2(op, loc, to, arg) \ |
| 1662 | insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b) |
| 1663 | |
| 1664 | |
| 1665 | /* This is not an arbitrary limit: the arguments which represent offsets |
| 1666 | into the pattern are two bytes long. So if 2^16 bytes turns out to |
| 1667 | be too small, many things would have to change. */ |
| 1668 | /* Any other compiler which, like MSC, has allocation limit below 2^16 |
| 1669 | bytes will have to use approach similar to what was done below for |
| 1670 | MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up |
| 1671 | reallocating to 0 bytes. Such thing is not going to work too well. |
| 1672 | You have been warned!! */ |
| 1673 | #if defined _MSC_VER && !defined WIN32 |
| 1674 | /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. |
| 1675 | The REALLOC define eliminates a flurry of conversion warnings, |
| 1676 | but is not required. */ |
| 1677 | # define MAX_BUF_SIZE 65500L |
| 1678 | # define REALLOC(p,s) realloc ((p), (size_t) (s)) |
| 1679 | #else |
| 1680 | # define MAX_BUF_SIZE (1L << 16) |
| 1681 | # define REALLOC(p,s) realloc ((p), (s)) |
| 1682 | #endif |
| 1683 | |
| 1684 | /* Extend the buffer by twice its current size via realloc and |
| 1685 | reset the pointers that pointed into the old block to point to the |
| 1686 | correct places in the new one. If extending the buffer results in it |
| 1687 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */ |
| 1688 | #define EXTEND_BUFFER() \ |
| 1689 | do { \ |
| 1690 | unsigned char *old_buffer = bufp->buffer; \ |
| 1691 | if (bufp->allocated == MAX_BUF_SIZE) \ |
| 1692 | return REG_ESIZE; \ |
| 1693 | bufp->allocated <<= 1; \ |
| 1694 | if (bufp->allocated > MAX_BUF_SIZE) \ |
| 1695 | bufp->allocated = MAX_BUF_SIZE; \ |
| 1696 | bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\ |
| 1697 | if (bufp->buffer == NULL) \ |
| 1698 | return REG_ESPACE; \ |
| 1699 | /* If the buffer moved, move all the pointers into it. */ \ |
| 1700 | if (old_buffer != bufp->buffer) \ |
| 1701 | { \ |
| 1702 | b = (b - old_buffer) + bufp->buffer; \ |
| 1703 | begalt = (begalt - old_buffer) + bufp->buffer; \ |
| 1704 | if (fixup_alt_jump) \ |
| 1705 | fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ |
| 1706 | if (laststart) \ |
| 1707 | laststart = (laststart - old_buffer) + bufp->buffer; \ |
| 1708 | if (pending_exact) \ |
| 1709 | pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ |
| 1710 | } \ |
| 1711 | } while (0) |
| 1712 | |
| 1713 | |
| 1714 | /* Since we have one byte reserved for the register number argument to |
| 1715 | {start,stop}_memory, the maximum number of groups we can report |
| 1716 | things about is what fits in that byte. */ |
| 1717 | #define MAX_REGNUM 255 |
| 1718 | |
| 1719 | /* But patterns can have more than `MAX_REGNUM' registers. We just |
| 1720 | ignore the excess. */ |
| 1721 | typedef unsigned regnum_t; |
| 1722 | |
| 1723 | |
| 1724 | /* Macros for the compile stack. */ |
| 1725 | |
| 1726 | /* Since offsets can go either forwards or backwards, this type needs to |
| 1727 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ |
| 1728 | /* int may be not enough when sizeof(int) == 2. */ |
| 1729 | typedef long pattern_offset_t; |
| 1730 | |
| 1731 | typedef struct |
| 1732 | { |
| 1733 | pattern_offset_t begalt_offset; |
| 1734 | pattern_offset_t fixup_alt_jump; |
| 1735 | pattern_offset_t inner_group_offset; |
| 1736 | pattern_offset_t laststart_offset; |
| 1737 | regnum_t regnum; |
| 1738 | } compile_stack_elt_t; |
| 1739 | |
| 1740 | |
| 1741 | typedef struct |
| 1742 | { |
| 1743 | compile_stack_elt_t *stack; |
| 1744 | unsigned size; |
| 1745 | unsigned avail; /* Offset of next open position. */ |
| 1746 | } compile_stack_type; |
| 1747 | |
| 1748 | |
| 1749 | #define INIT_COMPILE_STACK_SIZE 32 |
| 1750 | |
| 1751 | #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) |
| 1752 | #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) |
| 1753 | |
| 1754 | /* The next available element. */ |
| 1755 | #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) |
| 1756 | |
| 1757 | |
| 1758 | /* Set the bit for character C in a list. */ |
| 1759 | #define SET_LIST_BIT(c) \ |
| 1760 | (b[((unsigned char) (c)) / BYTEWIDTH] \ |
| 1761 | |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
| 1762 | |
| 1763 | |
| 1764 | /* Get the next unsigned number in the uncompiled pattern. */ |
| 1765 | #define GET_UNSIGNED_NUMBER(num) \ |
| 1766 | { if (p != pend) \ |
| 1767 | { \ |
| 1768 | PATFETCH (c); \ |
| 1769 | while (ISDIGIT (c)) \ |
| 1770 | { \ |
| 1771 | if (num < 0) \ |
| 1772 | num = 0; \ |
| 1773 | num = num * 10 + c - '0'; \ |
| 1774 | if (p == pend) \ |
| 1775 | break; \ |
| 1776 | PATFETCH (c); \ |
| 1777 | } \ |
| 1778 | } \ |
| 1779 | } |
| 1780 | |
| 1781 | #if defined _LIBC || WIDE_CHAR_SUPPORT |
| 1782 | /* The GNU C library provides support for user-defined character classes |
| 1783 | and the functions from ISO C amendement 1. */ |
| 1784 | # ifdef CHARCLASS_NAME_MAX |
| 1785 | # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX |
| 1786 | # else |
| 1787 | /* This shouldn't happen but some implementation might still have this |
| 1788 | problem. Use a reasonable default value. */ |
| 1789 | # define CHAR_CLASS_MAX_LENGTH 256 |
| 1790 | # endif |
| 1791 | |
| 1792 | # ifdef _LIBC |
| 1793 | # define IS_CHAR_CLASS(string) __wctype (string) |
| 1794 | # else |
| 1795 | # define IS_CHAR_CLASS(string) wctype (string) |
| 1796 | # endif |
| 1797 | #else |
| 1798 | # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ |
| 1799 | |
| 1800 | # define IS_CHAR_CLASS(string) \ |
| 1801 | (STREQ (string, "alpha") || STREQ (string, "upper") \ |
| 1802 | || STREQ (string, "lower") || STREQ (string, "digit") \ |
| 1803 | || STREQ (string, "alnum") || STREQ (string, "xdigit") \ |
| 1804 | || STREQ (string, "space") || STREQ (string, "print") \ |
| 1805 | || STREQ (string, "punct") || STREQ (string, "graph") \ |
| 1806 | || STREQ (string, "cntrl") || STREQ (string, "blank")) |
| 1807 | #endif |
| 1808 | |
| 1809 | #ifndef MATCH_MAY_ALLOCATE |
| 1810 | |
| 1811 | /* If we cannot allocate large objects within re_match_2_internal, |
| 1812 | we make the fail stack and register vectors global. |
| 1813 | The fail stack, we grow to the maximum size when a regexp |
| 1814 | is compiled. |
| 1815 | The register vectors, we adjust in size each time we |
| 1816 | compile a regexp, according to the number of registers it needs. */ |
| 1817 | |
| 1818 | static fail_stack_type fail_stack; |
| 1819 | |
| 1820 | /* Size with which the following vectors are currently allocated. |
| 1821 | That is so we can make them bigger as needed, |
| 1822 | but never make them smaller. */ |
| 1823 | static int regs_allocated_size; |
| 1824 | |
| 1825 | static const char ** regstart, ** regend; |
| 1826 | static const char ** old_regstart, ** old_regend; |
| 1827 | static const char **best_regstart, **best_regend; |
| 1828 | static register_info_type *reg_info; |
| 1829 | static const char **reg_dummy; |
| 1830 | static register_info_type *reg_info_dummy; |
| 1831 | |
| 1832 | /* Make the register vectors big enough for NUM_REGS registers, |
| 1833 | but don't make them smaller. */ |
| 1834 | |
| 1835 | static |
| 1836 | regex_grow_registers (num_regs) |
| 1837 | int num_regs; |
| 1838 | { |
| 1839 | if (num_regs > regs_allocated_size) |
| 1840 | { |
| 1841 | RETALLOC_IF (regstart, num_regs, const char *); |
| 1842 | RETALLOC_IF (regend, num_regs, const char *); |
| 1843 | RETALLOC_IF (old_regstart, num_regs, const char *); |
| 1844 | RETALLOC_IF (old_regend, num_regs, const char *); |
| 1845 | RETALLOC_IF (best_regstart, num_regs, const char *); |
| 1846 | RETALLOC_IF (best_regend, num_regs, const char *); |
| 1847 | RETALLOC_IF (reg_info, num_regs, register_info_type); |
| 1848 | RETALLOC_IF (reg_dummy, num_regs, const char *); |
| 1849 | RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); |
| 1850 | |
| 1851 | regs_allocated_size = num_regs; |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | #endif /* not MATCH_MAY_ALLOCATE */ |
| 1856 | |
| 1857 | static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type |
| 1858 | compile_stack, |
| 1859 | regnum_t regnum)); |
| 1860 | |
| 1861 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. |
| 1862 | Returns one of error codes defined in `regex.h', or zero for success. |
| 1863 | |
| 1864 | Assumes the `allocated' (and perhaps `buffer') and `translate' |
| 1865 | fields are set in BUFP on entry. |
| 1866 | |
| 1867 | If it succeeds, results are put in BUFP (if it returns an error, the |
| 1868 | contents of BUFP are undefined): |
| 1869 | `buffer' is the compiled pattern; |
| 1870 | `syntax' is set to SYNTAX; |
| 1871 | `used' is set to the length of the compiled pattern; |
| 1872 | `fastmap_accurate' is zero; |
| 1873 | `re_nsub' is the number of subexpressions in PATTERN; |
| 1874 | `not_bol' and `not_eol' are zero; |
| 1875 | |
| 1876 | The `fastmap' and `newline_anchor' fields are neither |
| 1877 | examined nor set. */ |
| 1878 | |
| 1879 | /* Return, freeing storage we allocated. */ |
| 1880 | #define FREE_STACK_RETURN(value) \ |
| 1881 | return (free (compile_stack.stack), value) |
| 1882 | |
| 1883 | static reg_errcode_t |
| 1884 | regex_compile (pattern, size, syntax, bufp) |
| 1885 | const char *pattern; |
| 1886 | size_t size; |
| 1887 | reg_syntax_t syntax; |
| 1888 | struct re_pattern_buffer *bufp; |
| 1889 | { |
| 1890 | /* We fetch characters from PATTERN here. Even though PATTERN is |
| 1891 | `char *' (i.e., signed), we declare these variables as unsigned, so |
| 1892 | they can be reliably used as array indices. */ |
| 1893 | register unsigned char c, c1; |
| 1894 | |
| 1895 | /* A random temporary spot in PATTERN. */ |
| 1896 | const char *p1; |
| 1897 | |
| 1898 | /* Points to the end of the buffer, where we should append. */ |
| 1899 | register unsigned char *b; |
| 1900 | |
| 1901 | /* Keeps track of unclosed groups. */ |
| 1902 | compile_stack_type compile_stack; |
| 1903 | |
| 1904 | /* Points to the current (ending) position in the pattern. */ |
| 1905 | const char *p = pattern; |
| 1906 | const char *pend = pattern + size; |
| 1907 | |
| 1908 | /* How to translate the characters in the pattern. */ |
| 1909 | RE_TRANSLATE_TYPE translate = bufp->translate; |
| 1910 | |
| 1911 | /* Address of the count-byte of the most recently inserted `exactn' |
| 1912 | command. This makes it possible to tell if a new exact-match |
| 1913 | character can be added to that command or if the character requires |
| 1914 | a new `exactn' command. */ |
| 1915 | unsigned char *pending_exact = 0; |
| 1916 | |
| 1917 | /* Address of start of the most recently finished expression. |
| 1918 | This tells, e.g., postfix * where to find the start of its |
| 1919 | operand. Reset at the beginning of groups and alternatives. */ |
| 1920 | unsigned char *laststart = 0; |
| 1921 | |
| 1922 | /* Address of beginning of regexp, or inside of last group. */ |
| 1923 | unsigned char *begalt; |
| 1924 | |
| 1925 | /* Place in the uncompiled pattern (i.e., the {) to |
| 1926 | which to go back if the interval is invalid. */ |
| 1927 | const char *beg_interval; |
| 1928 | |
| 1929 | /* Address of the place where a forward jump should go to the end of |
| 1930 | the containing expression. Each alternative of an `or' -- except the |
| 1931 | last -- ends with a forward jump of this sort. */ |
| 1932 | unsigned char *fixup_alt_jump = 0; |
| 1933 | |
| 1934 | /* Counts open-groups as they are encountered. Remembered for the |
| 1935 | matching close-group on the compile stack, so the same register |
| 1936 | number is put in the stop_memory as the start_memory. */ |
| 1937 | regnum_t regnum = 0; |
| 1938 | |
| 1939 | #ifdef DEBUG |
| 1940 | DEBUG_PRINT1 ("\nCompiling pattern: "); |
| 1941 | if (debug) |
| 1942 | { |
| 1943 | unsigned debug_count; |
| 1944 | |
| 1945 | for (debug_count = 0; debug_count < size; debug_count++) |
| 1946 | putchar (pattern[debug_count]); |
| 1947 | putchar ('\n'); |
| 1948 | } |
| 1949 | #endif /* DEBUG */ |
| 1950 | |
| 1951 | /* Initialize the compile stack. */ |
| 1952 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); |
| 1953 | if (compile_stack.stack == NULL) |
| 1954 | return REG_ESPACE; |
| 1955 | |
| 1956 | compile_stack.size = INIT_COMPILE_STACK_SIZE; |
| 1957 | compile_stack.avail = 0; |
| 1958 | |
| 1959 | /* Initialize the pattern buffer. */ |
| 1960 | bufp->syntax = syntax; |
| 1961 | bufp->fastmap_accurate = 0; |
| 1962 | bufp->not_bol = bufp->not_eol = 0; |
| 1963 | |
| 1964 | /* Set `used' to zero, so that if we return an error, the pattern |
| 1965 | printer (for debugging) will think there's no pattern. We reset it |
| 1966 | at the end. */ |
| 1967 | bufp->used = 0; |
| 1968 | |
| 1969 | /* Always count groups, whether or not bufp->no_sub is set. */ |
| 1970 | bufp->re_nsub = 0; |
| 1971 | |
| 1972 | #if !defined emacs && !defined SYNTAX_TABLE |
| 1973 | /* Initialize the syntax table. */ |
| 1974 | init_syntax_once (); |
| 1975 | #endif |
| 1976 | |
| 1977 | if (bufp->allocated == 0) |
| 1978 | { |
| 1979 | if (bufp->buffer) |
| 1980 | { /* If zero allocated, but buffer is non-null, try to realloc |
| 1981 | enough space. This loses if buffer's address is bogus, but |
| 1982 | that is the user's responsibility. */ |
| 1983 | RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); |
| 1984 | } |
| 1985 | else |
| 1986 | { /* Caller did not allocate a buffer. Do it for them. */ |
| 1987 | bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); |
| 1988 | } |
| 1989 | if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); |
| 1990 | |
| 1991 | bufp->allocated = INIT_BUF_SIZE; |
| 1992 | } |
| 1993 | |
| 1994 | begalt = b = bufp->buffer; |
| 1995 | |
| 1996 | /* Loop through the uncompiled pattern until we're at the end. */ |
| 1997 | while (p != pend) |
| 1998 | { |
| 1999 | PATFETCH (c); |
| 2000 | |
| 2001 | switch (c) |
| 2002 | { |
| 2003 | case '^': |
| 2004 | { |
| 2005 | if ( /* If at start of pattern, it's an operator. */ |
| 2006 | p == pattern + 1 |
| 2007 | /* If context independent, it's an operator. */ |
| 2008 | || syntax & RE_CONTEXT_INDEP_ANCHORS |
| 2009 | /* Otherwise, depends on what's come before. */ |
| 2010 | || at_begline_loc_p (pattern, p, syntax)) |
| 2011 | BUF_PUSH (begline); |
| 2012 | else |
| 2013 | goto normal_char; |
| 2014 | } |
| 2015 | break; |
| 2016 | |
| 2017 | |
| 2018 | case '$': |
| 2019 | { |
| 2020 | if ( /* If at end of pattern, it's an operator. */ |
| 2021 | p == pend |
| 2022 | /* If context independent, it's an operator. */ |
| 2023 | || syntax & RE_CONTEXT_INDEP_ANCHORS |
| 2024 | /* Otherwise, depends on what's next. */ |
| 2025 | || at_endline_loc_p (p, pend, syntax)) |
| 2026 | BUF_PUSH (endline); |
| 2027 | else |
| 2028 | goto normal_char; |
| 2029 | } |
| 2030 | break; |
| 2031 | |
| 2032 | |
| 2033 | case '+': |
| 2034 | case '?': |
| 2035 | if ((syntax & RE_BK_PLUS_QM) |
| 2036 | || (syntax & RE_LIMITED_OPS)) |
| 2037 | goto normal_char; |
| 2038 | handle_plus: |
| 2039 | case '*': |
| 2040 | /* If there is no previous pattern... */ |
| 2041 | if (!laststart) |
| 2042 | { |
| 2043 | if (syntax & RE_CONTEXT_INVALID_OPS) |
| 2044 | FREE_STACK_RETURN (REG_BADRPT); |
| 2045 | else if (!(syntax & RE_CONTEXT_INDEP_OPS)) |
| 2046 | goto normal_char; |
| 2047 | } |
| 2048 | |
| 2049 | { |
| 2050 | /* Are we optimizing this jump? */ |
| 2051 | boolean keep_string_p = false; |
| 2052 | |
| 2053 | /* 1 means zero (many) matches is allowed. */ |
| 2054 | char zero_times_ok = 0, many_times_ok = 0; |
| 2055 | |
| 2056 | /* If there is a sequence of repetition chars, collapse it |
| 2057 | down to just one (the right one). We can't combine |
| 2058 | interval operators with these because of, e.g., `a{2}*', |
| 2059 | which should only match an even number of `a's. */ |
| 2060 | |
| 2061 | for (;;) |
| 2062 | { |
| 2063 | zero_times_ok |= c != '+'; |
| 2064 | many_times_ok |= c != '?'; |
| 2065 | |
| 2066 | if (p == pend) |
| 2067 | break; |
| 2068 | |
| 2069 | PATFETCH (c); |
| 2070 | |
| 2071 | if (c == '*' |
| 2072 | || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) |
| 2073 | ; |
| 2074 | |
| 2075 | else if (syntax & RE_BK_PLUS_QM && c == '\\') |
| 2076 | { |
| 2077 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
| 2078 | |
| 2079 | PATFETCH (c1); |
| 2080 | if (!(c1 == '+' || c1 == '?')) |
| 2081 | { |
| 2082 | PATUNFETCH; |
| 2083 | PATUNFETCH; |
| 2084 | break; |
| 2085 | } |
| 2086 | |
| 2087 | c = c1; |
| 2088 | } |
| 2089 | else |
| 2090 | { |
| 2091 | PATUNFETCH; |
| 2092 | break; |
| 2093 | } |
| 2094 | |
| 2095 | /* If we get here, we found another repeat character. */ |
| 2096 | } |
| 2097 | |
| 2098 | /* Star, etc. applied to an empty pattern is equivalent |
| 2099 | to an empty pattern. */ |
| 2100 | if (!laststart) |
| 2101 | break; |
| 2102 | |
| 2103 | /* Now we know whether or not zero matches is allowed |
| 2104 | and also whether or not two or more matches is allowed. */ |
| 2105 | if (many_times_ok) |
| 2106 | { /* More than one repetition is allowed, so put in at the |
| 2107 | end a backward relative jump from `b' to before the next |
| 2108 | jump we're going to put in below (which jumps from |
| 2109 | laststart to after this jump). |
| 2110 | |
| 2111 | But if we are at the `*' in the exact sequence `.*\n', |
| 2112 | insert an unconditional jump backwards to the ., |
| 2113 | instead of the beginning of the loop. This way we only |
| 2114 | push a failure point once, instead of every time |
| 2115 | through the loop. */ |
| 2116 | assert (p - 1 > pattern); |
| 2117 | |
| 2118 | /* Allocate the space for the jump. */ |
| 2119 | GET_BUFFER_SPACE (3); |
| 2120 | |
| 2121 | /* We know we are not at the first character of the pattern, |
| 2122 | because laststart was nonzero. And we've already |
| 2123 | incremented `p', by the way, to be the character after |
| 2124 | the `*'. Do we have to do something analogous here |
| 2125 | for null bytes, because of RE_DOT_NOT_NULL? */ |
| 2126 | if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') |
| 2127 | && zero_times_ok |
| 2128 | && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') |
| 2129 | && !(syntax & RE_DOT_NEWLINE)) |
| 2130 | { /* We have .*\n. */ |
| 2131 | STORE_JUMP (jump, b, laststart); |
| 2132 | keep_string_p = true; |
| 2133 | } |
| 2134 | else |
| 2135 | /* Anything else. */ |
| 2136 | STORE_JUMP (maybe_pop_jump, b, laststart - 3); |
| 2137 | |
| 2138 | /* We've added more stuff to the buffer. */ |
| 2139 | b += 3; |
| 2140 | } |
| 2141 | |
| 2142 | /* On failure, jump from laststart to b + 3, which will be the |
| 2143 | end of the buffer after this jump is inserted. */ |
| 2144 | GET_BUFFER_SPACE (3); |
| 2145 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump |
| 2146 | : on_failure_jump, |
| 2147 | laststart, b + 3); |
| 2148 | pending_exact = 0; |
| 2149 | b += 3; |
| 2150 | |
| 2151 | if (!zero_times_ok) |
| 2152 | { |
| 2153 | /* At least one repetition is required, so insert a |
| 2154 | `dummy_failure_jump' before the initial |
| 2155 | `on_failure_jump' instruction of the loop. This |
| 2156 | effects a skip over that instruction the first time |
| 2157 | we hit that loop. */ |
| 2158 | GET_BUFFER_SPACE (3); |
| 2159 | INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); |
| 2160 | b += 3; |
| 2161 | } |
| 2162 | } |
| 2163 | break; |
| 2164 | |
| 2165 | |
| 2166 | case '.': |
| 2167 | laststart = b; |
| 2168 | BUF_PUSH (anychar); |
| 2169 | break; |
| 2170 | |
| 2171 | |
| 2172 | case '[': |
| 2173 | { |
| 2174 | boolean had_char_class = false; |
| 2175 | |
| 2176 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| 2177 | |
| 2178 | /* Ensure that we have enough space to push a charset: the |
| 2179 | opcode, the length count, and the bitset; 34 bytes in all. */ |
| 2180 | GET_BUFFER_SPACE (34); |
| 2181 | |
| 2182 | laststart = b; |
| 2183 | |
| 2184 | /* We test `*p == '^' twice, instead of using an if |
| 2185 | statement, so we only need one BUF_PUSH. */ |
| 2186 | BUF_PUSH (*p == '^' ? charset_not : charset); |
| 2187 | if (*p == '^') |
| 2188 | p++; |
| 2189 | |
| 2190 | /* Remember the first position in the bracket expression. */ |
| 2191 | p1 = p; |
| 2192 | |
| 2193 | /* Push the number of bytes in the bitmap. */ |
| 2194 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); |
| 2195 | |
| 2196 | /* Clear the whole map. */ |
paul | d1724b6 | 2003-10-22 02:41:52 +0000 | [diff] [blame] | 2197 | memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH); |
paul | 718e374 | 2002-12-13 20:15:29 +0000 | [diff] [blame] | 2198 | |
| 2199 | /* charset_not matches newline according to a syntax bit. */ |
| 2200 | if ((re_opcode_t) b[-2] == charset_not |
| 2201 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
| 2202 | SET_LIST_BIT ('\n'); |
| 2203 | |
| 2204 | /* Read in characters and ranges, setting map bits. */ |
| 2205 | for (;;) |
| 2206 | { |
| 2207 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| 2208 | |
| 2209 | PATFETCH (c); |
| 2210 | |
| 2211 | /* \ might escape characters inside [...] and [^...]. */ |
| 2212 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') |
| 2213 | { |
| 2214 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
| 2215 | |
| 2216 | PATFETCH (c1); |
| 2217 | SET_LIST_BIT (c1); |
| 2218 | continue; |
| 2219 | } |
| 2220 | |
| 2221 | /* Could be the end of the bracket expression. If it's |
| 2222 | not (i.e., when the bracket expression is `[]' so |
| 2223 | far), the ']' character bit gets set way below. */ |
| 2224 | if (c == ']' && p != p1 + 1) |
| 2225 | break; |
| 2226 | |
| 2227 | /* Look ahead to see if it's a range when the last thing |
| 2228 | was a character class. */ |
| 2229 | if (had_char_class && c == '-' && *p != ']') |
| 2230 | FREE_STACK_RETURN (REG_ERANGE); |
| 2231 | |
| 2232 | /* Look ahead to see if it's a range when the last thing |
| 2233 | was a character: if this is a hyphen not at the |
| 2234 | beginning or the end of a list, then it's the range |
| 2235 | operator. */ |
| 2236 | if (c == '-' |
| 2237 | && !(p - 2 >= pattern && p[-2] == '[') |
| 2238 | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
| 2239 | && *p != ']') |
| 2240 | { |
| 2241 | reg_errcode_t ret |
| 2242 | = compile_range (&p, pend, translate, syntax, b); |
| 2243 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
| 2244 | } |
| 2245 | |
| 2246 | else if (p[0] == '-' && p[1] != ']') |
| 2247 | { /* This handles ranges made up of characters only. */ |
| 2248 | reg_errcode_t ret; |
| 2249 | |
| 2250 | /* Move past the `-'. */ |
| 2251 | PATFETCH (c1); |
| 2252 | |
| 2253 | ret = compile_range (&p, pend, translate, syntax, b); |
| 2254 | if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
| 2255 | } |
| 2256 | |
| 2257 | /* See if we're at the beginning of a possible character |
| 2258 | class. */ |
| 2259 | |
| 2260 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') |
| 2261 | { /* Leave room for the null. */ |
| 2262 | char str[CHAR_CLASS_MAX_LENGTH + 1]; |
| 2263 | |
| 2264 | PATFETCH (c); |
| 2265 | c1 = 0; |
| 2266 | |
| 2267 | /* If pattern is `[[:'. */ |
| 2268 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| 2269 | |
| 2270 | for (;;) |
| 2271 | { |
| 2272 | PATFETCH (c); |
| 2273 | if ((c == ':' && *p == ']') || p == pend) |
| 2274 | break; |
| 2275 | if (c1 < CHAR_CLASS_MAX_LENGTH) |
| 2276 | str[c1++] = c; |
| 2277 | else |
| 2278 | /* This is in any case an invalid class name. */ |
| 2279 | str[0] = '\0'; |
| 2280 | } |
| 2281 | str[c1] = '\0'; |
| 2282 | |
| 2283 | /* If isn't a word bracketed by `[:' and `:]': |
| 2284 | undo the ending character, the letters, and leave |
| 2285 | the leading `:' and `[' (but set bits for them). */ |
| 2286 | if (c == ':' && *p == ']') |
| 2287 | { |
| 2288 | #if defined _LIBC || WIDE_CHAR_SUPPORT |
| 2289 | boolean is_lower = STREQ (str, "lower"); |
| 2290 | boolean is_upper = STREQ (str, "upper"); |
| 2291 | wctype_t wt; |
| 2292 | int ch; |
| 2293 | |
| 2294 | wt = IS_CHAR_CLASS (str); |
| 2295 | if (wt == 0) |
| 2296 | FREE_STACK_RETURN (REG_ECTYPE); |
| 2297 | |
| 2298 | /* Throw away the ] at the end of the character |
| 2299 | class. */ |
| 2300 | PATFETCH (c); |
| 2301 | |
| 2302 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| 2303 | |
| 2304 | for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) |
| 2305 | { |
| 2306 | # ifdef _LIBC |
| 2307 | if (__iswctype (__btowc (ch), wt)) |
| 2308 | SET_LIST_BIT (ch); |
| 2309 | # else |
| 2310 | if (iswctype (btowc (ch), wt)) |
| 2311 | SET_LIST_BIT (ch); |
| 2312 | # endif |
| 2313 | |
| 2314 | if (translate && (is_upper || is_lower) |
| 2315 | && (ISUPPER (ch) || ISLOWER (ch))) |
| 2316 | SET_LIST_BIT (ch); |
| 2317 | } |
| 2318 | |
| 2319 | had_char_class = true; |
| 2320 | #else |
| 2321 | int ch; |
| 2322 | boolean is_alnum = STREQ (str, "alnum"); |
| 2323 | boolean is_alpha = STREQ (str, "alpha"); |
| 2324 | boolean is_blank = STREQ (str, "blank"); |
| 2325 | boolean is_cntrl = STREQ (str, "cntrl"); |
| 2326 | boolean is_digit = STREQ (str, "digit"); |
| 2327 | boolean is_graph = STREQ (str, "graph"); |
| 2328 | boolean is_lower = STREQ (str, "lower"); |
| 2329 | boolean is_print = STREQ (str, "print"); |
| 2330 | boolean is_punct = STREQ (str, "punct"); |
| 2331 | boolean is_space = STREQ (str, "space"); |
| 2332 | boolean is_upper = STREQ (str, "upper"); |
| 2333 | boolean is_xdigit = STREQ (str, "xdigit"); |
| 2334 | |
| 2335 | if (!IS_CHAR_CLASS (str)) |
| 2336 | FREE_STACK_RETURN (REG_ECTYPE); |
| 2337 | |
| 2338 | /* Throw away the ] at the end of the character |
| 2339 | class. */ |
| 2340 | PATFETCH (c); |
| 2341 | |
| 2342 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
| 2343 | |
| 2344 | for (ch = 0; ch < 1 << BYTEWIDTH; ch++) |
| 2345 | { |
| 2346 | /* This was split into 3 if's to |
| 2347 | avoid an arbitrary limit in some compiler. */ |
| 2348 | if ( (is_alnum && ISALNUM (ch)) |
| 2349 | || (is_alpha && ISALPHA (ch)) |
| 2350 | || (is_blank && ISBLANK (ch)) |
| 2351 | || (is_cntrl && ISCNTRL (ch))) |
| 2352 | SET_LIST_BIT (ch); |
| 2353 | if ( (is_digit && ISDIGIT (ch)) |
| 2354 | || (is_graph && ISGRAPH (ch)) |
| 2355 | || (is_lower && ISLOWER (ch)) |
| 2356 | || (is_print && ISPRINT (ch))) |
| 2357 | SET_LIST_BIT (ch); |
| 2358 | if ( (is_punct && ISPUNCT (ch)) |
| 2359 | || (is_space && ISSPACE (ch)) |
| 2360 | || (is_upper && ISUPPER (ch)) |
| 2361 | || (is_xdigit && ISXDIGIT (ch))) |
| 2362 | SET_LIST_BIT (ch); |
| 2363 | if ( translate && (is_upper || is_lower) |
| 2364 | && (ISUPPER (ch) || ISLOWER (ch))) |
| 2365 | SET_LIST_BIT (ch); |
| 2366 | } |
| 2367 | had_char_class = true; |
| 2368 | #endif /* libc || wctype.h */ |
| 2369 | } |
| 2370 | else |
| 2371 | { |
| 2372 | c1++; |
| 2373 | while (c1--) |
| 2374 | PATUNFETCH; |
| 2375 | SET_LIST_BIT ('['); |
| 2376 | SET_LIST_BIT (':'); |
| 2377 | had_char_class = false; |
| 2378 | } |
| 2379 | } |
| 2380 | else |
| 2381 | { |
| 2382 | had_char_class = false; |
| 2383 | SET_LIST_BIT (c); |
| 2384 | } |
| 2385 | } |
| 2386 | |
| 2387 | /* Discard any (non)matching list bytes that are all 0 at the |
| 2388 | end of the map. Decrease the map-length byte too. */ |
| 2389 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) |
| 2390 | b[-1]--; |
| 2391 | b += b[-1]; |
| 2392 | } |
| 2393 | break; |
| 2394 | |
| 2395 | |
| 2396 | case '(': |
| 2397 | if (syntax & RE_NO_BK_PARENS) |
| 2398 | goto handle_open; |
| 2399 | else |
| 2400 | goto normal_char; |
| 2401 | |
| 2402 | |
| 2403 | case ')': |
| 2404 | if (syntax & RE_NO_BK_PARENS) |
| 2405 | goto handle_close; |
| 2406 | else |
| 2407 | goto normal_char; |
| 2408 | |
| 2409 | |
| 2410 | case '\n': |
| 2411 | if (syntax & RE_NEWLINE_ALT) |
| 2412 | goto handle_alt; |
| 2413 | else |
| 2414 | goto normal_char; |
| 2415 | |
| 2416 | |
| 2417 | case '|': |
| 2418 | if (syntax & RE_NO_BK_VBAR) |
| 2419 | goto handle_alt; |
| 2420 | else |
| 2421 | goto normal_char; |
| 2422 | |
| 2423 | |
| 2424 | case '{': |
| 2425 | if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) |
| 2426 | goto handle_interval; |
| 2427 | else |
| 2428 | goto normal_char; |
| 2429 | |
| 2430 | |
| 2431 | case '\\': |
| 2432 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
| 2433 | |
| 2434 | /* Do not translate the character after the \, so that we can |
| 2435 | distinguish, e.g., \B from \b, even if we normally would |
| 2436 | translate, e.g., B to b. */ |
| 2437 | PATFETCH_RAW (c); |
| 2438 | |
| 2439 | switch (c) |
| 2440 | { |
| 2441 | case '(': |
| 2442 | if (syntax & RE_NO_BK_PARENS) |
| 2443 | goto normal_backslash; |
| 2444 | |
| 2445 | handle_open: |
| 2446 | bufp->re_nsub++; |
| 2447 | regnum++; |
| 2448 | |
| 2449 | if (COMPILE_STACK_FULL) |
| 2450 | { |
| 2451 | RETALLOC (compile_stack.stack, compile_stack.size << 1, |
| 2452 | compile_stack_elt_t); |
| 2453 | if (compile_stack.stack == NULL) return REG_ESPACE; |
| 2454 | |
| 2455 | compile_stack.size <<= 1; |
| 2456 | } |
| 2457 | |
| 2458 | /* These are the values to restore when we hit end of this |
| 2459 | group. They are all relative offsets, so that if the |
| 2460 | whole pattern moves because of realloc, they will still |
| 2461 | be valid. */ |
| 2462 | COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; |
| 2463 | COMPILE_STACK_TOP.fixup_alt_jump |
| 2464 | = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; |
| 2465 | COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; |
| 2466 | COMPILE_STACK_TOP.regnum = regnum; |
| 2467 | |
| 2468 | /* We will eventually replace the 0 with the number of |
| 2469 | groups inner to this one. But do not push a |
| 2470 | start_memory for groups beyond the last one we can |
| 2471 | represent in the compiled pattern. */ |
| 2472 | if (regnum <= MAX_REGNUM) |
| 2473 | { |
| 2474 | COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; |
| 2475 | BUF_PUSH_3 (start_memory, regnum, 0); |
| 2476 | } |
| 2477 | |
| 2478 | compile_stack.avail++; |
| 2479 | |
| 2480 | fixup_alt_jump = 0; |
| 2481 | laststart = 0; |
| 2482 | begalt = b; |
| 2483 | /* If we've reached MAX_REGNUM groups, then this open |
| 2484 | won't actually generate any code, so we'll have to |
| 2485 | clear pending_exact explicitly. */ |
| 2486 | pending_exact = 0; |
| 2487 | break; |
| 2488 | |
| 2489 | |
| 2490 | case ')': |
| 2491 | if (syntax & RE_NO_BK_PARENS) goto normal_backslash; |
| 2492 | |
| 2493 | if (COMPILE_STACK_EMPTY) |
| 2494 | { |
| 2495 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
| 2496 | goto normal_backslash; |
| 2497 | else |
| 2498 | FREE_STACK_RETURN (REG_ERPAREN); |
| 2499 | } |
| 2500 | |
| 2501 | handle_close: |
| 2502 | if (fixup_alt_jump) |
| 2503 | { /* Push a dummy failure point at the end of the |
| 2504 | alternative for a possible future |
| 2505 | `pop_failure_jump' to pop. See comments at |
| 2506 | `push_dummy_failure' in `re_match_2'. */ |
| 2507 | BUF_PUSH (push_dummy_failure); |
| 2508 | |
| 2509 | /* We allocated space for this jump when we assigned |
| 2510 | to `fixup_alt_jump', in the `handle_alt' case below. */ |
| 2511 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); |
| 2512 | } |
| 2513 | |
| 2514 | /* See similar code for backslashed left paren above. */ |
| 2515 | if (COMPILE_STACK_EMPTY) |
| 2516 | { |
| 2517 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
| 2518 | goto normal_char; |
| 2519 | else |
| 2520 | FREE_STACK_RETURN (REG_ERPAREN); |
| 2521 | } |
| 2522 | |
| 2523 | /* Since we just checked for an empty stack above, this |
| 2524 | ``can't happen''. */ |
| 2525 | assert (compile_stack.avail != 0); |
| 2526 | { |
| 2527 | /* We don't just want to restore into `regnum', because |
| 2528 | later groups should continue to be numbered higher, |
| 2529 | as in `(ab)c(de)' -- the second group is #2. */ |
| 2530 | regnum_t this_group_regnum; |
| 2531 | |
| 2532 | compile_stack.avail--; |
| 2533 | begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; |
| 2534 | fixup_alt_jump |
| 2535 | = COMPILE_STACK_TOP.fixup_alt_jump |
| 2536 | ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 |
| 2537 | : 0; |
| 2538 | laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; |
| 2539 | this_group_regnum = COMPILE_STACK_TOP.regnum; |
| 2540 | /* If we've reached MAX_REGNUM groups, then this open |
| 2541 | won't actually generate any code, so we'll have to |
| 2542 | clear pending_exact explicitly. */ |
| 2543 | pending_exact = 0; |
| 2544 | |
| 2545 | /* We're at the end of the group, so now we know how many |
| 2546 | groups were inside this one. */ |
| 2547 | if (this_group_regnum <= MAX_REGNUM) |
| 2548 | { |
| 2549 | unsigned char *inner_group_loc |
| 2550 | = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; |
| 2551 | |
| 2552 | *inner_group_loc = regnum - this_group_regnum; |
| 2553 | BUF_PUSH_3 (stop_memory, this_group_regnum, |
| 2554 | regnum - this_group_regnum); |
| 2555 | } |
| 2556 | } |
| 2557 | break; |
| 2558 | |
| 2559 | |
| 2560 | case '|': /* `\|'. */ |
| 2561 | if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) |
| 2562 | goto normal_backslash; |
| 2563 | handle_alt: |
| 2564 | if (syntax & RE_LIMITED_OPS) |
| 2565 | goto normal_char; |
| 2566 | |
| 2567 | /* Insert before the previous alternative a jump which |
| 2568 | jumps to this alternative if the former fails. */ |
| 2569 | GET_BUFFER_SPACE (3); |
| 2570 | INSERT_JUMP (on_failure_jump, begalt, b + 6); |
| 2571 | pending_exact = 0; |
| 2572 | b += 3; |
| 2573 | |
| 2574 | /* The alternative before this one has a jump after it |
| 2575 | which gets executed if it gets matched. Adjust that |
| 2576 | jump so it will jump to this alternative's analogous |
| 2577 | jump (put in below, which in turn will jump to the next |
| 2578 | (if any) alternative's such jump, etc.). The last such |
| 2579 | jump jumps to the correct final destination. A picture: |
| 2580 | _____ _____ |
| 2581 | | | | | |
| 2582 | | v | v |
| 2583 | a | b | c |
| 2584 | |
| 2585 | If we are at `b', then fixup_alt_jump right now points to a |
| 2586 | three-byte space after `a'. We'll put in the jump, set |
| 2587 | fixup_alt_jump to right after `b', and leave behind three |
| 2588 | bytes which we'll fill in when we get to after `c'. */ |
| 2589 | |
| 2590 | if (fixup_alt_jump) |
| 2591 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
| 2592 | |
| 2593 | /* Mark and leave space for a jump after this alternative, |
| 2594 | to be filled in later either by next alternative or |
| 2595 | when know we're at the end of a series of alternatives. */ |
| 2596 | fixup_alt_jump = b; |
| 2597 | GET_BUFFER_SPACE (3); |
| 2598 | b += 3; |
| 2599 | |
| 2600 | laststart = 0; |
| 2601 | begalt = b; |
| 2602 | break; |
| 2603 | |
| 2604 | |
| 2605 | case '{': |
| 2606 | /* If \{ is a literal. */ |
| 2607 | if (!(syntax & RE_INTERVALS) |
| 2608 | /* If we're at `\{' and it's not the open-interval |
| 2609 | operator. */ |
| 2610 | || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
| 2611 | || (p - 2 == pattern && p == pend)) |
| 2612 | goto normal_backslash; |
| 2613 | |
| 2614 | handle_interval: |
| 2615 | { |
| 2616 | /* If got here, then the syntax allows intervals. */ |
| 2617 | |
| 2618 | /* At least (most) this many matches must be made. */ |
| 2619 | int lower_bound = -1, upper_bound = -1; |
| 2620 | |
| 2621 | beg_interval = p - 1; |
| 2622 | |
| 2623 | if (p == pend) |
| 2624 | { |
| 2625 | if (syntax & RE_NO_BK_BRACES) |
| 2626 | goto unfetch_interval; |
| 2627 | else |
| 2628 | FREE_STACK_RETURN (REG_EBRACE); |
| 2629 | } |
| 2630 | |
| 2631 | GET_UNSIGNED_NUMBER (lower_bound); |
| 2632 | |
| 2633 | if (c == ',') |
| 2634 | { |
| 2635 | GET_UNSIGNED_NUMBER (upper_bound); |
| 2636 | if (upper_bound < 0) upper_bound = RE_DUP_MAX; |
| 2637 | } |
| 2638 | else |
| 2639 | /* Interval such as `{1}' => match exactly once. */ |
| 2640 | upper_bound = lower_bound; |
| 2641 | |
| 2642 | if (lower_bound < 0 || upper_bound > RE_DUP_MAX |
| 2643 | || lower_bound > upper_bound) |
| 2644 | { |
| 2645 | if (syntax & RE_NO_BK_BRACES) |
| 2646 | goto unfetch_interval; |
| 2647 | else |
| 2648 | FREE_STACK_RETURN (REG_BADBR); |
| 2649 | } |
| 2650 | |
| 2651 | if (!(syntax & RE_NO_BK_BRACES)) |
| 2652 | { |
| 2653 | if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); |
| 2654 | |
| 2655 | PATFETCH (c); |
| 2656 | } |
| 2657 | |
| 2658 | if (c != '}') |
| 2659 | { |
| 2660 | if (syntax & RE_NO_BK_BRACES) |
| 2661 | goto unfetch_interval; |
| 2662 | else |
| 2663 | FREE_STACK_RETURN (REG_BADBR); |
| 2664 | } |
| 2665 | |
| 2666 | /* We just parsed a valid interval. */ |
| 2667 | |
| 2668 | /* If it's invalid to have no preceding re. */ |
| 2669 | if (!laststart) |
| 2670 | { |
| 2671 | if (syntax & RE_CONTEXT_INVALID_OPS) |
| 2672 | FREE_STACK_RETURN (REG_BADRPT); |
| 2673 | else if (syntax & RE_CONTEXT_INDEP_OPS) |
| 2674 | laststart = b; |
| 2675 | else |
| 2676 | goto unfetch_interval; |
| 2677 | } |
| 2678 | |
| 2679 | /* If the upper bound is zero, don't want to succeed at |
| 2680 | all; jump from `laststart' to `b + 3', which will be |
| 2681 | the end of the buffer after we insert the jump. */ |
| 2682 | if (upper_bound == 0) |
| 2683 | { |
| 2684 | GET_BUFFER_SPACE (3); |
| 2685 | INSERT_JUMP (jump, laststart, b + 3); |
| 2686 | b += 3; |
| 2687 | } |
| 2688 | |
| 2689 | /* Otherwise, we have a nontrivial interval. When |
| 2690 | we're all done, the pattern will look like: |
| 2691 | set_number_at <jump count> <upper bound> |
| 2692 | set_number_at <succeed_n count> <lower bound> |
| 2693 | succeed_n <after jump addr> <succeed_n count> |
| 2694 | <body of loop> |
| 2695 | jump_n <succeed_n addr> <jump count> |
| 2696 | (The upper bound and `jump_n' are omitted if |
| 2697 | `upper_bound' is 1, though.) */ |
| 2698 | else |
| 2699 | { /* If the upper bound is > 1, we need to insert |
| 2700 | more at the end of the loop. */ |
| 2701 | unsigned nbytes = 10 + (upper_bound > 1) * 10; |
| 2702 | |
| 2703 | GET_BUFFER_SPACE (nbytes); |
| 2704 | |
| 2705 | /* Initialize lower bound of the `succeed_n', even |
| 2706 | though it will be set during matching by its |
| 2707 | attendant `set_number_at' (inserted next), |
| 2708 | because `re_compile_fastmap' needs to know. |
| 2709 | Jump to the `jump_n' we might insert below. */ |
| 2710 | INSERT_JUMP2 (succeed_n, laststart, |
| 2711 | b + 5 + (upper_bound > 1) * 5, |
| 2712 | lower_bound); |
| 2713 | b += 5; |
| 2714 | |
| 2715 | /* Code to initialize the lower bound. Insert |
| 2716 | before the `succeed_n'. The `5' is the last two |
| 2717 | bytes of this `set_number_at', plus 3 bytes of |
| 2718 | the following `succeed_n'. */ |
| 2719 | insert_op2 (set_number_at, laststart, 5, lower_bound, b); |
| 2720 | b += 5; |
| 2721 | |
| 2722 | if (upper_bound > 1) |
| 2723 | { /* More than one repetition is allowed, so |
| 2724 | append a backward jump to the `succeed_n' |
| 2725 | that starts this interval. |
| 2726 | |
| 2727 | When we've reached this during matching, |
| 2728 | we'll have matched the interval once, so |
| 2729 | jump back only `upper_bound - 1' times. */ |
| 2730 | STORE_JUMP2 (jump_n, b, laststart + 5, |
| 2731 | upper_bound - 1); |
| 2732 | b += 5; |
| 2733 | |
| 2734 | /* The location we want to set is the second |
| 2735 | parameter of the `jump_n'; that is `b-2' as |
| 2736 | an absolute address. `laststart' will be |
| 2737 | the `set_number_at' we're about to insert; |
| 2738 | `laststart+3' the number to set, the source |
| 2739 | for the relative address. But we are |
| 2740 | inserting into the middle of the pattern -- |
| 2741 | so everything is getting moved up by 5. |
| 2742 | Conclusion: (b - 2) - (laststart + 3) + 5, |
| 2743 | i.e., b - laststart. |
| 2744 | |
| 2745 | We insert this at the beginning of the loop |
| 2746 | so that if we fail during matching, we'll |
| 2747 | reinitialize the bounds. */ |
| 2748 | insert_op2 (set_number_at, laststart, b - laststart, |
| 2749 | upper_bound - 1, b); |
| 2750 | b += 5; |
| 2751 | } |
| 2752 | } |
| 2753 | pending_exact = 0; |
| 2754 | beg_interval = NULL; |
| 2755 | } |
| 2756 | break; |
| 2757 | |
| 2758 | unfetch_interval: |
| 2759 | /* If an invalid interval, match the characters as literals. */ |
| 2760 | assert (beg_interval); |
| 2761 | p = beg_interval; |
| 2762 | beg_interval = NULL; |
| 2763 | |
| 2764 | /* normal_char and normal_backslash need `c'. */ |
| 2765 | PATFETCH (c); |
| 2766 | |
| 2767 | if (!(syntax & RE_NO_BK_BRACES)) |
| 2768 | { |
| 2769 | if (p > pattern && p[-1] == '\\') |
| 2770 | goto normal_backslash; |
| 2771 | } |
| 2772 | goto normal_char; |
| 2773 | |
| 2774 | #ifdef emacs |
| 2775 | /* There is no way to specify the before_dot and after_dot |
| 2776 | operators. rms says this is ok. --karl */ |
| 2777 | case '=': |
| 2778 | BUF_PUSH (at_dot); |
| 2779 | break; |
| 2780 | |
| 2781 | case 's': |
| 2782 | laststart = b; |
| 2783 | PATFETCH (c); |
| 2784 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); |
| 2785 | break; |
| 2786 | |
| 2787 | case 'S': |
| 2788 | laststart = b; |
| 2789 | PATFETCH (c); |
| 2790 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); |
| 2791 | break; |
| 2792 | #endif /* emacs */ |
| 2793 | |
| 2794 | |
| 2795 | case 'w': |
| 2796 | if (syntax & RE_NO_GNU_OPS) |
| 2797 | goto normal_char; |
| 2798 | laststart = b; |
| 2799 | BUF_PUSH (wordchar); |
| 2800 | break; |
| 2801 | |
| 2802 | |
| 2803 | case 'W': |
| 2804 | if (syntax & RE_NO_GNU_OPS) |
| 2805 | goto normal_char; |
| 2806 | laststart = b; |
| 2807 | BUF_PUSH (notwordchar); |
| 2808 | break; |
| 2809 | |
| 2810 | |
| 2811 | case '<': |
| 2812 | if (syntax & RE_NO_GNU_OPS) |
| 2813 | goto normal_char; |
| 2814 | BUF_PUSH (wordbeg); |
| 2815 | break; |
| 2816 | |
| 2817 | case '>': |
| 2818 | if (syntax & RE_NO_GNU_OPS) |
| 2819 | goto normal_char; |
| 2820 | BUF_PUSH (wordend); |
| 2821 | break; |
| 2822 | |
| 2823 | case 'b': |
| 2824 | if (syntax & RE_NO_GNU_OPS) |
| 2825 | goto normal_char; |
| 2826 | BUF_PUSH (wordbound); |
| 2827 | break; |
| 2828 | |
| 2829 | case 'B': |
| 2830 | if (syntax & RE_NO_GNU_OPS) |
| 2831 | goto normal_char; |
| 2832 | BUF_PUSH (notwordbound); |
| 2833 | break; |
| 2834 | |
| 2835 | case '`': |
| 2836 | if (syntax & RE_NO_GNU_OPS) |
| 2837 | goto normal_char; |
| 2838 | BUF_PUSH (begbuf); |
| 2839 | break; |
| 2840 | |
| 2841 | case '\'': |
| 2842 | if (syntax & RE_NO_GNU_OPS) |
| 2843 | goto normal_char; |
| 2844 | BUF_PUSH (endbuf); |
| 2845 | break; |
| 2846 | |
| 2847 | case '1': case '2': case '3': case '4': case '5': |
| 2848 | case '6': case '7': case '8': case '9': |
| 2849 | if (syntax & RE_NO_BK_REFS) |
| 2850 | goto normal_char; |
| 2851 | |
| 2852 | c1 = c - '0'; |
| 2853 | |
| 2854 | if (c1 > regnum) |
| 2855 | FREE_STACK_RETURN (REG_ESUBREG); |
| 2856 | |
| 2857 | /* Can't back reference to a subexpression if inside of it. */ |
| 2858 | if (group_in_compile_stack (compile_stack, (regnum_t) c1)) |
| 2859 | goto normal_char; |
| 2860 | |
| 2861 | laststart = b; |
| 2862 | BUF_PUSH_2 (duplicate, c1); |
| 2863 | break; |
| 2864 | |
| 2865 | |
| 2866 | case '+': |
| 2867 | case '?': |
| 2868 | if (syntax & RE_BK_PLUS_QM) |
| 2869 | goto handle_plus; |
| 2870 | else |
| 2871 | goto normal_backslash; |
| 2872 | |
| 2873 | default: |
| 2874 | normal_backslash: |
| 2875 | /* You might think it would be useful for \ to mean |
| 2876 | not to translate; but if we don't translate it |
| 2877 | it will never match anything. */ |
| 2878 | c = TRANSLATE (c); |
| 2879 | goto normal_char; |
| 2880 | } |
| 2881 | break; |
| 2882 | |
| 2883 | |
| 2884 | default: |
| 2885 | /* Expects the character in `c'. */ |
| 2886 | normal_char: |
| 2887 | /* If no exactn currently being built. */ |
| 2888 | if (!pending_exact |
| 2889 | |
| 2890 | /* If last exactn not at current position. */ |
| 2891 | || pending_exact + *pending_exact + 1 != b |
| 2892 | |
| 2893 | /* We have only one byte following the exactn for the count. */ |
| 2894 | || *pending_exact == (1 << BYTEWIDTH) - 1 |
| 2895 | |
| 2896 | /* If followed by a repetition operator. */ |
| 2897 | || *p == '*' || *p == '^' |
| 2898 | || ((syntax & RE_BK_PLUS_QM) |
| 2899 | ? *p == '\\' && (p[1] == '+' || p[1] == '?') |
| 2900 | : (*p == '+' || *p == '?')) |
| 2901 | || ((syntax & RE_INTERVALS) |
| 2902 | && ((syntax & RE_NO_BK_BRACES) |
| 2903 | ? *p == '{' |
| 2904 | : (p[0] == '\\' && p[1] == '{')))) |
| 2905 | { |
| 2906 | /* Start building a new exactn. */ |
| 2907 | |
| 2908 | laststart = b; |
| 2909 | |
| 2910 | BUF_PUSH_2 (exactn, 0); |
| 2911 | pending_exact = b - 1; |
| 2912 | } |
| 2913 | |
| 2914 | BUF_PUSH (c); |
| 2915 | (*pending_exact)++; |
| 2916 | break; |
| 2917 | } /* switch (c) */ |
| 2918 | } /* while p != pend */ |
| 2919 | |
| 2920 | |
| 2921 | /* Through the pattern now. */ |
| 2922 | |
| 2923 | if (fixup_alt_jump) |
| 2924 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
| 2925 | |
| 2926 | if (!COMPILE_STACK_EMPTY) |
| 2927 | FREE_STACK_RETURN (REG_EPAREN); |
| 2928 | |
| 2929 | /* If we don't want backtracking, force success |
| 2930 | the first time we reach the end of the compiled pattern. */ |
| 2931 | if (syntax & RE_NO_POSIX_BACKTRACKING) |
| 2932 | BUF_PUSH (succeed); |
| 2933 | |
| 2934 | free (compile_stack.stack); |
| 2935 | |
| 2936 | /* We have succeeded; set the length of the buffer. */ |
| 2937 | bufp->used = b - bufp->buffer; |
| 2938 | |
| 2939 | #ifdef DEBUG |
| 2940 | if (debug) |
| 2941 | { |
| 2942 | DEBUG_PRINT1 ("\nCompiled pattern: \n"); |
| 2943 | print_compiled_pattern (bufp); |
| 2944 | } |
| 2945 | #endif /* DEBUG */ |
| 2946 | |
| 2947 | #ifndef MATCH_MAY_ALLOCATE |
| 2948 | /* Initialize the failure stack to the largest possible stack. This |
| 2949 | isn't necessary unless we're trying to avoid calling alloca in |
| 2950 | the search and match routines. */ |
| 2951 | { |
| 2952 | int num_regs = bufp->re_nsub + 1; |
| 2953 | |
| 2954 | /* Since DOUBLE_FAIL_STACK refuses to double only if the current size |
| 2955 | is strictly greater than re_max_failures, the largest possible stack |
| 2956 | is 2 * re_max_failures failure points. */ |
| 2957 | if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) |
| 2958 | { |
| 2959 | fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); |
| 2960 | |
| 2961 | # ifdef emacs |
| 2962 | if (! fail_stack.stack) |
| 2963 | fail_stack.stack |
| 2964 | = (fail_stack_elt_t *) xmalloc (fail_stack.size |
| 2965 | * sizeof (fail_stack_elt_t)); |
| 2966 | else |
| 2967 | fail_stack.stack |
| 2968 | = (fail_stack_elt_t *) xrealloc (fail_stack.stack, |
| 2969 | (fail_stack.size |
| 2970 | * sizeof (fail_stack_elt_t))); |
| 2971 | # else /* not emacs */ |
| 2972 | if (! fail_stack.stack) |
| 2973 | fail_stack.stack |
| 2974 | = (fail_stack_elt_t *) malloc (fail_stack.size |
| 2975 | * sizeof (fail_stack_elt_t)); |
| 2976 | else |
| 2977 | fail_stack.stack |
| 2978 | = (fail_stack_elt_t *) realloc (fail_stack.stack, |
| 2979 | (fail_stack.size |
| 2980 | * sizeof (fail_stack_elt_t))); |
| 2981 | # endif /* not emacs */ |
| 2982 | } |
| 2983 | |
| 2984 | regex_grow_registers (num_regs); |
| 2985 | } |
| 2986 | #endif /* not MATCH_MAY_ALLOCATE */ |
| 2987 | |
| 2988 | return REG_NOERROR; |
| 2989 | } /* regex_compile */ |
| 2990 | |
| 2991 | /* Subroutines for `regex_compile'. */ |
| 2992 | |
| 2993 | /* Store OP at LOC followed by two-byte integer parameter ARG. */ |
| 2994 | |
| 2995 | static void |
| 2996 | store_op1 (op, loc, arg) |
| 2997 | re_opcode_t op; |
| 2998 | unsigned char *loc; |
| 2999 | int arg; |
| 3000 | { |
| 3001 | *loc = (unsigned char) op; |
| 3002 | STORE_NUMBER (loc + 1, arg); |
| 3003 | } |
| 3004 | |
| 3005 | |
| 3006 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ |
| 3007 | |
| 3008 | static void |
| 3009 | store_op2 (op, loc, arg1, arg2) |
| 3010 | re_opcode_t op; |
| 3011 | unsigned char *loc; |
| 3012 | int arg1, arg2; |
| 3013 | { |
| 3014 | *loc = (unsigned char) op; |
| 3015 | STORE_NUMBER (loc + 1, arg1); |
| 3016 | STORE_NUMBER (loc + 3, arg2); |
| 3017 | } |
| 3018 | |
| 3019 | |
| 3020 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC |
| 3021 | for OP followed by two-byte integer parameter ARG. */ |
| 3022 | |
| 3023 | static void |
| 3024 | insert_op1 (op, loc, arg, end) |
| 3025 | re_opcode_t op; |
| 3026 | unsigned char *loc; |
| 3027 | int arg; |
| 3028 | unsigned char *end; |
| 3029 | { |
| 3030 | register unsigned char *pfrom = end; |
| 3031 | register unsigned char *pto = end + 3; |
| 3032 | |
| 3033 | while (pfrom != loc) |
| 3034 | *--pto = *--pfrom; |
| 3035 | |
| 3036 | store_op1 (op, loc, arg); |
| 3037 | } |
| 3038 | |
| 3039 | |
| 3040 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ |
| 3041 | |
| 3042 | static void |
| 3043 | insert_op2 (op, loc, arg1, arg2, end) |
| 3044 | re_opcode_t op; |
| 3045 | unsigned char *loc; |
| 3046 | int arg1, arg2; |
| 3047 | unsigned char *end; |
| 3048 | { |
| 3049 | register unsigned char *pfrom = end; |
| 3050 | register unsigned char *pto = end + 5; |
| 3051 | |
| 3052 | while (pfrom != loc) |
| 3053 | *--pto = *--pfrom; |
| 3054 | |
| 3055 | store_op2 (op, loc, arg1, arg2); |
| 3056 | } |
| 3057 | |
| 3058 | |
| 3059 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes |
| 3060 | after an alternative or a begin-subexpression. We assume there is at |
| 3061 | least one character before the ^. */ |
| 3062 | |
| 3063 | static boolean |
| 3064 | at_begline_loc_p (pattern, p, syntax) |
| 3065 | const char *pattern, *p; |
| 3066 | reg_syntax_t syntax; |
| 3067 | { |
| 3068 | const char *prev = p - 2; |
| 3069 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
| 3070 | |
| 3071 | return |
| 3072 | /* After a subexpression? */ |
| 3073 | (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) |
| 3074 | /* After an alternative? */ |
| 3075 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); |
| 3076 | } |
| 3077 | |
| 3078 | |
| 3079 | /* The dual of at_begline_loc_p. This one is for $. We assume there is |
| 3080 | at least one character after the $, i.e., `P < PEND'. */ |
| 3081 | |
| 3082 | static boolean |
| 3083 | at_endline_loc_p (p, pend, syntax) |
| 3084 | const char *p, *pend; |
| 3085 | reg_syntax_t syntax; |
| 3086 | { |
| 3087 | const char *next = p; |
| 3088 | boolean next_backslash = *next == '\\'; |
| 3089 | const char *next_next = p + 1 < pend ? p + 1 : 0; |
| 3090 | |
| 3091 | return |
| 3092 | /* Before a subexpression? */ |
| 3093 | (syntax & RE_NO_BK_PARENS ? *next == ')' |
| 3094 | : next_backslash && next_next && *next_next == ')') |
| 3095 | /* Before an alternative? */ |
| 3096 | || (syntax & RE_NO_BK_VBAR ? *next == '|' |
| 3097 | : next_backslash && next_next && *next_next == '|'); |
| 3098 | } |
| 3099 | |
| 3100 | |
| 3101 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and |
| 3102 | false if it's not. */ |
| 3103 | |
| 3104 | static boolean |
| 3105 | group_in_compile_stack (compile_stack, regnum) |
| 3106 | compile_stack_type compile_stack; |
| 3107 | regnum_t regnum; |
| 3108 | { |
| 3109 | int this_element; |
| 3110 | |
| 3111 | for (this_element = compile_stack.avail - 1; |
| 3112 | this_element >= 0; |
| 3113 | this_element--) |
| 3114 | if (compile_stack.stack[this_element].regnum == regnum) |
| 3115 | return true; |
| 3116 | |
| 3117 | return false; |
| 3118 | } |
| 3119 | |
| 3120 | |
| 3121 | /* Read the ending character of a range (in a bracket expression) from the |
| 3122 | uncompiled pattern *P_PTR (which ends at PEND). We assume the |
| 3123 | starting character is in `P[-2]'. (`P[-1]' is the character `-'.) |
| 3124 | Then we set the translation of all bits between the starting and |
| 3125 | ending characters (inclusive) in the compiled pattern B. |
| 3126 | |
| 3127 | Return an error code. |
| 3128 | |
| 3129 | We use these short variable names so we can use the same macros as |
| 3130 | `regex_compile' itself. */ |
| 3131 | |
| 3132 | static reg_errcode_t |
| 3133 | compile_range (p_ptr, pend, translate, syntax, b) |
| 3134 | const char **p_ptr, *pend; |
| 3135 | RE_TRANSLATE_TYPE translate; |
| 3136 | reg_syntax_t syntax; |
| 3137 | unsigned char *b; |
| 3138 | { |
| 3139 | unsigned this_char; |
| 3140 | |
| 3141 | const char *p = *p_ptr; |
| 3142 | unsigned int range_start, range_end; |
| 3143 | |
| 3144 | if (p == pend) |
| 3145 | return REG_ERANGE; |
| 3146 | |
| 3147 | /* Even though the pattern is a signed `char *', we need to fetch |
| 3148 | with unsigned char *'s; if the high bit of the pattern character |
| 3149 | is set, the range endpoints will be negative if we fetch using a |
| 3150 | signed char *. |
| 3151 | |
| 3152 | We also want to fetch the endpoints without translating them; the |
| 3153 | appropriate translation is done in the bit-setting loop below. */ |
| 3154 | /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */ |
| 3155 | range_start = ((const unsigned char *) p)[-2]; |
| 3156 | range_end = ((const unsigned char *) p)[0]; |
| 3157 | |
| 3158 | /* Have to increment the pointer into the pattern string, so the |
| 3159 | caller isn't still at the ending character. */ |
| 3160 | (*p_ptr)++; |
| 3161 | |
| 3162 | /* If the start is after the end, the range is empty. */ |
| 3163 | if (range_start > range_end) |
| 3164 | return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; |
| 3165 | |
| 3166 | /* Here we see why `this_char' has to be larger than an `unsigned |
| 3167 | char' -- the range is inclusive, so if `range_end' == 0xff |
| 3168 | (assuming 8-bit characters), we would otherwise go into an infinite |
| 3169 | loop, since all characters <= 0xff. */ |
| 3170 | for (this_char = range_start; this_char <= range_end; this_char++) |
| 3171 | { |
| 3172 | SET_LIST_BIT (TRANSLATE (this_char)); |
| 3173 | } |
| 3174 | |
| 3175 | return REG_NOERROR; |
| 3176 | } |
| 3177 | |
| 3178 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in |
| 3179 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible |
| 3180 | characters can start a string that matches the pattern. This fastmap |
| 3181 | is used by re_search to skip quickly over impossible starting points. |
| 3182 | |
| 3183 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data |
| 3184 | area as BUFP->fastmap. |
| 3185 | |
| 3186 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in |
| 3187 | the pattern buffer. |
| 3188 | |
| 3189 | Returns 0 if we succeed, -2 if an internal error. */ |
| 3190 | |
| 3191 | int |
| 3192 | re_compile_fastmap (bufp) |
| 3193 | struct re_pattern_buffer *bufp; |
| 3194 | { |
| 3195 | int j, k; |
| 3196 | #ifdef MATCH_MAY_ALLOCATE |
| 3197 | fail_stack_type fail_stack; |
| 3198 | #endif |
| 3199 | #ifndef REGEX_MALLOC |
| 3200 | char *destination; |
| 3201 | #endif |
| 3202 | |
| 3203 | register char *fastmap = bufp->fastmap; |
| 3204 | unsigned char *pattern = bufp->buffer; |
| 3205 | unsigned char *p = pattern; |
| 3206 | register unsigned char *pend = pattern + bufp->used; |
| 3207 | |
| 3208 | #ifdef REL_ALLOC |
| 3209 | /* This holds the pointer to the failure stack, when |
| 3210 | it is allocated relocatably. */ |
| 3211 | fail_stack_elt_t *failure_stack_ptr; |
| 3212 | #endif |
| 3213 | |
| 3214 | /* Assume that each path through the pattern can be null until |
| 3215 | proven otherwise. We set this false at the bottom of switch |
| 3216 | statement, to which we get only if a particular path doesn't |
| 3217 | match the empty string. */ |
| 3218 | boolean path_can_be_null = true; |
| 3219 | |
| 3220 | /* We aren't doing a `succeed_n' to begin with. */ |
| 3221 | boolean succeed_n_p = false; |
| 3222 | |
| 3223 | assert (fastmap != NULL && p != NULL); |
| 3224 | |
| 3225 | INIT_FAIL_STACK (); |
paul | d1724b6 | 2003-10-22 02:41:52 +0000 | [diff] [blame] | 3226 | memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */ |
paul | 718e374 | 2002-12-13 20:15:29 +0000 | [diff] [blame] | 3227 | bufp->fastmap_accurate = 1; /* It will be when we're done. */ |
| 3228 | bufp->can_be_null = 0; |
| 3229 | |
| 3230 | while (1) |
| 3231 | { |
| 3232 | if (p == pend || *p == succeed) |
| 3233 | { |
| 3234 | /* We have reached the (effective) end of pattern. */ |
| 3235 | if (!FAIL_STACK_EMPTY ()) |
| 3236 | { |
| 3237 | bufp->can_be_null |= path_can_be_null; |
| 3238 | |
| 3239 | /* Reset for next path. */ |
| 3240 | path_can_be_null = true; |
| 3241 | |
| 3242 | p = fail_stack.stack[--fail_stack.avail].pointer; |
| 3243 | |
| 3244 | continue; |
| 3245 | } |
| 3246 | else |
| 3247 | break; |
| 3248 | } |
| 3249 | |
| 3250 | /* We should never be about to go beyond the end of the pattern. */ |
| 3251 | assert (p < pend); |
| 3252 | |
| 3253 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
| 3254 | { |
| 3255 | |
| 3256 | /* I guess the idea here is to simply not bother with a fastmap |
| 3257 | if a backreference is used, since it's too hard to figure out |
| 3258 | the fastmap for the corresponding group. Setting |
| 3259 | `can_be_null' stops `re_search_2' from using the fastmap, so |
| 3260 | that is all we do. */ |
| 3261 | case duplicate: |
| 3262 | bufp->can_be_null = 1; |
| 3263 | goto done; |
| 3264 | |
| 3265 | |
| 3266 | /* Following are the cases which match a character. These end |
| 3267 | with `break'. */ |
| 3268 | |
| 3269 | case exactn: |
| 3270 | fastmap[p[1]] = 1; |
| 3271 | break; |
| 3272 | |
| 3273 | |
| 3274 | case charset: |
| 3275 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
| 3276 | if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) |
| 3277 | fastmap[j] = 1; |
| 3278 | break; |
| 3279 | |
| 3280 | |
| 3281 | case charset_not: |
| 3282 | /* Chars beyond end of map must be allowed. */ |
| 3283 | for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
| 3284 | fastmap[j] = 1; |
| 3285 | |
| 3286 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
| 3287 | if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) |
| 3288 | fastmap[j] = 1; |
| 3289 | break; |
| 3290 | |
| 3291 | |
| 3292 | case wordchar: |
| 3293 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
| 3294 | if (SYNTAX (j) == Sword) |
| 3295 | fastmap[j] = 1; |
| 3296 | break; |
| 3297 | |
| 3298 | |
| 3299 | case notwordchar: |
| 3300 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
| 3301 | if (SYNTAX (j) != Sword) |
| 3302 | fastmap[j] = 1; |
| 3303 | break; |
| 3304 | |
| 3305 | |
| 3306 | case anychar: |
| 3307 | { |
| 3308 | int fastmap_newline = fastmap['\n']; |
| 3309 | |
| 3310 | /* `.' matches anything ... */ |
| 3311 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
| 3312 | fastmap[j] = 1; |
| 3313 | |
| 3314 | /* ... except perhaps newline. */ |
| 3315 | if (!(bufp->syntax & RE_DOT_NEWLINE)) |
| 3316 | fastmap['\n'] = fastmap_newline; |
| 3317 | |
| 3318 | /* Return if we have already set `can_be_null'; if we have, |
| 3319 | then the fastmap is irrelevant. Something's wrong here. */ |
| 3320 | else if (bufp->can_be_null) |
| 3321 | goto done; |
| 3322 | |
| 3323 | /* Otherwise, have to check alternative paths. */ |
| 3324 | break; |
| 3325 | } |
| 3326 | |
| 3327 | #ifdef emacs |
| 3328 | case syntaxspec: |
| 3329 | k = *p++; |
| 3330 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
| 3331 | if (SYNTAX (j) == (enum syntaxcode) k) |
| 3332 | fastmap[j] = 1; |
| 3333 | break; |
| 3334 | |
| 3335 | |
| 3336 | case notsyntaxspec: |
| 3337 | k = *p++; |
| 3338 | for (j = 0; j < (1 << BYTEWIDTH); j++) |
| 3339 | if (SYNTAX (j) != (enum syntaxcode) k) |
| 3340 | fastmap[j] = 1; |
| 3341 | break; |
| 3342 | |
| 3343 | |
| 3344 | /* All cases after this match the empty string. These end with |
| 3345 | `continue'. */ |
| 3346 | |
| 3347 | |
| 3348 | case before_dot: |
| 3349 | case at_dot: |
| 3350 | case after_dot: |
| 3351 | continue; |
| 3352 | #endif /* emacs */ |
| 3353 | |
| 3354 | |
| 3355 | case no_op: |
| 3356 | case begline: |
| 3357 | case endline: |
| 3358 | case begbuf: |
| 3359 | case endbuf: |
| 3360 | case wordbound: |
| 3361 | case notwordbound: |
| 3362 | case wordbeg: |
| 3363 | case wordend: |
| 3364 | case push_dummy_failure: |
| 3365 | continue; |
| 3366 | |
| 3367 | |
| 3368 | case jump_n: |
| 3369 | case pop_failure_jump: |
| 3370 | case maybe_pop_jump: |
| 3371 | case jump: |
| 3372 | case jump_past_alt: |
| 3373 | case dummy_failure_jump: |
| 3374 | EXTRACT_NUMBER_AND_INCR (j, p); |
| 3375 | p += j; |
| 3376 | if (j > 0) |
| 3377 | continue; |
| 3378 | |
| 3379 | /* Jump backward implies we just went through the body of a |
| 3380 | loop and matched nothing. Opcode jumped to should be |
| 3381 | `on_failure_jump' or `succeed_n'. Just treat it like an |
| 3382 | ordinary jump. For a * loop, it has pushed its failure |
| 3383 | point already; if so, discard that as redundant. */ |
| 3384 | if ((re_opcode_t) *p != on_failure_jump |
| 3385 | && (re_opcode_t) *p != succeed_n) |
| 3386 | continue; |
| 3387 | |
| 3388 | p++; |
| 3389 | EXTRACT_NUMBER_AND_INCR (j, p); |
| 3390 | p += j; |
| 3391 | |
| 3392 | /* If what's on the stack is where we are now, pop it. */ |
| 3393 | if (!FAIL_STACK_EMPTY () |
| 3394 | && fail_stack.stack[fail_stack.avail - 1].pointer == p) |
| 3395 | fail_stack.avail--; |
| 3396 | |
| 3397 | continue; |
| 3398 | |
| 3399 | |
| 3400 | case on_failure_jump: |
| 3401 | case on_failure_keep_string_jump: |
| 3402 | handle_on_failure_jump: |
| 3403 | EXTRACT_NUMBER_AND_INCR (j, p); |
| 3404 | |
| 3405 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the |
| 3406 | end of the pattern. We don't want to push such a point, |
| 3407 | since when we restore it above, entering the switch will |
| 3408 | increment `p' past the end of the pattern. We don't need |
| 3409 | to push such a point since we obviously won't find any more |
| 3410 | fastmap entries beyond `pend'. Such a pattern can match |
| 3411 | the null string, though. */ |
| 3412 | if (p + j < pend) |
| 3413 | { |
| 3414 | if (!PUSH_PATTERN_OP (p + j, fail_stack)) |
| 3415 | { |
| 3416 | RESET_FAIL_STACK (); |
| 3417 | return -2; |
| 3418 | } |
| 3419 | } |
| 3420 | else |
| 3421 | bufp->can_be_null = 1; |
| 3422 | |
| 3423 | if (succeed_n_p) |
| 3424 | { |
| 3425 | EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ |
| 3426 | succeed_n_p = false; |
| 3427 | } |
| 3428 | |
| 3429 | continue; |
| 3430 | |
| 3431 | |
| 3432 | case succeed_n: |
| 3433 | /* Get to the number of times to succeed. */ |
| 3434 | p += 2; |
| 3435 | |
| 3436 | /* Increment p past the n for when k != 0. */ |
| 3437 | EXTRACT_NUMBER_AND_INCR (k, p); |
| 3438 | if (k == 0) |
| 3439 | { |
| 3440 | p -= 4; |
| 3441 | succeed_n_p = true; /* Spaghetti code alert. */ |
| 3442 | goto handle_on_failure_jump; |
| 3443 | } |
| 3444 | continue; |
| 3445 | |
| 3446 | |
| 3447 | case set_number_at: |
| 3448 | p += 4; |
| 3449 | continue; |
| 3450 | |
| 3451 | |
| 3452 | case start_memory: |
| 3453 | case stop_memory: |
| 3454 | p += 2; |
| 3455 | continue; |
| 3456 | |
| 3457 | |
| 3458 | default: |
| 3459 | abort (); /* We have listed all the cases. */ |
| 3460 | } /* switch *p++ */ |
| 3461 | |
| 3462 | /* Getting here means we have found the possible starting |
| 3463 | characters for one path of the pattern -- and that the empty |
| 3464 | string does not match. We need not follow this path further. |
| 3465 | Instead, look at the next alternative (remembered on the |
| 3466 | stack), or quit if no more. The test at the top of the loop |
| 3467 | does these things. */ |
| 3468 | path_can_be_null = false; |
| 3469 | p = pend; |
| 3470 | } /* while p */ |
| 3471 | |
| 3472 | /* Set `can_be_null' for the last path (also the first path, if the |
| 3473 | pattern is empty). */ |
| 3474 | bufp->can_be_null |= path_can_be_null; |
| 3475 | |
| 3476 | done: |
| 3477 | RESET_FAIL_STACK (); |
| 3478 | return 0; |
| 3479 | } /* re_compile_fastmap */ |
| 3480 | #ifdef _LIBC |
| 3481 | weak_alias (__re_compile_fastmap, re_compile_fastmap) |
| 3482 | #endif |
| 3483 | |
| 3484 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
| 3485 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
| 3486 | this memory for recording register information. STARTS and ENDS |
| 3487 | must be allocated using the malloc library routine, and must each |
| 3488 | be at least NUM_REGS * sizeof (regoff_t) bytes long. |
| 3489 | |
| 3490 | If NUM_REGS == 0, then subsequent matches should allocate their own |
| 3491 | register data. |
| 3492 | |
| 3493 | Unless this function is called, the first search or match using |
| 3494 | PATTERN_BUFFER will allocate its own register data, without |
| 3495 | freeing the old data. */ |
| 3496 | |
| 3497 | void |
| 3498 | re_set_registers (bufp, regs, num_regs, starts, ends) |
| 3499 | struct re_pattern_buffer *bufp; |
| 3500 | struct re_registers *regs; |
| 3501 | unsigned num_regs; |
| 3502 | regoff_t *starts, *ends; |
| 3503 | { |
| 3504 | if (num_regs) |
| 3505 | { |
| 3506 | bufp->regs_allocated = REGS_REALLOCATE; |
| 3507 | regs->num_regs = num_regs; |
| 3508 | regs->start = starts; |
| 3509 | regs->end = ends; |
| 3510 | } |
| 3511 | else |
| 3512 | { |
| 3513 | bufp->regs_allocated = REGS_UNALLOCATED; |
| 3514 | regs->num_regs = 0; |
| 3515 | regs->start = regs->end = (regoff_t *) 0; |
| 3516 | } |
| 3517 | } |
| 3518 | #ifdef _LIBC |
| 3519 | weak_alias (__re_set_registers, re_set_registers) |
| 3520 | #endif |
| 3521 | |
| 3522 | /* Searching routines. */ |
| 3523 | |
| 3524 | /* Like re_search_2, below, but only one string is specified, and |
| 3525 | doesn't let you say where to stop matching. */ |
| 3526 | |
| 3527 | int |
| 3528 | re_search (bufp, string, size, startpos, range, regs) |
| 3529 | struct re_pattern_buffer *bufp; |
| 3530 | const char *string; |
| 3531 | int size, startpos, range; |
| 3532 | struct re_registers *regs; |
| 3533 | { |
| 3534 | return re_search_2 (bufp, NULL, 0, string, size, startpos, range, |
| 3535 | regs, size); |
| 3536 | } |
| 3537 | #ifdef _LIBC |
| 3538 | weak_alias (__re_search, re_search) |
| 3539 | #endif |
| 3540 | |
| 3541 | |
| 3542 | /* Using the compiled pattern in BUFP->buffer, first tries to match the |
| 3543 | virtual concatenation of STRING1 and STRING2, starting first at index |
| 3544 | STARTPOS, then at STARTPOS + 1, and so on. |
| 3545 | |
| 3546 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. |
| 3547 | |
| 3548 | RANGE is how far to scan while trying to match. RANGE = 0 means try |
| 3549 | only at STARTPOS; in general, the last start tried is STARTPOS + |
| 3550 | RANGE. |
| 3551 | |
| 3552 | In REGS, return the indices of the virtual concatenation of STRING1 |
| 3553 | and STRING2 that matched the entire BUFP->buffer and its contained |
| 3554 | subexpressions. |
| 3555 | |
| 3556 | Do not consider matching one past the index STOP in the virtual |
| 3557 | concatenation of STRING1 and STRING2. |
| 3558 | |
| 3559 | We return either the position in the strings at which the match was |
| 3560 | found, -1 if no match, or -2 if error (such as failure |
| 3561 | stack overflow). */ |
| 3562 | |
| 3563 | int |
| 3564 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) |
| 3565 | struct re_pattern_buffer *bufp; |
| 3566 | const char *string1, *string2; |
| 3567 | int size1, size2; |
| 3568 | int startpos; |
| 3569 | int range; |
| 3570 | struct re_registers *regs; |
| 3571 | int stop; |
| 3572 | { |
| 3573 | int val; |
| 3574 | register char *fastmap = bufp->fastmap; |
| 3575 | register RE_TRANSLATE_TYPE translate = bufp->translate; |
| 3576 | int total_size = size1 + size2; |
| 3577 | int endpos = startpos + range; |
| 3578 | |
| 3579 | /* Check for out-of-range STARTPOS. */ |
| 3580 | if (startpos < 0 || startpos > total_size) |
| 3581 | return -1; |
| 3582 | |
| 3583 | /* Fix up RANGE if it might eventually take us outside |
| 3584 | the virtual concatenation of STRING1 and STRING2. |
| 3585 | Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ |
| 3586 | if (endpos < 0) |
| 3587 | range = 0 - startpos; |
| 3588 | else if (endpos > total_size) |
| 3589 | range = total_size - startpos; |
| 3590 | |
| 3591 | /* If the search isn't to be a backwards one, don't waste time in a |
| 3592 | search for a pattern that must be anchored. */ |
| 3593 | if (bufp->used > 0 && range > 0 |
| 3594 | && ((re_opcode_t) bufp->buffer[0] == begbuf |
| 3595 | /* `begline' is like `begbuf' if it cannot match at newlines. */ |
| 3596 | || ((re_opcode_t) bufp->buffer[0] == begline |
| 3597 | && !bufp->newline_anchor))) |
| 3598 | { |
| 3599 | if (startpos > 0) |
| 3600 | return -1; |
| 3601 | else |
| 3602 | range = 1; |
| 3603 | } |
| 3604 | |
| 3605 | #ifdef emacs |
| 3606 | /* In a forward search for something that starts with \=. |
| 3607 | don't keep searching past point. */ |
| 3608 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) |
| 3609 | { |
| 3610 | range = PT - startpos; |
| 3611 | if (range <= 0) |
| 3612 | return -1; |
| 3613 | } |
| 3614 | #endif /* emacs */ |
| 3615 | |
| 3616 | /* Update the fastmap now if not correct already. */ |
| 3617 | if (fastmap && !bufp->fastmap_accurate) |
| 3618 | if (re_compile_fastmap (bufp) == -2) |
| 3619 | return -2; |
| 3620 | |
| 3621 | /* Loop through the string, looking for a place to start matching. */ |
| 3622 | for (;;) |
| 3623 | { |
| 3624 | /* If a fastmap is supplied, skip quickly over characters that |
| 3625 | cannot be the start of a match. If the pattern can match the |
| 3626 | null string, however, we don't need to skip characters; we want |
| 3627 | the first null string. */ |
| 3628 | if (fastmap && startpos < total_size && !bufp->can_be_null) |
| 3629 | { |
| 3630 | if (range > 0) /* Searching forwards. */ |
| 3631 | { |
| 3632 | register const char *d; |
| 3633 | register int lim = 0; |
| 3634 | int irange = range; |
| 3635 | |
| 3636 | if (startpos < size1 && startpos + range >= size1) |
| 3637 | lim = range - (size1 - startpos); |
| 3638 | |
| 3639 | d = (startpos >= size1 ? string2 - size1 : string1) + startpos; |
| 3640 | |
| 3641 | /* Written out as an if-else to avoid testing `translate' |
| 3642 | inside the loop. */ |
| 3643 | if (translate) |
| 3644 | while (range > lim |
| 3645 | && !fastmap[(unsigned char) |
| 3646 | translate[(unsigned char) *d++]]) |
| 3647 | range--; |
| 3648 | else |
| 3649 | while (range > lim && !fastmap[(unsigned char) *d++]) |
| 3650 | range--; |
| 3651 | |
| 3652 | startpos += irange - range; |
| 3653 | } |
| 3654 | else /* Searching backwards. */ |
| 3655 | { |
| 3656 | register char c = (size1 == 0 || startpos >= size1 |
| 3657 | ? string2[startpos - size1] |
| 3658 | : string1[startpos]); |
| 3659 | |
| 3660 | if (!fastmap[(unsigned char) TRANSLATE (c)]) |
| 3661 | goto advance; |
| 3662 | } |
| 3663 | } |
| 3664 | |
| 3665 | /* If can't match the null string, and that's all we have left, fail. */ |
| 3666 | if (range >= 0 && startpos == total_size && fastmap |
| 3667 | && !bufp->can_be_null) |
| 3668 | return -1; |
| 3669 | |
| 3670 | val = re_match_2_internal (bufp, string1, size1, string2, size2, |
| 3671 | startpos, regs, stop); |
| 3672 | #ifndef REGEX_MALLOC |
| 3673 | # ifdef C_ALLOCA |
| 3674 | alloca (0); |
| 3675 | # endif |
| 3676 | #endif |
| 3677 | |
| 3678 | if (val >= 0) |
| 3679 | return startpos; |
| 3680 | |
| 3681 | if (val == -2) |
| 3682 | return -2; |
| 3683 | |
| 3684 | advance: |
| 3685 | if (!range) |
| 3686 | break; |
| 3687 | else if (range > 0) |
| 3688 | { |
| 3689 | range--; |
| 3690 | startpos++; |
| 3691 | } |
| 3692 | else |
| 3693 | { |
| 3694 | range++; |
| 3695 | startpos--; |
| 3696 | } |
| 3697 | } |
| 3698 | return -1; |
| 3699 | } /* re_search_2 */ |
| 3700 | #ifdef _LIBC |
| 3701 | weak_alias (__re_search_2, re_search_2) |
| 3702 | #endif |
| 3703 | |
| 3704 | /* This converts PTR, a pointer into one of the search strings `string1' |
| 3705 | and `string2' into an offset from the beginning of that string. */ |
| 3706 | #define POINTER_TO_OFFSET(ptr) \ |
| 3707 | (FIRST_STRING_P (ptr) \ |
| 3708 | ? ((regoff_t) ((ptr) - string1)) \ |
| 3709 | : ((regoff_t) ((ptr) - string2 + size1))) |
| 3710 | |
| 3711 | /* Macros for dealing with the split strings in re_match_2. */ |
| 3712 | |
| 3713 | #define MATCHING_IN_FIRST_STRING (dend == end_match_1) |
| 3714 | |
| 3715 | /* Call before fetching a character with *d. This switches over to |
| 3716 | string2 if necessary. */ |
| 3717 | #define PREFETCH() \ |
| 3718 | while (d == dend) \ |
| 3719 | { \ |
| 3720 | /* End of string2 => fail. */ \ |
| 3721 | if (dend == end_match_2) \ |
| 3722 | goto fail; \ |
| 3723 | /* End of string1 => advance to string2. */ \ |
| 3724 | d = string2; \ |
| 3725 | dend = end_match_2; \ |
| 3726 | } |
| 3727 | |
| 3728 | |
| 3729 | /* Test if at very beginning or at very end of the virtual concatenation |
| 3730 | of `string1' and `string2'. If only one string, it's `string2'. */ |
| 3731 | #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) |
| 3732 | #define AT_STRINGS_END(d) ((d) == end2) |
| 3733 | |
| 3734 | |
| 3735 | /* Test if D points to a character which is word-constituent. We have |
| 3736 | two special cases to check for: if past the end of string1, look at |
| 3737 | the first character in string2; and if before the beginning of |
| 3738 | string2, look at the last character in string1. */ |
| 3739 | #define WORDCHAR_P(d) \ |
| 3740 | (SYNTAX ((d) == end1 ? *string2 \ |
| 3741 | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ |
| 3742 | == Sword) |
| 3743 | |
| 3744 | /* Disabled due to a compiler bug -- see comment at case wordbound */ |
| 3745 | #if 0 |
| 3746 | /* Test if the character before D and the one at D differ with respect |
| 3747 | to being word-constituent. */ |
| 3748 | #define AT_WORD_BOUNDARY(d) \ |
| 3749 | (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ |
| 3750 | || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) |
| 3751 | #endif |
| 3752 | |
| 3753 | /* Free everything we malloc. */ |
| 3754 | #ifdef MATCH_MAY_ALLOCATE |
| 3755 | # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL |
| 3756 | # define FREE_VARIABLES() \ |
| 3757 | do { \ |
| 3758 | REGEX_FREE_STACK (fail_stack.stack); \ |
| 3759 | FREE_VAR (regstart); \ |
| 3760 | FREE_VAR (regend); \ |
| 3761 | FREE_VAR (old_regstart); \ |
| 3762 | FREE_VAR (old_regend); \ |
| 3763 | FREE_VAR (best_regstart); \ |
| 3764 | FREE_VAR (best_regend); \ |
| 3765 | FREE_VAR (reg_info); \ |
| 3766 | FREE_VAR (reg_dummy); \ |
| 3767 | FREE_VAR (reg_info_dummy); \ |
| 3768 | } while (0) |
| 3769 | #else |
| 3770 | # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ |
| 3771 | #endif /* not MATCH_MAY_ALLOCATE */ |
| 3772 | |
| 3773 | /* These values must meet several constraints. They must not be valid |
| 3774 | register values; since we have a limit of 255 registers (because |
| 3775 | we use only one byte in the pattern for the register number), we can |
| 3776 | use numbers larger than 255. They must differ by 1, because of |
| 3777 | NUM_FAILURE_ITEMS above. And the value for the lowest register must |
| 3778 | be larger than the value for the highest register, so we do not try |
| 3779 | to actually save any registers when none are active. */ |
| 3780 | #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) |
| 3781 | #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) |
| 3782 | |
| 3783 | /* Matching routines. */ |
| 3784 | |
| 3785 | #ifndef emacs /* Emacs never uses this. */ |
| 3786 | /* re_match is like re_match_2 except it takes only a single string. */ |
| 3787 | |
| 3788 | int |
| 3789 | re_match (bufp, string, size, pos, regs) |
| 3790 | struct re_pattern_buffer *bufp; |
| 3791 | const char *string; |
| 3792 | int size, pos; |
| 3793 | struct re_registers *regs; |
| 3794 | { |
| 3795 | int result = re_match_2_internal (bufp, NULL, 0, string, size, |
| 3796 | pos, regs, size); |
| 3797 | # ifndef REGEX_MALLOC |
| 3798 | # ifdef C_ALLOCA |
| 3799 | alloca (0); |
| 3800 | # endif |
| 3801 | # endif |
| 3802 | return result; |
| 3803 | } |
| 3804 | # ifdef _LIBC |
| 3805 | weak_alias (__re_match, re_match) |
| 3806 | # endif |
| 3807 | #endif /* not emacs */ |
| 3808 | |
| 3809 | static boolean group_match_null_string_p _RE_ARGS ((unsigned char **p, |
| 3810 | unsigned char *end, |
| 3811 | register_info_type *reg_info)); |
| 3812 | static boolean alt_match_null_string_p _RE_ARGS ((unsigned char *p, |
| 3813 | unsigned char *end, |
| 3814 | register_info_type *reg_info)); |
| 3815 | static boolean common_op_match_null_string_p _RE_ARGS ((unsigned char **p, |
| 3816 | unsigned char *end, |
| 3817 | register_info_type *reg_info)); |
| 3818 | static int bcmp_translate _RE_ARGS ((const char *s1, const char *s2, |
| 3819 | int len, char *translate)); |
| 3820 | |
| 3821 | /* re_match_2 matches the compiled pattern in BUFP against the |
| 3822 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 |
| 3823 | and SIZE2, respectively). We start matching at POS, and stop |
| 3824 | matching at STOP. |
| 3825 | |
| 3826 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we |
| 3827 | store offsets for the substring each group matched in REGS. See the |
| 3828 | documentation for exactly how many groups we fill. |
| 3829 | |
| 3830 | We return -1 if no match, -2 if an internal error (such as the |
| 3831 | failure stack overflowing). Otherwise, we return the length of the |
| 3832 | matched substring. */ |
| 3833 | |
| 3834 | int |
| 3835 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
| 3836 | struct re_pattern_buffer *bufp; |
| 3837 | const char *string1, *string2; |
| 3838 | int size1, size2; |
| 3839 | int pos; |
| 3840 | struct re_registers *regs; |
| 3841 | int stop; |
| 3842 | { |
| 3843 | int result = re_match_2_internal (bufp, string1, size1, string2, size2, |
| 3844 | pos, regs, stop); |
| 3845 | #ifndef REGEX_MALLOC |
| 3846 | # ifdef C_ALLOCA |
| 3847 | alloca (0); |
| 3848 | # endif |
| 3849 | #endif |
| 3850 | return result; |
| 3851 | } |
| 3852 | #ifdef _LIBC |
| 3853 | weak_alias (__re_match_2, re_match_2) |
| 3854 | #endif |
| 3855 | |
| 3856 | /* This is a separate function so that we can force an alloca cleanup |
| 3857 | afterwards. */ |
| 3858 | static int |
| 3859 | re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) |
| 3860 | struct re_pattern_buffer *bufp; |
| 3861 | const char *string1, *string2; |
| 3862 | int size1, size2; |
| 3863 | int pos; |
| 3864 | struct re_registers *regs; |
| 3865 | int stop; |
| 3866 | { |
| 3867 | /* General temporaries. */ |
| 3868 | int mcnt; |
| 3869 | unsigned char *p1; |
| 3870 | |
| 3871 | /* Just past the end of the corresponding string. */ |
| 3872 | const char *end1, *end2; |
| 3873 | |
| 3874 | /* Pointers into string1 and string2, just past the last characters in |
| 3875 | each to consider matching. */ |
| 3876 | const char *end_match_1, *end_match_2; |
| 3877 | |
| 3878 | /* Where we are in the data, and the end of the current string. */ |
| 3879 | const char *d, *dend; |
| 3880 | |
| 3881 | /* Where we are in the pattern, and the end of the pattern. */ |
| 3882 | unsigned char *p = bufp->buffer; |
| 3883 | register unsigned char *pend = p + bufp->used; |
| 3884 | |
| 3885 | /* Mark the opcode just after a start_memory, so we can test for an |
| 3886 | empty subpattern when we get to the stop_memory. */ |
| 3887 | unsigned char *just_past_start_mem = 0; |
| 3888 | |
| 3889 | /* We use this to map every character in the string. */ |
| 3890 | RE_TRANSLATE_TYPE translate = bufp->translate; |
| 3891 | |
| 3892 | /* Failure point stack. Each place that can handle a failure further |
| 3893 | down the line pushes a failure point on this stack. It consists of |
| 3894 | restart, regend, and reg_info for all registers corresponding to |
| 3895 | the subexpressions we're currently inside, plus the number of such |
| 3896 | registers, and, finally, two char *'s. The first char * is where |
| 3897 | to resume scanning the pattern; the second one is where to resume |
| 3898 | scanning the strings. If the latter is zero, the failure point is |
| 3899 | a ``dummy''; if a failure happens and the failure point is a dummy, |
| 3900 | it gets discarded and the next next one is tried. */ |
| 3901 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
| 3902 | fail_stack_type fail_stack; |
| 3903 | #endif |
| 3904 | #ifdef DEBUG |
| 3905 | static unsigned failure_id; |
| 3906 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; |
| 3907 | #endif |
| 3908 | |
| 3909 | #ifdef REL_ALLOC |
| 3910 | /* This holds the pointer to the failure stack, when |
| 3911 | it is allocated relocatably. */ |
| 3912 | fail_stack_elt_t *failure_stack_ptr; |
| 3913 | #endif |
| 3914 | |
| 3915 | /* We fill all the registers internally, independent of what we |
| 3916 | return, for use in backreferences. The number here includes |
| 3917 | an element for register zero. */ |
| 3918 | size_t num_regs = bufp->re_nsub + 1; |
| 3919 | |
| 3920 | /* The currently active registers. */ |
| 3921 | active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
| 3922 | active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
| 3923 | |
| 3924 | /* Information on the contents of registers. These are pointers into |
| 3925 | the input strings; they record just what was matched (on this |
| 3926 | attempt) by a subexpression part of the pattern, that is, the |
| 3927 | regnum-th regstart pointer points to where in the pattern we began |
| 3928 | matching and the regnum-th regend points to right after where we |
| 3929 | stopped matching the regnum-th subexpression. (The zeroth register |
| 3930 | keeps track of what the whole pattern matches.) */ |
| 3931 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| 3932 | const char **regstart, **regend; |
| 3933 | #endif |
| 3934 | |
| 3935 | /* If a group that's operated upon by a repetition operator fails to |
| 3936 | match anything, then the register for its start will need to be |
| 3937 | restored because it will have been set to wherever in the string we |
| 3938 | are when we last see its open-group operator. Similarly for a |
| 3939 | register's end. */ |
| 3940 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| 3941 | const char **old_regstart, **old_regend; |
| 3942 | #endif |
| 3943 | |
| 3944 | /* The is_active field of reg_info helps us keep track of which (possibly |
| 3945 | nested) subexpressions we are currently in. The matched_something |
| 3946 | field of reg_info[reg_num] helps us tell whether or not we have |
| 3947 | matched any of the pattern so far this time through the reg_num-th |
| 3948 | subexpression. These two fields get reset each time through any |
| 3949 | loop their register is in. */ |
| 3950 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
| 3951 | register_info_type *reg_info; |
| 3952 | #endif |
| 3953 | |
| 3954 | /* The following record the register info as found in the above |
| 3955 | variables when we find a match better than any we've seen before. |
| 3956 | This happens as we backtrack through the failure points, which in |
| 3957 | turn happens only if we have not yet matched the entire string. */ |
| 3958 | unsigned best_regs_set = false; |
| 3959 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| 3960 | const char **best_regstart, **best_regend; |
| 3961 | #endif |
| 3962 | |
| 3963 | /* Logically, this is `best_regend[0]'. But we don't want to have to |
| 3964 | allocate space for that if we're not allocating space for anything |
| 3965 | else (see below). Also, we never need info about register 0 for |
| 3966 | any of the other register vectors, and it seems rather a kludge to |
| 3967 | treat `best_regend' differently than the rest. So we keep track of |
| 3968 | the end of the best match so far in a separate variable. We |
| 3969 | initialize this to NULL so that when we backtrack the first time |
| 3970 | and need to test it, it's not garbage. */ |
| 3971 | const char *match_end = NULL; |
| 3972 | |
| 3973 | /* This helps SET_REGS_MATCHED avoid doing redundant work. */ |
| 3974 | int set_regs_matched_done = 0; |
| 3975 | |
| 3976 | /* Used when we pop values we don't care about. */ |
| 3977 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
| 3978 | const char **reg_dummy; |
| 3979 | register_info_type *reg_info_dummy; |
| 3980 | #endif |
| 3981 | |
| 3982 | #ifdef DEBUG |
| 3983 | /* Counts the total number of registers pushed. */ |
| 3984 | unsigned num_regs_pushed = 0; |
| 3985 | #endif |
| 3986 | |
| 3987 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); |
| 3988 | |
| 3989 | INIT_FAIL_STACK (); |
| 3990 | |
| 3991 | #ifdef MATCH_MAY_ALLOCATE |
| 3992 | /* Do not bother to initialize all the register variables if there are |
| 3993 | no groups in the pattern, as it takes a fair amount of time. If |
| 3994 | there are groups, we include space for register 0 (the whole |
| 3995 | pattern), even though we never use it, since it simplifies the |
| 3996 | array indexing. We should fix this. */ |
| 3997 | if (bufp->re_nsub) |
| 3998 | { |
| 3999 | regstart = REGEX_TALLOC (num_regs, const char *); |
| 4000 | regend = REGEX_TALLOC (num_regs, const char *); |
| 4001 | old_regstart = REGEX_TALLOC (num_regs, const char *); |
| 4002 | old_regend = REGEX_TALLOC (num_regs, const char *); |
| 4003 | best_regstart = REGEX_TALLOC (num_regs, const char *); |
| 4004 | best_regend = REGEX_TALLOC (num_regs, const char *); |
| 4005 | reg_info = REGEX_TALLOC (num_regs, register_info_type); |
| 4006 | reg_dummy = REGEX_TALLOC (num_regs, const char *); |
| 4007 | reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); |
| 4008 | |
| 4009 | if (!(regstart && regend && old_regstart && old_regend && reg_info |
| 4010 | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) |
| 4011 | { |
| 4012 | FREE_VARIABLES (); |
| 4013 | return -2; |
| 4014 | } |
| 4015 | } |
| 4016 | else |
| 4017 | { |
| 4018 | /* We must initialize all our variables to NULL, so that |
| 4019 | `FREE_VARIABLES' doesn't try to free them. */ |
| 4020 | regstart = regend = old_regstart = old_regend = best_regstart |
| 4021 | = best_regend = reg_dummy = NULL; |
| 4022 | reg_info = reg_info_dummy = (register_info_type *) NULL; |
| 4023 | } |
| 4024 | #endif /* MATCH_MAY_ALLOCATE */ |
| 4025 | |
| 4026 | /* The starting position is bogus. */ |
| 4027 | if (pos < 0 || pos > size1 + size2) |
| 4028 | { |
| 4029 | FREE_VARIABLES (); |
| 4030 | return -1; |
| 4031 | } |
| 4032 | |
| 4033 | /* Initialize subexpression text positions to -1 to mark ones that no |
| 4034 | start_memory/stop_memory has been seen for. Also initialize the |
| 4035 | register information struct. */ |
| 4036 | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) |
| 4037 | { |
| 4038 | regstart[mcnt] = regend[mcnt] |
| 4039 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; |
| 4040 | |
| 4041 | REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; |
| 4042 | IS_ACTIVE (reg_info[mcnt]) = 0; |
| 4043 | MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
| 4044 | EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
| 4045 | } |
| 4046 | |
| 4047 | /* We move `string1' into `string2' if the latter's empty -- but not if |
| 4048 | `string1' is null. */ |
| 4049 | if (size2 == 0 && string1 != NULL) |
| 4050 | { |
| 4051 | string2 = string1; |
| 4052 | size2 = size1; |
| 4053 | string1 = 0; |
| 4054 | size1 = 0; |
| 4055 | } |
| 4056 | end1 = string1 + size1; |
| 4057 | end2 = string2 + size2; |
| 4058 | |
| 4059 | /* Compute where to stop matching, within the two strings. */ |
| 4060 | if (stop <= size1) |
| 4061 | { |
| 4062 | end_match_1 = string1 + stop; |
| 4063 | end_match_2 = string2; |
| 4064 | } |
| 4065 | else |
| 4066 | { |
| 4067 | end_match_1 = end1; |
| 4068 | end_match_2 = string2 + stop - size1; |
| 4069 | } |
| 4070 | |
| 4071 | /* `p' scans through the pattern as `d' scans through the data. |
| 4072 | `dend' is the end of the input string that `d' points within. `d' |
| 4073 | is advanced into the following input string whenever necessary, but |
| 4074 | this happens before fetching; therefore, at the beginning of the |
| 4075 | loop, `d' can be pointing at the end of a string, but it cannot |
| 4076 | equal `string2'. */ |
| 4077 | if (size1 > 0 && pos <= size1) |
| 4078 | { |
| 4079 | d = string1 + pos; |
| 4080 | dend = end_match_1; |
| 4081 | } |
| 4082 | else |
| 4083 | { |
| 4084 | d = string2 + pos - size1; |
| 4085 | dend = end_match_2; |
| 4086 | } |
| 4087 | |
| 4088 | DEBUG_PRINT1 ("The compiled pattern is:\n"); |
| 4089 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); |
| 4090 | DEBUG_PRINT1 ("The string to match is: `"); |
| 4091 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); |
| 4092 | DEBUG_PRINT1 ("'\n"); |
| 4093 | |
| 4094 | /* This loops over pattern commands. It exits by returning from the |
| 4095 | function if the match is complete, or it drops through if the match |
| 4096 | fails at this starting point in the input data. */ |
| 4097 | for (;;) |
| 4098 | { |
| 4099 | #ifdef _LIBC |
| 4100 | DEBUG_PRINT2 ("\n%p: ", p); |
| 4101 | #else |
| 4102 | DEBUG_PRINT2 ("\n0x%x: ", p); |
| 4103 | #endif |
| 4104 | |
| 4105 | if (p == pend) |
| 4106 | { /* End of pattern means we might have succeeded. */ |
| 4107 | DEBUG_PRINT1 ("end of pattern ... "); |
| 4108 | |
| 4109 | /* If we haven't matched the entire string, and we want the |
| 4110 | longest match, try backtracking. */ |
| 4111 | if (d != end_match_2) |
| 4112 | { |
| 4113 | /* 1 if this match ends in the same string (string1 or string2) |
| 4114 | as the best previous match. */ |
| 4115 | boolean same_str_p = (FIRST_STRING_P (match_end) |
| 4116 | == MATCHING_IN_FIRST_STRING); |
| 4117 | /* 1 if this match is the best seen so far. */ |
| 4118 | boolean best_match_p; |
| 4119 | |
| 4120 | /* AIX compiler got confused when this was combined |
| 4121 | with the previous declaration. */ |
| 4122 | if (same_str_p) |
| 4123 | best_match_p = d > match_end; |
| 4124 | else |
| 4125 | best_match_p = !MATCHING_IN_FIRST_STRING; |
| 4126 | |
| 4127 | DEBUG_PRINT1 ("backtracking.\n"); |
| 4128 | |
| 4129 | if (!FAIL_STACK_EMPTY ()) |
| 4130 | { /* More failure points to try. */ |
| 4131 | |
| 4132 | /* If exceeds best match so far, save it. */ |
| 4133 | if (!best_regs_set || best_match_p) |
| 4134 | { |
| 4135 | best_regs_set = true; |
| 4136 | match_end = d; |
| 4137 | |
| 4138 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); |
| 4139 | |
| 4140 | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) |
| 4141 | { |
| 4142 | best_regstart[mcnt] = regstart[mcnt]; |
| 4143 | best_regend[mcnt] = regend[mcnt]; |
| 4144 | } |
| 4145 | } |
| 4146 | goto fail; |
| 4147 | } |
| 4148 | |
| 4149 | /* If no failure points, don't restore garbage. And if |
| 4150 | last match is real best match, don't restore second |
| 4151 | best one. */ |
| 4152 | else if (best_regs_set && !best_match_p) |
| 4153 | { |
| 4154 | restore_best_regs: |
| 4155 | /* Restore best match. It may happen that `dend == |
| 4156 | end_match_1' while the restored d is in string2. |
| 4157 | For example, the pattern `x.*y.*z' against the |
| 4158 | strings `x-' and `y-z-', if the two strings are |
| 4159 | not consecutive in memory. */ |
| 4160 | DEBUG_PRINT1 ("Restoring best registers.\n"); |
| 4161 | |
| 4162 | d = match_end; |
| 4163 | dend = ((d >= string1 && d <= end1) |
| 4164 | ? end_match_1 : end_match_2); |
| 4165 | |
| 4166 | for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) |
| 4167 | { |
| 4168 | regstart[mcnt] = best_regstart[mcnt]; |
| 4169 | regend[mcnt] = best_regend[mcnt]; |
| 4170 | } |
| 4171 | } |
| 4172 | } /* d != end_match_2 */ |
| 4173 | |
| 4174 | succeed_label: |
| 4175 | DEBUG_PRINT1 ("Accepting match.\n"); |
| 4176 | |
| 4177 | /* If caller wants register contents data back, do it. */ |
| 4178 | if (regs && !bufp->no_sub) |
| 4179 | { |
| 4180 | /* Have the register data arrays been allocated? */ |
| 4181 | if (bufp->regs_allocated == REGS_UNALLOCATED) |
| 4182 | { /* No. So allocate them with malloc. We need one |
| 4183 | extra element beyond `num_regs' for the `-1' marker |
| 4184 | GNU code uses. */ |
| 4185 | regs->num_regs = MAX (RE_NREGS, num_regs + 1); |
| 4186 | regs->start = TALLOC (regs->num_regs, regoff_t); |
| 4187 | regs->end = TALLOC (regs->num_regs, regoff_t); |
| 4188 | if (regs->start == NULL || regs->end == NULL) |
| 4189 | { |
| 4190 | FREE_VARIABLES (); |
| 4191 | return -2; |
| 4192 | } |
| 4193 | bufp->regs_allocated = REGS_REALLOCATE; |
| 4194 | } |
| 4195 | else if (bufp->regs_allocated == REGS_REALLOCATE) |
| 4196 | { /* Yes. If we need more elements than were already |
| 4197 | allocated, reallocate them. If we need fewer, just |
| 4198 | leave it alone. */ |
| 4199 | if (regs->num_regs < num_regs + 1) |
| 4200 | { |
| 4201 | regs->num_regs = num_regs + 1; |
| 4202 | RETALLOC (regs->start, regs->num_regs, regoff_t); |
| 4203 | RETALLOC (regs->end, regs->num_regs, regoff_t); |
| 4204 | if (regs->start == NULL || regs->end == NULL) |
| 4205 | { |
| 4206 | FREE_VARIABLES (); |
| 4207 | return -2; |
| 4208 | } |
| 4209 | } |
| 4210 | } |
| 4211 | else |
| 4212 | { |
| 4213 | /* These braces fend off a "empty body in an else-statement" |
| 4214 | warning under GCC when assert expands to nothing. */ |
| 4215 | assert (bufp->regs_allocated == REGS_FIXED); |
| 4216 | } |
| 4217 | |
| 4218 | /* Convert the pointer data in `regstart' and `regend' to |
| 4219 | indices. Register zero has to be set differently, |
| 4220 | since we haven't kept track of any info for it. */ |
| 4221 | if (regs->num_regs > 0) |
| 4222 | { |
| 4223 | regs->start[0] = pos; |
| 4224 | regs->end[0] = (MATCHING_IN_FIRST_STRING |
| 4225 | ? ((regoff_t) (d - string1)) |
| 4226 | : ((regoff_t) (d - string2 + size1))); |
| 4227 | } |
| 4228 | |
| 4229 | /* Go through the first `min (num_regs, regs->num_regs)' |
| 4230 | registers, since that is all we initialized. */ |
| 4231 | for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs); |
| 4232 | mcnt++) |
| 4233 | { |
| 4234 | if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) |
| 4235 | regs->start[mcnt] = regs->end[mcnt] = -1; |
| 4236 | else |
| 4237 | { |
| 4238 | regs->start[mcnt] |
| 4239 | = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); |
| 4240 | regs->end[mcnt] |
| 4241 | = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); |
| 4242 | } |
| 4243 | } |
| 4244 | |
| 4245 | /* If the regs structure we return has more elements than |
| 4246 | were in the pattern, set the extra elements to -1. If |
| 4247 | we (re)allocated the registers, this is the case, |
| 4248 | because we always allocate enough to have at least one |
| 4249 | -1 at the end. */ |
| 4250 | for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++) |
| 4251 | regs->start[mcnt] = regs->end[mcnt] = -1; |
| 4252 | } /* regs && !bufp->no_sub */ |
| 4253 | |
| 4254 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
| 4255 | nfailure_points_pushed, nfailure_points_popped, |
| 4256 | nfailure_points_pushed - nfailure_points_popped); |
| 4257 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
| 4258 | |
| 4259 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING |
| 4260 | ? string1 |
| 4261 | : string2 - size1); |
| 4262 | |
| 4263 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); |
| 4264 | |
| 4265 | FREE_VARIABLES (); |
| 4266 | return mcnt; |
| 4267 | } |
| 4268 | |
| 4269 | /* Otherwise match next pattern command. */ |
| 4270 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
| 4271 | { |
| 4272 | /* Ignore these. Used to ignore the n of succeed_n's which |
| 4273 | currently have n == 0. */ |
| 4274 | case no_op: |
| 4275 | DEBUG_PRINT1 ("EXECUTING no_op.\n"); |
| 4276 | break; |
| 4277 | |
| 4278 | case succeed: |
| 4279 | DEBUG_PRINT1 ("EXECUTING succeed.\n"); |
| 4280 | goto succeed_label; |
| 4281 | |
| 4282 | /* Match the next n pattern characters exactly. The following |
| 4283 | byte in the pattern defines n, and the n bytes after that |
| 4284 | are the characters to match. */ |
| 4285 | case exactn: |
| 4286 | mcnt = *p++; |
| 4287 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); |
| 4288 | |
| 4289 | /* This is written out as an if-else so we don't waste time |
| 4290 | testing `translate' inside the loop. */ |
| 4291 | if (translate) |
| 4292 | { |
| 4293 | do |
| 4294 | { |
| 4295 | PREFETCH (); |
| 4296 | if ((unsigned char) translate[(unsigned char) *d++] |
| 4297 | != (unsigned char) *p++) |
| 4298 | goto fail; |
| 4299 | } |
| 4300 | while (--mcnt); |
| 4301 | } |
| 4302 | else |
| 4303 | { |
| 4304 | do |
| 4305 | { |
| 4306 | PREFETCH (); |
| 4307 | if (*d++ != (char) *p++) goto fail; |
| 4308 | } |
| 4309 | while (--mcnt); |
| 4310 | } |
| 4311 | SET_REGS_MATCHED (); |
| 4312 | break; |
| 4313 | |
| 4314 | |
| 4315 | /* Match any character except possibly a newline or a null. */ |
| 4316 | case anychar: |
| 4317 | DEBUG_PRINT1 ("EXECUTING anychar.\n"); |
| 4318 | |
| 4319 | PREFETCH (); |
| 4320 | |
| 4321 | if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') |
| 4322 | || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) |
| 4323 | goto fail; |
| 4324 | |
| 4325 | SET_REGS_MATCHED (); |
| 4326 | DEBUG_PRINT2 (" Matched `%d'.\n", *d); |
| 4327 | d++; |
| 4328 | break; |
| 4329 | |
| 4330 | |
| 4331 | case charset: |
| 4332 | case charset_not: |
| 4333 | { |
| 4334 | register unsigned char c; |
| 4335 | boolean not = (re_opcode_t) *(p - 1) == charset_not; |
| 4336 | |
| 4337 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); |
| 4338 | |
| 4339 | PREFETCH (); |
| 4340 | c = TRANSLATE (*d); /* The character to match. */ |
| 4341 | |
| 4342 | /* Cast to `unsigned' instead of `unsigned char' in case the |
| 4343 | bit list is a full 32 bytes long. */ |
| 4344 | if (c < (unsigned) (*p * BYTEWIDTH) |
| 4345 | && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
| 4346 | not = !not; |
| 4347 | |
| 4348 | p += 1 + *p; |
| 4349 | |
| 4350 | if (!not) goto fail; |
| 4351 | |
| 4352 | SET_REGS_MATCHED (); |
| 4353 | d++; |
| 4354 | break; |
| 4355 | } |
| 4356 | |
| 4357 | |
| 4358 | /* The beginning of a group is represented by start_memory. |
| 4359 | The arguments are the register number in the next byte, and the |
| 4360 | number of groups inner to this one in the next. The text |
| 4361 | matched within the group is recorded (in the internal |
| 4362 | registers data structure) under the register number. */ |
| 4363 | case start_memory: |
| 4364 | DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); |
| 4365 | |
| 4366 | /* Find out if this group can match the empty string. */ |
| 4367 | p1 = p; /* To send to group_match_null_string_p. */ |
| 4368 | |
| 4369 | if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) |
| 4370 | REG_MATCH_NULL_STRING_P (reg_info[*p]) |
| 4371 | = group_match_null_string_p (&p1, pend, reg_info); |
| 4372 | |
| 4373 | /* Save the position in the string where we were the last time |
| 4374 | we were at this open-group operator in case the group is |
| 4375 | operated upon by a repetition operator, e.g., with `(a*)*b' |
| 4376 | against `ab'; then we want to ignore where we are now in |
| 4377 | the string in case this attempt to match fails. */ |
| 4378 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
| 4379 | ? REG_UNSET (regstart[*p]) ? d : regstart[*p] |
| 4380 | : regstart[*p]; |
| 4381 | DEBUG_PRINT2 (" old_regstart: %d\n", |
| 4382 | POINTER_TO_OFFSET (old_regstart[*p])); |
| 4383 | |
| 4384 | regstart[*p] = d; |
| 4385 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); |
| 4386 | |
| 4387 | IS_ACTIVE (reg_info[*p]) = 1; |
| 4388 | MATCHED_SOMETHING (reg_info[*p]) = 0; |
| 4389 | |
| 4390 | /* Clear this whenever we change the register activity status. */ |
| 4391 | set_regs_matched_done = 0; |
| 4392 | |
| 4393 | /* This is the new highest active register. */ |
| 4394 | highest_active_reg = *p; |
| 4395 | |
| 4396 | /* If nothing was active before, this is the new lowest active |
| 4397 | register. */ |
| 4398 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
| 4399 | lowest_active_reg = *p; |
| 4400 | |
| 4401 | /* Move past the register number and inner group count. */ |
| 4402 | p += 2; |
| 4403 | just_past_start_mem = p; |
| 4404 | |
| 4405 | break; |
| 4406 | |
| 4407 | |
| 4408 | /* The stop_memory opcode represents the end of a group. Its |
| 4409 | arguments are the same as start_memory's: the register |
| 4410 | number, and the number of inner groups. */ |
| 4411 | case stop_memory: |
| 4412 | DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); |
| 4413 | |
| 4414 | /* We need to save the string position the last time we were at |
| 4415 | this close-group operator in case the group is operated |
| 4416 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' |
| 4417 | against `aba'; then we want to ignore where we are now in |
| 4418 | the string in case this attempt to match fails. */ |
| 4419 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
| 4420 | ? REG_UNSET (regend[*p]) ? d : regend[*p] |
| 4421 | : regend[*p]; |
| 4422 | DEBUG_PRINT2 (" old_regend: %d\n", |
| 4423 | POINTER_TO_OFFSET (old_regend[*p])); |
| 4424 | |
| 4425 | regend[*p] = d; |
| 4426 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); |
| 4427 | |
| 4428 | /* This register isn't active anymore. */ |
| 4429 | IS_ACTIVE (reg_info[*p]) = 0; |
| 4430 | |
| 4431 | /* Clear this whenever we change the register activity status. */ |
| 4432 | set_regs_matched_done = 0; |
| 4433 | |
| 4434 | /* If this was the only register active, nothing is active |
| 4435 | anymore. */ |
| 4436 | if (lowest_active_reg == highest_active_reg) |
| 4437 | { |
| 4438 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
| 4439 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
| 4440 | } |
| 4441 | else |
| 4442 | { /* We must scan for the new highest active register, since |
| 4443 | it isn't necessarily one less than now: consider |
| 4444 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the |
| 4445 | new highest active register is 1. */ |
| 4446 | unsigned char r = *p - 1; |
| 4447 | while (r > 0 && !IS_ACTIVE (reg_info[r])) |
| 4448 | r--; |
| 4449 | |
| 4450 | /* If we end up at register zero, that means that we saved |
| 4451 | the registers as the result of an `on_failure_jump', not |
| 4452 | a `start_memory', and we jumped to past the innermost |
| 4453 | `stop_memory'. For example, in ((.)*) we save |
| 4454 | registers 1 and 2 as a result of the *, but when we pop |
| 4455 | back to the second ), we are at the stop_memory 1. |
| 4456 | Thus, nothing is active. */ |
| 4457 | if (r == 0) |
| 4458 | { |
| 4459 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
| 4460 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
| 4461 | } |
| 4462 | else |
| 4463 | highest_active_reg = r; |
| 4464 | } |
| 4465 | |
| 4466 | /* If just failed to match something this time around with a |
| 4467 | group that's operated on by a repetition operator, try to |
| 4468 | force exit from the ``loop'', and restore the register |
| 4469 | information for this group that we had before trying this |
| 4470 | last match. */ |
| 4471 | if ((!MATCHED_SOMETHING (reg_info[*p]) |
| 4472 | || just_past_start_mem == p - 1) |
| 4473 | && (p + 2) < pend) |
| 4474 | { |
| 4475 | boolean is_a_jump_n = false; |
| 4476 | |
| 4477 | p1 = p + 2; |
| 4478 | mcnt = 0; |
| 4479 | switch ((re_opcode_t) *p1++) |
| 4480 | { |
| 4481 | case jump_n: |
| 4482 | is_a_jump_n = true; |
| 4483 | case pop_failure_jump: |
| 4484 | case maybe_pop_jump: |
| 4485 | case jump: |
| 4486 | case dummy_failure_jump: |
| 4487 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 4488 | if (is_a_jump_n) |
| 4489 | p1 += 2; |
| 4490 | break; |
| 4491 | |
| 4492 | default: |
| 4493 | /* do nothing */ ; |
| 4494 | } |
| 4495 | p1 += mcnt; |
| 4496 | |
| 4497 | /* If the next operation is a jump backwards in the pattern |
| 4498 | to an on_failure_jump right before the start_memory |
| 4499 | corresponding to this stop_memory, exit from the loop |
| 4500 | by forcing a failure after pushing on the stack the |
| 4501 | on_failure_jump's jump in the pattern, and d. */ |
| 4502 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump |
| 4503 | && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) |
| 4504 | { |
| 4505 | /* If this group ever matched anything, then restore |
| 4506 | what its registers were before trying this last |
| 4507 | failed match, e.g., with `(a*)*b' against `ab' for |
| 4508 | regstart[1], and, e.g., with `((a*)*(b*)*)*' |
| 4509 | against `aba' for regend[3]. |
| 4510 | |
| 4511 | Also restore the registers for inner groups for, |
| 4512 | e.g., `((a*)(b*))*' against `aba' (register 3 would |
| 4513 | otherwise get trashed). */ |
| 4514 | |
| 4515 | if (EVER_MATCHED_SOMETHING (reg_info[*p])) |
| 4516 | { |
| 4517 | unsigned r; |
| 4518 | |
| 4519 | EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; |
| 4520 | |
| 4521 | /* Restore this and inner groups' (if any) registers. */ |
| 4522 | for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1); |
| 4523 | r++) |
| 4524 | { |
| 4525 | regstart[r] = old_regstart[r]; |
| 4526 | |
| 4527 | /* xx why this test? */ |
| 4528 | if (old_regend[r] >= regstart[r]) |
| 4529 | regend[r] = old_regend[r]; |
| 4530 | } |
| 4531 | } |
| 4532 | p1++; |
| 4533 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 4534 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2); |
| 4535 | |
| 4536 | goto fail; |
| 4537 | } |
| 4538 | } |
| 4539 | |
| 4540 | /* Move past the register number and the inner group count. */ |
| 4541 | p += 2; |
| 4542 | break; |
| 4543 | |
| 4544 | |
| 4545 | /* \<digit> has been turned into a `duplicate' command which is |
| 4546 | followed by the numeric value of <digit> as the register number. */ |
| 4547 | case duplicate: |
| 4548 | { |
| 4549 | register const char *d2, *dend2; |
| 4550 | int regno = *p++; /* Get which register to match against. */ |
| 4551 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
| 4552 | |
| 4553 | /* Can't back reference a group which we've never matched. */ |
| 4554 | if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) |
| 4555 | goto fail; |
| 4556 | |
| 4557 | /* Where in input to try to start matching. */ |
| 4558 | d2 = regstart[regno]; |
| 4559 | |
| 4560 | /* Where to stop matching; if both the place to start and |
| 4561 | the place to stop matching are in the same string, then |
| 4562 | set to the place to stop, otherwise, for now have to use |
| 4563 | the end of the first string. */ |
| 4564 | |
| 4565 | dend2 = ((FIRST_STRING_P (regstart[regno]) |
| 4566 | == FIRST_STRING_P (regend[regno])) |
| 4567 | ? regend[regno] : end_match_1); |
| 4568 | for (;;) |
| 4569 | { |
| 4570 | /* If necessary, advance to next segment in register |
| 4571 | contents. */ |
| 4572 | while (d2 == dend2) |
| 4573 | { |
| 4574 | if (dend2 == end_match_2) break; |
| 4575 | if (dend2 == regend[regno]) break; |
| 4576 | |
| 4577 | /* End of string1 => advance to string2. */ |
| 4578 | d2 = string2; |
| 4579 | dend2 = regend[regno]; |
| 4580 | } |
| 4581 | /* At end of register contents => success */ |
| 4582 | if (d2 == dend2) break; |
| 4583 | |
| 4584 | /* If necessary, advance to next segment in data. */ |
| 4585 | PREFETCH (); |
| 4586 | |
| 4587 | /* How many characters left in this segment to match. */ |
| 4588 | mcnt = dend - d; |
| 4589 | |
| 4590 | /* Want how many consecutive characters we can match in |
| 4591 | one shot, so, if necessary, adjust the count. */ |
| 4592 | if (mcnt > dend2 - d2) |
| 4593 | mcnt = dend2 - d2; |
| 4594 | |
| 4595 | /* Compare that many; failure if mismatch, else move |
| 4596 | past them. */ |
| 4597 | if (translate |
| 4598 | ? bcmp_translate (d, d2, mcnt, translate) |
| 4599 | : memcmp (d, d2, mcnt)) |
| 4600 | goto fail; |
| 4601 | d += mcnt, d2 += mcnt; |
| 4602 | |
| 4603 | /* Do this because we've match some characters. */ |
| 4604 | SET_REGS_MATCHED (); |
| 4605 | } |
| 4606 | } |
| 4607 | break; |
| 4608 | |
| 4609 | |
| 4610 | /* begline matches the empty string at the beginning of the string |
| 4611 | (unless `not_bol' is set in `bufp'), and, if |
| 4612 | `newline_anchor' is set, after newlines. */ |
| 4613 | case begline: |
| 4614 | DEBUG_PRINT1 ("EXECUTING begline.\n"); |
| 4615 | |
| 4616 | if (AT_STRINGS_BEG (d)) |
| 4617 | { |
| 4618 | if (!bufp->not_bol) break; |
| 4619 | } |
| 4620 | else if (d[-1] == '\n' && bufp->newline_anchor) |
| 4621 | { |
| 4622 | break; |
| 4623 | } |
| 4624 | /* In all other cases, we fail. */ |
| 4625 | goto fail; |
| 4626 | |
| 4627 | |
| 4628 | /* endline is the dual of begline. */ |
| 4629 | case endline: |
| 4630 | DEBUG_PRINT1 ("EXECUTING endline.\n"); |
| 4631 | |
| 4632 | if (AT_STRINGS_END (d)) |
| 4633 | { |
| 4634 | if (!bufp->not_eol) break; |
| 4635 | } |
| 4636 | |
| 4637 | /* We have to ``prefetch'' the next character. */ |
| 4638 | else if ((d == end1 ? *string2 : *d) == '\n' |
| 4639 | && bufp->newline_anchor) |
| 4640 | { |
| 4641 | break; |
| 4642 | } |
| 4643 | goto fail; |
| 4644 | |
| 4645 | |
| 4646 | /* Match at the very beginning of the data. */ |
| 4647 | case begbuf: |
| 4648 | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); |
| 4649 | if (AT_STRINGS_BEG (d)) |
| 4650 | break; |
| 4651 | goto fail; |
| 4652 | |
| 4653 | |
| 4654 | /* Match at the very end of the data. */ |
| 4655 | case endbuf: |
| 4656 | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); |
| 4657 | if (AT_STRINGS_END (d)) |
| 4658 | break; |
| 4659 | goto fail; |
| 4660 | |
| 4661 | |
| 4662 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It |
| 4663 | pushes NULL as the value for the string on the stack. Then |
| 4664 | `pop_failure_point' will keep the current value for the |
| 4665 | string, instead of restoring it. To see why, consider |
| 4666 | matching `foo\nbar' against `.*\n'. The .* matches the foo; |
| 4667 | then the . fails against the \n. But the next thing we want |
| 4668 | to do is match the \n against the \n; if we restored the |
| 4669 | string value, we would be back at the foo. |
| 4670 | |
| 4671 | Because this is used only in specific cases, we don't need to |
| 4672 | check all the things that `on_failure_jump' does, to make |
| 4673 | sure the right things get saved on the stack. Hence we don't |
| 4674 | share its code. The only reason to push anything on the |
| 4675 | stack at all is that otherwise we would have to change |
| 4676 | `anychar's code to do something besides goto fail in this |
| 4677 | case; that seems worse than this. */ |
| 4678 | case on_failure_keep_string_jump: |
| 4679 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); |
| 4680 | |
| 4681 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| 4682 | #ifdef _LIBC |
| 4683 | DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt); |
| 4684 | #else |
| 4685 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); |
| 4686 | #endif |
| 4687 | |
| 4688 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2); |
| 4689 | break; |
| 4690 | |
| 4691 | |
| 4692 | /* Uses of on_failure_jump: |
| 4693 | |
| 4694 | Each alternative starts with an on_failure_jump that points |
| 4695 | to the beginning of the next alternative. Each alternative |
| 4696 | except the last ends with a jump that in effect jumps past |
| 4697 | the rest of the alternatives. (They really jump to the |
| 4698 | ending jump of the following alternative, because tensioning |
| 4699 | these jumps is a hassle.) |
| 4700 | |
| 4701 | Repeats start with an on_failure_jump that points past both |
| 4702 | the repetition text and either the following jump or |
| 4703 | pop_failure_jump back to this on_failure_jump. */ |
| 4704 | case on_failure_jump: |
| 4705 | on_failure: |
| 4706 | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); |
| 4707 | |
| 4708 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| 4709 | #ifdef _LIBC |
| 4710 | DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt); |
| 4711 | #else |
| 4712 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); |
| 4713 | #endif |
| 4714 | |
| 4715 | /* If this on_failure_jump comes right before a group (i.e., |
| 4716 | the original * applied to a group), save the information |
| 4717 | for that group and all inner ones, so that if we fail back |
| 4718 | to this point, the group's information will be correct. |
| 4719 | For example, in \(a*\)*\1, we need the preceding group, |
| 4720 | and in \(zz\(a*\)b*\)\2, we need the inner group. */ |
| 4721 | |
| 4722 | /* We can't use `p' to check ahead because we push |
| 4723 | a failure point to `p + mcnt' after we do this. */ |
| 4724 | p1 = p; |
| 4725 | |
| 4726 | /* We need to skip no_op's before we look for the |
| 4727 | start_memory in case this on_failure_jump is happening as |
| 4728 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 |
| 4729 | against aba. */ |
| 4730 | while (p1 < pend && (re_opcode_t) *p1 == no_op) |
| 4731 | p1++; |
| 4732 | |
| 4733 | if (p1 < pend && (re_opcode_t) *p1 == start_memory) |
| 4734 | { |
| 4735 | /* We have a new highest active register now. This will |
| 4736 | get reset at the start_memory we are about to get to, |
| 4737 | but we will have saved all the registers relevant to |
| 4738 | this repetition op, as described above. */ |
| 4739 | highest_active_reg = *(p1 + 1) + *(p1 + 2); |
| 4740 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
| 4741 | lowest_active_reg = *(p1 + 1); |
| 4742 | } |
| 4743 | |
| 4744 | DEBUG_PRINT1 (":\n"); |
| 4745 | PUSH_FAILURE_POINT (p + mcnt, d, -2); |
| 4746 | break; |
| 4747 | |
| 4748 | |
| 4749 | /* A smart repeat ends with `maybe_pop_jump'. |
| 4750 | We change it to either `pop_failure_jump' or `jump'. */ |
| 4751 | case maybe_pop_jump: |
| 4752 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| 4753 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); |
| 4754 | { |
| 4755 | register unsigned char *p2 = p; |
| 4756 | |
| 4757 | /* Compare the beginning of the repeat with what in the |
| 4758 | pattern follows its end. If we can establish that there |
| 4759 | is nothing that they would both match, i.e., that we |
| 4760 | would have to backtrack because of (as in, e.g., `a*a') |
| 4761 | then we can change to pop_failure_jump, because we'll |
| 4762 | never have to backtrack. |
| 4763 | |
| 4764 | This is not true in the case of alternatives: in |
| 4765 | `(a|ab)*' we do need to backtrack to the `ab' alternative |
| 4766 | (e.g., if the string was `ab'). But instead of trying to |
| 4767 | detect that here, the alternative has put on a dummy |
| 4768 | failure point which is what we will end up popping. */ |
| 4769 | |
| 4770 | /* Skip over open/close-group commands. |
| 4771 | If what follows this loop is a ...+ construct, |
| 4772 | look at what begins its body, since we will have to |
| 4773 | match at least one of that. */ |
| 4774 | while (1) |
| 4775 | { |
| 4776 | if (p2 + 2 < pend |
| 4777 | && ((re_opcode_t) *p2 == stop_memory |
| 4778 | || (re_opcode_t) *p2 == start_memory)) |
| 4779 | p2 += 3; |
| 4780 | else if (p2 + 6 < pend |
| 4781 | && (re_opcode_t) *p2 == dummy_failure_jump) |
| 4782 | p2 += 6; |
| 4783 | else |
| 4784 | break; |
| 4785 | } |
| 4786 | |
| 4787 | p1 = p + mcnt; |
| 4788 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding |
| 4789 | to the `maybe_finalize_jump' of this case. Examine what |
| 4790 | follows. */ |
| 4791 | |
| 4792 | /* If we're at the end of the pattern, we can change. */ |
| 4793 | if (p2 == pend) |
| 4794 | { |
| 4795 | /* Consider what happens when matching ":\(.*\)" |
| 4796 | against ":/". I don't really understand this code |
| 4797 | yet. */ |
| 4798 | p[-3] = (unsigned char) pop_failure_jump; |
| 4799 | DEBUG_PRINT1 |
| 4800 | (" End of pattern: change to `pop_failure_jump'.\n"); |
| 4801 | } |
| 4802 | |
| 4803 | else if ((re_opcode_t) *p2 == exactn |
| 4804 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) |
| 4805 | { |
| 4806 | register unsigned char c |
| 4807 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
| 4808 | |
| 4809 | if ((re_opcode_t) p1[3] == exactn && p1[5] != c) |
| 4810 | { |
| 4811 | p[-3] = (unsigned char) pop_failure_jump; |
| 4812 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
| 4813 | c, p1[5]); |
| 4814 | } |
| 4815 | |
| 4816 | else if ((re_opcode_t) p1[3] == charset |
| 4817 | || (re_opcode_t) p1[3] == charset_not) |
| 4818 | { |
| 4819 | int not = (re_opcode_t) p1[3] == charset_not; |
| 4820 | |
| 4821 | if (c < (unsigned char) (p1[4] * BYTEWIDTH) |
| 4822 | && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
| 4823 | not = !not; |
| 4824 | |
| 4825 | /* `not' is equal to 1 if c would match, which means |
| 4826 | that we can't change to pop_failure_jump. */ |
| 4827 | if (!not) |
| 4828 | { |
| 4829 | p[-3] = (unsigned char) pop_failure_jump; |
| 4830 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
| 4831 | } |
| 4832 | } |
| 4833 | } |
| 4834 | else if ((re_opcode_t) *p2 == charset) |
| 4835 | { |
| 4836 | #ifdef DEBUG |
| 4837 | register unsigned char c |
| 4838 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
| 4839 | #endif |
| 4840 | |
| 4841 | #if 0 |
| 4842 | if ((re_opcode_t) p1[3] == exactn |
| 4843 | && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] |
| 4844 | && (p2[2 + p1[5] / BYTEWIDTH] |
| 4845 | & (1 << (p1[5] % BYTEWIDTH))))) |
| 4846 | #else |
| 4847 | if ((re_opcode_t) p1[3] == exactn |
| 4848 | && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4] |
| 4849 | && (p2[2 + p1[4] / BYTEWIDTH] |
| 4850 | & (1 << (p1[4] % BYTEWIDTH))))) |
| 4851 | #endif |
| 4852 | { |
| 4853 | p[-3] = (unsigned char) pop_failure_jump; |
| 4854 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
| 4855 | c, p1[5]); |
| 4856 | } |
| 4857 | |
| 4858 | else if ((re_opcode_t) p1[3] == charset_not) |
| 4859 | { |
| 4860 | int idx; |
| 4861 | /* We win if the charset_not inside the loop |
| 4862 | lists every character listed in the charset after. */ |
| 4863 | for (idx = 0; idx < (int) p2[1]; idx++) |
| 4864 | if (! (p2[2 + idx] == 0 |
| 4865 | || (idx < (int) p1[4] |
| 4866 | && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) |
| 4867 | break; |
| 4868 | |
| 4869 | if (idx == p2[1]) |
| 4870 | { |
| 4871 | p[-3] = (unsigned char) pop_failure_jump; |
| 4872 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
| 4873 | } |
| 4874 | } |
| 4875 | else if ((re_opcode_t) p1[3] == charset) |
| 4876 | { |
| 4877 | int idx; |
| 4878 | /* We win if the charset inside the loop |
| 4879 | has no overlap with the one after the loop. */ |
| 4880 | for (idx = 0; |
| 4881 | idx < (int) p2[1] && idx < (int) p1[4]; |
| 4882 | idx++) |
| 4883 | if ((p2[2 + idx] & p1[5 + idx]) != 0) |
| 4884 | break; |
| 4885 | |
| 4886 | if (idx == p2[1] || idx == p1[4]) |
| 4887 | { |
| 4888 | p[-3] = (unsigned char) pop_failure_jump; |
| 4889 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
| 4890 | } |
| 4891 | } |
| 4892 | } |
| 4893 | } |
| 4894 | p -= 2; /* Point at relative address again. */ |
| 4895 | if ((re_opcode_t) p[-1] != pop_failure_jump) |
| 4896 | { |
| 4897 | p[-1] = (unsigned char) jump; |
| 4898 | DEBUG_PRINT1 (" Match => jump.\n"); |
| 4899 | goto unconditional_jump; |
| 4900 | } |
| 4901 | /* Note fall through. */ |
| 4902 | |
| 4903 | |
| 4904 | /* The end of a simple repeat has a pop_failure_jump back to |
| 4905 | its matching on_failure_jump, where the latter will push a |
| 4906 | failure point. The pop_failure_jump takes off failure |
| 4907 | points put on by this pop_failure_jump's matching |
| 4908 | on_failure_jump; we got through the pattern to here from the |
| 4909 | matching on_failure_jump, so didn't fail. */ |
| 4910 | case pop_failure_jump: |
| 4911 | { |
| 4912 | /* We need to pass separate storage for the lowest and |
| 4913 | highest registers, even though we don't care about the |
| 4914 | actual values. Otherwise, we will restore only one |
| 4915 | register from the stack, since lowest will == highest in |
| 4916 | `pop_failure_point'. */ |
| 4917 | active_reg_t dummy_low_reg, dummy_high_reg; |
| 4918 | unsigned char *pdummy; |
| 4919 | const char *sdummy; |
| 4920 | |
| 4921 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); |
| 4922 | POP_FAILURE_POINT (sdummy, pdummy, |
| 4923 | dummy_low_reg, dummy_high_reg, |
| 4924 | reg_dummy, reg_dummy, reg_info_dummy); |
| 4925 | } |
| 4926 | /* Note fall through. */ |
| 4927 | |
| 4928 | unconditional_jump: |
| 4929 | #ifdef _LIBC |
| 4930 | DEBUG_PRINT2 ("\n%p: ", p); |
| 4931 | #else |
| 4932 | DEBUG_PRINT2 ("\n0x%x: ", p); |
| 4933 | #endif |
| 4934 | /* Note fall through. */ |
| 4935 | |
| 4936 | /* Unconditionally jump (without popping any failure points). */ |
| 4937 | case jump: |
| 4938 | EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ |
| 4939 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); |
| 4940 | p += mcnt; /* Do the jump. */ |
| 4941 | #ifdef _LIBC |
| 4942 | DEBUG_PRINT2 ("(to %p).\n", p); |
| 4943 | #else |
| 4944 | DEBUG_PRINT2 ("(to 0x%x).\n", p); |
| 4945 | #endif |
| 4946 | break; |
| 4947 | |
| 4948 | |
| 4949 | /* We need this opcode so we can detect where alternatives end |
| 4950 | in `group_match_null_string_p' et al. */ |
| 4951 | case jump_past_alt: |
| 4952 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); |
| 4953 | goto unconditional_jump; |
| 4954 | |
| 4955 | |
| 4956 | /* Normally, the on_failure_jump pushes a failure point, which |
| 4957 | then gets popped at pop_failure_jump. We will end up at |
| 4958 | pop_failure_jump, also, and with a pattern of, say, `a+', we |
| 4959 | are skipping over the on_failure_jump, so we have to push |
| 4960 | something meaningless for pop_failure_jump to pop. */ |
| 4961 | case dummy_failure_jump: |
| 4962 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); |
| 4963 | /* It doesn't matter what we push for the string here. What |
| 4964 | the code at `fail' tests is the value for the pattern. */ |
| 4965 | PUSH_FAILURE_POINT (NULL, NULL, -2); |
| 4966 | goto unconditional_jump; |
| 4967 | |
| 4968 | |
| 4969 | /* At the end of an alternative, we need to push a dummy failure |
| 4970 | point in case we are followed by a `pop_failure_jump', because |
| 4971 | we don't want the failure point for the alternative to be |
| 4972 | popped. For example, matching `(a|ab)*' against `aab' |
| 4973 | requires that we match the `ab' alternative. */ |
| 4974 | case push_dummy_failure: |
| 4975 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); |
| 4976 | /* See comments just above at `dummy_failure_jump' about the |
| 4977 | two zeroes. */ |
| 4978 | PUSH_FAILURE_POINT (NULL, NULL, -2); |
| 4979 | break; |
| 4980 | |
| 4981 | /* Have to succeed matching what follows at least n times. |
| 4982 | After that, handle like `on_failure_jump'. */ |
| 4983 | case succeed_n: |
| 4984 | EXTRACT_NUMBER (mcnt, p + 2); |
| 4985 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); |
| 4986 | |
| 4987 | assert (mcnt >= 0); |
| 4988 | /* Originally, this is how many times we HAVE to succeed. */ |
| 4989 | if (mcnt > 0) |
| 4990 | { |
| 4991 | mcnt--; |
| 4992 | p += 2; |
| 4993 | STORE_NUMBER_AND_INCR (p, mcnt); |
| 4994 | #ifdef _LIBC |
| 4995 | DEBUG_PRINT3 (" Setting %p to %d.\n", p - 2, mcnt); |
| 4996 | #else |
| 4997 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - 2, mcnt); |
| 4998 | #endif |
| 4999 | } |
| 5000 | else if (mcnt == 0) |
| 5001 | { |
| 5002 | #ifdef _LIBC |
| 5003 | DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2); |
| 5004 | #else |
| 5005 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); |
| 5006 | #endif |
| 5007 | p[2] = (unsigned char) no_op; |
| 5008 | p[3] = (unsigned char) no_op; |
| 5009 | goto on_failure; |
| 5010 | } |
| 5011 | break; |
| 5012 | |
| 5013 | case jump_n: |
| 5014 | EXTRACT_NUMBER (mcnt, p + 2); |
| 5015 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); |
| 5016 | |
| 5017 | /* Originally, this is how many times we CAN jump. */ |
| 5018 | if (mcnt) |
| 5019 | { |
| 5020 | mcnt--; |
| 5021 | STORE_NUMBER (p + 2, mcnt); |
| 5022 | #ifdef _LIBC |
| 5023 | DEBUG_PRINT3 (" Setting %p to %d.\n", p + 2, mcnt); |
| 5024 | #else |
| 5025 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + 2, mcnt); |
| 5026 | #endif |
| 5027 | goto unconditional_jump; |
| 5028 | } |
| 5029 | /* If don't have to jump any more, skip over the rest of command. */ |
| 5030 | else |
| 5031 | p += 4; |
| 5032 | break; |
| 5033 | |
| 5034 | case set_number_at: |
| 5035 | { |
| 5036 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); |
| 5037 | |
| 5038 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| 5039 | p1 = p + mcnt; |
| 5040 | EXTRACT_NUMBER_AND_INCR (mcnt, p); |
| 5041 | #ifdef _LIBC |
| 5042 | DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt); |
| 5043 | #else |
| 5044 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); |
| 5045 | #endif |
| 5046 | STORE_NUMBER (p1, mcnt); |
| 5047 | break; |
| 5048 | } |
| 5049 | |
| 5050 | #if 0 |
| 5051 | /* The DEC Alpha C compiler 3.x generates incorrect code for the |
| 5052 | test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of |
| 5053 | AT_WORD_BOUNDARY, so this code is disabled. Expanding the |
| 5054 | macro and introducing temporary variables works around the bug. */ |
| 5055 | |
| 5056 | case wordbound: |
| 5057 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); |
| 5058 | if (AT_WORD_BOUNDARY (d)) |
| 5059 | break; |
| 5060 | goto fail; |
| 5061 | |
| 5062 | case notwordbound: |
| 5063 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); |
| 5064 | if (AT_WORD_BOUNDARY (d)) |
| 5065 | goto fail; |
| 5066 | break; |
| 5067 | #else |
| 5068 | case wordbound: |
| 5069 | { |
| 5070 | boolean prevchar, thischar; |
| 5071 | |
| 5072 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); |
| 5073 | if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) |
| 5074 | break; |
| 5075 | |
| 5076 | prevchar = WORDCHAR_P (d - 1); |
| 5077 | thischar = WORDCHAR_P (d); |
| 5078 | if (prevchar != thischar) |
| 5079 | break; |
| 5080 | goto fail; |
| 5081 | } |
| 5082 | |
| 5083 | case notwordbound: |
| 5084 | { |
| 5085 | boolean prevchar, thischar; |
| 5086 | |
| 5087 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); |
| 5088 | if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) |
| 5089 | goto fail; |
| 5090 | |
| 5091 | prevchar = WORDCHAR_P (d - 1); |
| 5092 | thischar = WORDCHAR_P (d); |
| 5093 | if (prevchar != thischar) |
| 5094 | goto fail; |
| 5095 | break; |
| 5096 | } |
| 5097 | #endif |
| 5098 | |
| 5099 | case wordbeg: |
| 5100 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); |
| 5101 | if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) |
| 5102 | break; |
| 5103 | goto fail; |
| 5104 | |
| 5105 | case wordend: |
| 5106 | DEBUG_PRINT1 ("EXECUTING wordend.\n"); |
| 5107 | if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) |
| 5108 | && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) |
| 5109 | break; |
| 5110 | goto fail; |
| 5111 | |
| 5112 | #ifdef emacs |
| 5113 | case before_dot: |
| 5114 | DEBUG_PRINT1 ("EXECUTING before_dot.\n"); |
| 5115 | if (PTR_CHAR_POS ((unsigned char *) d) >= point) |
| 5116 | goto fail; |
| 5117 | break; |
| 5118 | |
| 5119 | case at_dot: |
| 5120 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
| 5121 | if (PTR_CHAR_POS ((unsigned char *) d) != point) |
| 5122 | goto fail; |
| 5123 | break; |
| 5124 | |
| 5125 | case after_dot: |
| 5126 | DEBUG_PRINT1 ("EXECUTING after_dot.\n"); |
| 5127 | if (PTR_CHAR_POS ((unsigned char *) d) <= point) |
| 5128 | goto fail; |
| 5129 | break; |
| 5130 | |
| 5131 | case syntaxspec: |
| 5132 | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); |
| 5133 | mcnt = *p++; |
| 5134 | goto matchsyntax; |
| 5135 | |
| 5136 | case wordchar: |
| 5137 | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
| 5138 | mcnt = (int) Sword; |
| 5139 | matchsyntax: |
| 5140 | PREFETCH (); |
| 5141 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
| 5142 | d++; |
| 5143 | if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) |
| 5144 | goto fail; |
| 5145 | SET_REGS_MATCHED (); |
| 5146 | break; |
| 5147 | |
| 5148 | case notsyntaxspec: |
| 5149 | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); |
| 5150 | mcnt = *p++; |
| 5151 | goto matchnotsyntax; |
| 5152 | |
| 5153 | case notwordchar: |
| 5154 | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); |
| 5155 | mcnt = (int) Sword; |
| 5156 | matchnotsyntax: |
| 5157 | PREFETCH (); |
| 5158 | /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
| 5159 | d++; |
| 5160 | if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) |
| 5161 | goto fail; |
| 5162 | SET_REGS_MATCHED (); |
| 5163 | break; |
| 5164 | |
| 5165 | #else /* not emacs */ |
| 5166 | case wordchar: |
| 5167 | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); |
| 5168 | PREFETCH (); |
| 5169 | if (!WORDCHAR_P (d)) |
| 5170 | goto fail; |
| 5171 | SET_REGS_MATCHED (); |
| 5172 | d++; |
| 5173 | break; |
| 5174 | |
| 5175 | case notwordchar: |
| 5176 | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); |
| 5177 | PREFETCH (); |
| 5178 | if (WORDCHAR_P (d)) |
| 5179 | goto fail; |
| 5180 | SET_REGS_MATCHED (); |
| 5181 | d++; |
| 5182 | break; |
| 5183 | #endif /* not emacs */ |
| 5184 | |
| 5185 | default: |
| 5186 | abort (); |
| 5187 | } |
| 5188 | continue; /* Successfully executed one pattern command; keep going. */ |
| 5189 | |
| 5190 | |
| 5191 | /* We goto here if a matching operation fails. */ |
| 5192 | fail: |
| 5193 | if (!FAIL_STACK_EMPTY ()) |
| 5194 | { /* A restart point is known. Restore to that state. */ |
| 5195 | DEBUG_PRINT1 ("\nFAIL:\n"); |
| 5196 | POP_FAILURE_POINT (d, p, |
| 5197 | lowest_active_reg, highest_active_reg, |
| 5198 | regstart, regend, reg_info); |
| 5199 | |
| 5200 | /* If this failure point is a dummy, try the next one. */ |
| 5201 | if (!p) |
| 5202 | goto fail; |
| 5203 | |
| 5204 | /* If we failed to the end of the pattern, don't examine *p. */ |
| 5205 | assert (p <= pend); |
| 5206 | if (p < pend) |
| 5207 | { |
| 5208 | boolean is_a_jump_n = false; |
| 5209 | |
| 5210 | /* If failed to a backwards jump that's part of a repetition |
| 5211 | loop, need to pop this failure point and use the next one. */ |
| 5212 | switch ((re_opcode_t) *p) |
| 5213 | { |
| 5214 | case jump_n: |
| 5215 | is_a_jump_n = true; |
| 5216 | case maybe_pop_jump: |
| 5217 | case pop_failure_jump: |
| 5218 | case jump: |
| 5219 | p1 = p + 1; |
| 5220 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 5221 | p1 += mcnt; |
| 5222 | |
| 5223 | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) |
| 5224 | || (!is_a_jump_n |
| 5225 | && (re_opcode_t) *p1 == on_failure_jump)) |
| 5226 | goto fail; |
| 5227 | break; |
| 5228 | default: |
| 5229 | /* do nothing */ ; |
| 5230 | } |
| 5231 | } |
| 5232 | |
| 5233 | if (d >= string1 && d <= end1) |
| 5234 | dend = end_match_1; |
| 5235 | } |
| 5236 | else |
| 5237 | break; /* Matching at this starting point really fails. */ |
| 5238 | } /* for (;;) */ |
| 5239 | |
| 5240 | if (best_regs_set) |
| 5241 | goto restore_best_regs; |
| 5242 | |
| 5243 | FREE_VARIABLES (); |
| 5244 | |
| 5245 | return -1; /* Failure to match. */ |
| 5246 | } /* re_match_2 */ |
| 5247 | |
| 5248 | /* Subroutine definitions for re_match_2. */ |
| 5249 | |
| 5250 | |
| 5251 | /* We are passed P pointing to a register number after a start_memory. |
| 5252 | |
| 5253 | Return true if the pattern up to the corresponding stop_memory can |
| 5254 | match the empty string, and false otherwise. |
| 5255 | |
| 5256 | If we find the matching stop_memory, sets P to point to one past its number. |
| 5257 | Otherwise, sets P to an undefined byte less than or equal to END. |
| 5258 | |
| 5259 | We don't handle duplicates properly (yet). */ |
| 5260 | |
| 5261 | static boolean |
| 5262 | group_match_null_string_p (p, end, reg_info) |
| 5263 | unsigned char **p, *end; |
| 5264 | register_info_type *reg_info; |
| 5265 | { |
| 5266 | int mcnt; |
| 5267 | /* Point to after the args to the start_memory. */ |
| 5268 | unsigned char *p1 = *p + 2; |
| 5269 | |
| 5270 | while (p1 < end) |
| 5271 | { |
| 5272 | /* Skip over opcodes that can match nothing, and return true or |
| 5273 | false, as appropriate, when we get to one that can't, or to the |
| 5274 | matching stop_memory. */ |
| 5275 | |
| 5276 | switch ((re_opcode_t) *p1) |
| 5277 | { |
| 5278 | /* Could be either a loop or a series of alternatives. */ |
| 5279 | case on_failure_jump: |
| 5280 | p1++; |
| 5281 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 5282 | |
| 5283 | /* If the next operation is not a jump backwards in the |
| 5284 | pattern. */ |
| 5285 | |
| 5286 | if (mcnt >= 0) |
| 5287 | { |
| 5288 | /* Go through the on_failure_jumps of the alternatives, |
| 5289 | seeing if any of the alternatives cannot match nothing. |
| 5290 | The last alternative starts with only a jump, |
| 5291 | whereas the rest start with on_failure_jump and end |
| 5292 | with a jump, e.g., here is the pattern for `a|b|c': |
| 5293 | |
| 5294 | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 |
| 5295 | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 |
| 5296 | /exactn/1/c |
| 5297 | |
| 5298 | So, we have to first go through the first (n-1) |
| 5299 | alternatives and then deal with the last one separately. */ |
| 5300 | |
| 5301 | |
| 5302 | /* Deal with the first (n-1) alternatives, which start |
| 5303 | with an on_failure_jump (see above) that jumps to right |
| 5304 | past a jump_past_alt. */ |
| 5305 | |
| 5306 | while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) |
| 5307 | { |
| 5308 | /* `mcnt' holds how many bytes long the alternative |
| 5309 | is, including the ending `jump_past_alt' and |
| 5310 | its number. */ |
| 5311 | |
| 5312 | if (!alt_match_null_string_p (p1, p1 + mcnt - 3, |
| 5313 | reg_info)) |
| 5314 | return false; |
| 5315 | |
| 5316 | /* Move to right after this alternative, including the |
| 5317 | jump_past_alt. */ |
| 5318 | p1 += mcnt; |
| 5319 | |
| 5320 | /* Break if it's the beginning of an n-th alternative |
| 5321 | that doesn't begin with an on_failure_jump. */ |
| 5322 | if ((re_opcode_t) *p1 != on_failure_jump) |
| 5323 | break; |
| 5324 | |
| 5325 | /* Still have to check that it's not an n-th |
| 5326 | alternative that starts with an on_failure_jump. */ |
| 5327 | p1++; |
| 5328 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 5329 | if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) |
| 5330 | { |
| 5331 | /* Get to the beginning of the n-th alternative. */ |
| 5332 | p1 -= 3; |
| 5333 | break; |
| 5334 | } |
| 5335 | } |
| 5336 | |
| 5337 | /* Deal with the last alternative: go back and get number |
| 5338 | of the `jump_past_alt' just before it. `mcnt' contains |
| 5339 | the length of the alternative. */ |
| 5340 | EXTRACT_NUMBER (mcnt, p1 - 2); |
| 5341 | |
| 5342 | if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) |
| 5343 | return false; |
| 5344 | |
| 5345 | p1 += mcnt; /* Get past the n-th alternative. */ |
| 5346 | } /* if mcnt > 0 */ |
| 5347 | break; |
| 5348 | |
| 5349 | |
| 5350 | case stop_memory: |
| 5351 | assert (p1[1] == **p); |
| 5352 | *p = p1 + 2; |
| 5353 | return true; |
| 5354 | |
| 5355 | |
| 5356 | default: |
| 5357 | if (!common_op_match_null_string_p (&p1, end, reg_info)) |
| 5358 | return false; |
| 5359 | } |
| 5360 | } /* while p1 < end */ |
| 5361 | |
| 5362 | return false; |
| 5363 | } /* group_match_null_string_p */ |
| 5364 | |
| 5365 | |
| 5366 | /* Similar to group_match_null_string_p, but doesn't deal with alternatives: |
| 5367 | It expects P to be the first byte of a single alternative and END one |
| 5368 | byte past the last. The alternative can contain groups. */ |
| 5369 | |
| 5370 | static boolean |
| 5371 | alt_match_null_string_p (p, end, reg_info) |
| 5372 | unsigned char *p, *end; |
| 5373 | register_info_type *reg_info; |
| 5374 | { |
| 5375 | int mcnt; |
| 5376 | unsigned char *p1 = p; |
| 5377 | |
| 5378 | while (p1 < end) |
| 5379 | { |
| 5380 | /* Skip over opcodes that can match nothing, and break when we get |
| 5381 | to one that can't. */ |
| 5382 | |
| 5383 | switch ((re_opcode_t) *p1) |
| 5384 | { |
| 5385 | /* It's a loop. */ |
| 5386 | case on_failure_jump: |
| 5387 | p1++; |
| 5388 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 5389 | p1 += mcnt; |
| 5390 | break; |
| 5391 | |
| 5392 | default: |
| 5393 | if (!common_op_match_null_string_p (&p1, end, reg_info)) |
| 5394 | return false; |
| 5395 | } |
| 5396 | } /* while p1 < end */ |
| 5397 | |
| 5398 | return true; |
| 5399 | } /* alt_match_null_string_p */ |
| 5400 | |
| 5401 | |
| 5402 | /* Deals with the ops common to group_match_null_string_p and |
| 5403 | alt_match_null_string_p. |
| 5404 | |
| 5405 | Sets P to one after the op and its arguments, if any. */ |
| 5406 | |
| 5407 | static boolean |
| 5408 | common_op_match_null_string_p (p, end, reg_info) |
| 5409 | unsigned char **p, *end; |
| 5410 | register_info_type *reg_info; |
| 5411 | { |
| 5412 | int mcnt; |
| 5413 | boolean ret; |
| 5414 | int reg_no; |
| 5415 | unsigned char *p1 = *p; |
| 5416 | |
| 5417 | switch ((re_opcode_t) *p1++) |
| 5418 | { |
| 5419 | case no_op: |
| 5420 | case begline: |
| 5421 | case endline: |
| 5422 | case begbuf: |
| 5423 | case endbuf: |
| 5424 | case wordbeg: |
| 5425 | case wordend: |
| 5426 | case wordbound: |
| 5427 | case notwordbound: |
| 5428 | #ifdef emacs |
| 5429 | case before_dot: |
| 5430 | case at_dot: |
| 5431 | case after_dot: |
| 5432 | #endif |
| 5433 | break; |
| 5434 | |
| 5435 | case start_memory: |
| 5436 | reg_no = *p1; |
| 5437 | assert (reg_no > 0 && reg_no <= MAX_REGNUM); |
| 5438 | ret = group_match_null_string_p (&p1, end, reg_info); |
| 5439 | |
| 5440 | /* Have to set this here in case we're checking a group which |
| 5441 | contains a group and a back reference to it. */ |
| 5442 | |
| 5443 | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) |
| 5444 | REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; |
| 5445 | |
| 5446 | if (!ret) |
| 5447 | return false; |
| 5448 | break; |
| 5449 | |
| 5450 | /* If this is an optimized succeed_n for zero times, make the jump. */ |
| 5451 | case jump: |
| 5452 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 5453 | if (mcnt >= 0) |
| 5454 | p1 += mcnt; |
| 5455 | else |
| 5456 | return false; |
| 5457 | break; |
| 5458 | |
| 5459 | case succeed_n: |
| 5460 | /* Get to the number of times to succeed. */ |
| 5461 | p1 += 2; |
| 5462 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 5463 | |
| 5464 | if (mcnt == 0) |
| 5465 | { |
| 5466 | p1 -= 4; |
| 5467 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
| 5468 | p1 += mcnt; |
| 5469 | } |
| 5470 | else |
| 5471 | return false; |
| 5472 | break; |
| 5473 | |
| 5474 | case duplicate: |
| 5475 | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) |
| 5476 | return false; |
| 5477 | break; |
| 5478 | |
| 5479 | case set_number_at: |
| 5480 | p1 += 4; |
| 5481 | |
| 5482 | default: |
| 5483 | /* All other opcodes mean we cannot match the empty string. */ |
| 5484 | return false; |
| 5485 | } |
| 5486 | |
| 5487 | *p = p1; |
| 5488 | return true; |
| 5489 | } /* common_op_match_null_string_p */ |
| 5490 | |
| 5491 | |
| 5492 | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN |
| 5493 | bytes; nonzero otherwise. */ |
| 5494 | |
| 5495 | static int |
| 5496 | bcmp_translate (s1, s2, len, translate) |
| 5497 | const char *s1, *s2; |
| 5498 | register int len; |
| 5499 | RE_TRANSLATE_TYPE translate; |
| 5500 | { |
| 5501 | register const unsigned char *p1 = (const unsigned char *) s1; |
| 5502 | register const unsigned char *p2 = (const unsigned char *) s2; |
| 5503 | while (len) |
| 5504 | { |
| 5505 | if (translate[*p1++] != translate[*p2++]) return 1; |
| 5506 | len--; |
| 5507 | } |
| 5508 | return 0; |
| 5509 | } |
| 5510 | |
| 5511 | /* Entry points for GNU code. */ |
| 5512 | |
| 5513 | /* re_compile_pattern is the GNU regular expression compiler: it |
| 5514 | compiles PATTERN (of length SIZE) and puts the result in BUFP. |
| 5515 | Returns 0 if the pattern was valid, otherwise an error string. |
| 5516 | |
| 5517 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
| 5518 | are set in BUFP on entry. |
| 5519 | |
| 5520 | We call regex_compile to do the actual compilation. */ |
| 5521 | |
| 5522 | const char * |
| 5523 | re_compile_pattern (pattern, length, bufp) |
| 5524 | const char *pattern; |
| 5525 | size_t length; |
| 5526 | struct re_pattern_buffer *bufp; |
| 5527 | { |
| 5528 | reg_errcode_t ret; |
| 5529 | |
| 5530 | /* GNU code is written to assume at least RE_NREGS registers will be set |
| 5531 | (and at least one extra will be -1). */ |
| 5532 | bufp->regs_allocated = REGS_UNALLOCATED; |
| 5533 | |
| 5534 | /* And GNU code determines whether or not to get register information |
| 5535 | by passing null for the REGS argument to re_match, etc., not by |
| 5536 | setting no_sub. */ |
| 5537 | bufp->no_sub = 0; |
| 5538 | |
| 5539 | /* Match anchors at newline. */ |
| 5540 | bufp->newline_anchor = 1; |
| 5541 | |
| 5542 | ret = regex_compile (pattern, length, re_syntax_options, bufp); |
| 5543 | |
| 5544 | if (!ret) |
| 5545 | return NULL; |
| 5546 | return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]); |
| 5547 | } |
| 5548 | #ifdef _LIBC |
| 5549 | weak_alias (__re_compile_pattern, re_compile_pattern) |
| 5550 | #endif |
| 5551 | |
| 5552 | /* Entry points compatible with 4.2 BSD regex library. We don't define |
| 5553 | them unless specifically requested. */ |
| 5554 | |
| 5555 | #if defined _REGEX_RE_COMP || defined _LIBC |
| 5556 | |
| 5557 | /* BSD has one and only one pattern buffer. */ |
| 5558 | static struct re_pattern_buffer re_comp_buf; |
| 5559 | |
| 5560 | char * |
| 5561 | #ifdef _LIBC |
| 5562 | /* Make these definitions weak in libc, so POSIX programs can redefine |
| 5563 | these names if they don't use our functions, and still use |
| 5564 | regcomp/regexec below without link errors. */ |
| 5565 | weak_function |
| 5566 | #endif |
| 5567 | re_comp (s) |
| 5568 | const char *s; |
| 5569 | { |
| 5570 | reg_errcode_t ret; |
| 5571 | |
| 5572 | if (!s) |
| 5573 | { |
| 5574 | if (!re_comp_buf.buffer) |
| 5575 | return gettext ("No previous regular expression"); |
| 5576 | return 0; |
| 5577 | } |
| 5578 | |
| 5579 | if (!re_comp_buf.buffer) |
| 5580 | { |
| 5581 | re_comp_buf.buffer = (unsigned char *) malloc (200); |
| 5582 | if (re_comp_buf.buffer == NULL) |
| 5583 | return (char *) gettext (re_error_msgid |
| 5584 | + re_error_msgid_idx[(int) REG_ESPACE]); |
| 5585 | re_comp_buf.allocated = 200; |
| 5586 | |
| 5587 | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); |
| 5588 | if (re_comp_buf.fastmap == NULL) |
| 5589 | return (char *) gettext (re_error_msgid |
| 5590 | + re_error_msgid_idx[(int) REG_ESPACE]); |
| 5591 | } |
| 5592 | |
| 5593 | /* Since `re_exec' always passes NULL for the `regs' argument, we |
| 5594 | don't need to initialize the pattern buffer fields which affect it. */ |
| 5595 | |
| 5596 | /* Match anchors at newlines. */ |
| 5597 | re_comp_buf.newline_anchor = 1; |
| 5598 | |
| 5599 | ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); |
| 5600 | |
| 5601 | if (!ret) |
| 5602 | return NULL; |
| 5603 | |
| 5604 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ |
| 5605 | return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]); |
| 5606 | } |
| 5607 | |
| 5608 | |
| 5609 | int |
| 5610 | #ifdef _LIBC |
| 5611 | weak_function |
| 5612 | #endif |
| 5613 | re_exec (s) |
| 5614 | const char *s; |
| 5615 | { |
| 5616 | const int len = strlen (s); |
| 5617 | return |
| 5618 | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); |
| 5619 | } |
| 5620 | |
| 5621 | #endif /* _REGEX_RE_COMP */ |
| 5622 | |
| 5623 | /* POSIX.2 functions. Don't define these for Emacs. */ |
| 5624 | |
| 5625 | #ifndef emacs |
| 5626 | |
| 5627 | /* regcomp takes a regular expression as a string and compiles it. |
| 5628 | |
| 5629 | PREG is a regex_t *. We do not expect any fields to be initialized, |
| 5630 | since POSIX says we shouldn't. Thus, we set |
| 5631 | |
| 5632 | `buffer' to the compiled pattern; |
| 5633 | `used' to the length of the compiled pattern; |
| 5634 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
| 5635 | REG_EXTENDED bit in CFLAGS is set; otherwise, to |
| 5636 | RE_SYNTAX_POSIX_BASIC; |
| 5637 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; |
| 5638 | `fastmap' to an allocated space for the fastmap; |
| 5639 | `fastmap_accurate' to zero; |
| 5640 | `re_nsub' to the number of subexpressions in PATTERN. |
| 5641 | |
| 5642 | PATTERN is the address of the pattern string. |
| 5643 | |
| 5644 | CFLAGS is a series of bits which affect compilation. |
| 5645 | |
| 5646 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
| 5647 | use POSIX basic syntax. |
| 5648 | |
| 5649 | If REG_NEWLINE is set, then . and [^...] don't match newline. |
| 5650 | Also, regexec will try a match beginning after every newline. |
| 5651 | |
| 5652 | If REG_ICASE is set, then we considers upper- and lowercase |
| 5653 | versions of letters to be equivalent when matching. |
| 5654 | |
| 5655 | If REG_NOSUB is set, then when PREG is passed to regexec, that |
| 5656 | routine will report only success or failure, and nothing about the |
| 5657 | registers. |
| 5658 | |
| 5659 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
| 5660 | the return codes and their meanings.) */ |
| 5661 | |
| 5662 | int |
| 5663 | regcomp (preg, pattern, cflags) |
| 5664 | regex_t *preg; |
| 5665 | const char *pattern; |
| 5666 | int cflags; |
| 5667 | { |
| 5668 | reg_errcode_t ret; |
| 5669 | reg_syntax_t syntax |
| 5670 | = (cflags & REG_EXTENDED) ? |
| 5671 | RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; |
| 5672 | |
| 5673 | /* regex_compile will allocate the space for the compiled pattern. */ |
| 5674 | preg->buffer = 0; |
| 5675 | preg->allocated = 0; |
| 5676 | preg->used = 0; |
| 5677 | |
| 5678 | /* Try to allocate space for the fastmap. */ |
| 5679 | preg->fastmap = (char *) malloc (1 << BYTEWIDTH); |
| 5680 | |
| 5681 | if (cflags & REG_ICASE) |
| 5682 | { |
| 5683 | unsigned i; |
| 5684 | |
| 5685 | preg->translate |
| 5686 | = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE |
| 5687 | * sizeof (*(RE_TRANSLATE_TYPE)0)); |
| 5688 | if (preg->translate == NULL) |
| 5689 | return (int) REG_ESPACE; |
| 5690 | |
| 5691 | /* Map uppercase characters to corresponding lowercase ones. */ |
| 5692 | for (i = 0; i < CHAR_SET_SIZE; i++) |
| 5693 | preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i; |
| 5694 | } |
| 5695 | else |
| 5696 | preg->translate = NULL; |
| 5697 | |
| 5698 | /* If REG_NEWLINE is set, newlines are treated differently. */ |
| 5699 | if (cflags & REG_NEWLINE) |
| 5700 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
| 5701 | syntax &= ~RE_DOT_NEWLINE; |
| 5702 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
| 5703 | /* It also changes the matching behavior. */ |
| 5704 | preg->newline_anchor = 1; |
| 5705 | } |
| 5706 | else |
| 5707 | preg->newline_anchor = 0; |
| 5708 | |
| 5709 | preg->no_sub = !!(cflags & REG_NOSUB); |
| 5710 | |
| 5711 | /* POSIX says a null character in the pattern terminates it, so we |
| 5712 | can use strlen here in compiling the pattern. */ |
| 5713 | ret = regex_compile (pattern, strlen (pattern), syntax, preg); |
| 5714 | |
| 5715 | /* POSIX doesn't distinguish between an unmatched open-group and an |
| 5716 | unmatched close-group: both are REG_EPAREN. */ |
| 5717 | if (ret == REG_ERPAREN) ret = REG_EPAREN; |
| 5718 | |
| 5719 | if (ret == REG_NOERROR && preg->fastmap) |
| 5720 | { |
| 5721 | /* Compute the fastmap now, since regexec cannot modify the pattern |
| 5722 | buffer. */ |
| 5723 | if (re_compile_fastmap (preg) == -2) |
| 5724 | { |
| 5725 | /* Some error occured while computing the fastmap, just forget |
| 5726 | about it. */ |
| 5727 | free (preg->fastmap); |
| 5728 | preg->fastmap = NULL; |
| 5729 | } |
| 5730 | } |
| 5731 | |
| 5732 | return (int) ret; |
| 5733 | } |
| 5734 | #ifdef _LIBC |
| 5735 | weak_alias (__regcomp, regcomp) |
| 5736 | #endif |
| 5737 | |
| 5738 | |
| 5739 | /* regexec searches for a given pattern, specified by PREG, in the |
| 5740 | string STRING. |
| 5741 | |
| 5742 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
| 5743 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
| 5744 | least NMATCH elements, and we set them to the offsets of the |
| 5745 | corresponding matched substrings. |
| 5746 | |
| 5747 | EFLAGS specifies `execution flags' which affect matching: if |
| 5748 | REG_NOTBOL is set, then ^ does not match at the beginning of the |
| 5749 | string; if REG_NOTEOL is set, then $ does not match at the end. |
| 5750 | |
| 5751 | We return 0 if we find a match and REG_NOMATCH if not. */ |
| 5752 | |
| 5753 | int |
| 5754 | regexec (preg, string, nmatch, pmatch, eflags) |
| 5755 | const regex_t *preg; |
| 5756 | const char *string; |
| 5757 | size_t nmatch; |
| 5758 | regmatch_t pmatch[]; |
| 5759 | int eflags; |
| 5760 | { |
| 5761 | int ret; |
| 5762 | struct re_registers regs; |
| 5763 | regex_t private_preg; |
| 5764 | int len = strlen (string); |
| 5765 | boolean want_reg_info = !preg->no_sub && nmatch > 0; |
| 5766 | |
| 5767 | private_preg = *preg; |
| 5768 | |
| 5769 | private_preg.not_bol = !!(eflags & REG_NOTBOL); |
| 5770 | private_preg.not_eol = !!(eflags & REG_NOTEOL); |
| 5771 | |
| 5772 | /* The user has told us exactly how many registers to return |
| 5773 | information about, via `nmatch'. We have to pass that on to the |
| 5774 | matching routines. */ |
| 5775 | private_preg.regs_allocated = REGS_FIXED; |
| 5776 | |
| 5777 | if (want_reg_info) |
| 5778 | { |
| 5779 | regs.num_regs = nmatch; |
| 5780 | regs.start = TALLOC (nmatch * 2, regoff_t); |
| 5781 | if (regs.start == NULL) |
| 5782 | return (int) REG_NOMATCH; |
| 5783 | regs.end = regs.start + nmatch; |
| 5784 | } |
| 5785 | |
| 5786 | /* Perform the searching operation. */ |
| 5787 | ret = re_search (&private_preg, string, len, |
| 5788 | /* start: */ 0, /* range: */ len, |
| 5789 | want_reg_info ? ®s : (struct re_registers *) 0); |
| 5790 | |
| 5791 | /* Copy the register information to the POSIX structure. */ |
| 5792 | if (want_reg_info) |
| 5793 | { |
| 5794 | if (ret >= 0) |
| 5795 | { |
| 5796 | unsigned r; |
| 5797 | |
| 5798 | for (r = 0; r < nmatch; r++) |
| 5799 | { |
| 5800 | pmatch[r].rm_so = regs.start[r]; |
| 5801 | pmatch[r].rm_eo = regs.end[r]; |
| 5802 | } |
| 5803 | } |
| 5804 | |
| 5805 | /* If we needed the temporary register info, free the space now. */ |
| 5806 | free (regs.start); |
| 5807 | } |
| 5808 | |
| 5809 | /* We want zero return to mean success, unlike `re_search'. */ |
| 5810 | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; |
| 5811 | } |
| 5812 | #ifdef _LIBC |
| 5813 | weak_alias (__regexec, regexec) |
| 5814 | #endif |
| 5815 | |
| 5816 | |
| 5817 | /* Returns a message corresponding to an error code, ERRCODE, returned |
| 5818 | from either regcomp or regexec. We don't use PREG here. */ |
| 5819 | |
| 5820 | size_t |
| 5821 | regerror (errcode, preg, errbuf, errbuf_size) |
| 5822 | int errcode; |
| 5823 | const regex_t *preg; |
| 5824 | char *errbuf; |
| 5825 | size_t errbuf_size; |
| 5826 | { |
| 5827 | const char *msg; |
| 5828 | size_t msg_size; |
| 5829 | |
| 5830 | if (errcode < 0 |
| 5831 | || errcode >= (int) (sizeof (re_error_msgid_idx) |
| 5832 | / sizeof (re_error_msgid_idx[0]))) |
| 5833 | /* Only error codes returned by the rest of the code should be passed |
| 5834 | to this routine. If we are given anything else, or if other regex |
| 5835 | code generates an invalid error code, then the program has a bug. |
| 5836 | Dump core so we can fix it. */ |
| 5837 | abort (); |
| 5838 | |
| 5839 | msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]); |
| 5840 | |
| 5841 | msg_size = strlen (msg) + 1; /* Includes the null. */ |
| 5842 | |
| 5843 | if (errbuf_size != 0) |
| 5844 | { |
| 5845 | if (msg_size > errbuf_size) |
| 5846 | { |
| 5847 | #if defined HAVE_MEMPCPY || defined _LIBC |
| 5848 | *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; |
| 5849 | #else |
| 5850 | memcpy (errbuf, msg, errbuf_size - 1); |
| 5851 | errbuf[errbuf_size - 1] = 0; |
| 5852 | #endif |
| 5853 | } |
| 5854 | else |
| 5855 | memcpy (errbuf, msg, msg_size); |
| 5856 | } |
| 5857 | |
| 5858 | return msg_size; |
| 5859 | } |
| 5860 | #ifdef _LIBC |
| 5861 | weak_alias (__regerror, regerror) |
| 5862 | #endif |
| 5863 | |
| 5864 | |
| 5865 | /* Free dynamically allocated space used by PREG. */ |
| 5866 | |
| 5867 | void |
| 5868 | regfree (preg) |
| 5869 | regex_t *preg; |
| 5870 | { |
| 5871 | if (preg->buffer != NULL) |
| 5872 | free (preg->buffer); |
| 5873 | preg->buffer = NULL; |
| 5874 | |
| 5875 | preg->allocated = 0; |
| 5876 | preg->used = 0; |
| 5877 | |
| 5878 | if (preg->fastmap != NULL) |
| 5879 | free (preg->fastmap); |
| 5880 | preg->fastmap = NULL; |
| 5881 | preg->fastmap_accurate = 0; |
| 5882 | |
| 5883 | if (preg->translate != NULL) |
| 5884 | free (preg->translate); |
| 5885 | preg->translate = NULL; |
| 5886 | } |
| 5887 | #ifdef _LIBC |
| 5888 | weak_alias (__regfree, regfree) |
| 5889 | #endif |
| 5890 | |
| 5891 | #endif /* not emacs */ |