blob: 9855bf44398d74974b19ade6bfc53177df39cb16 [file] [log] [blame]
package sarama
import (
"container/heap"
"errors"
"fmt"
"math"
"sort"
"strings"
)
const (
// RangeBalanceStrategyName identifies strategies that use the range partition assignment strategy
RangeBalanceStrategyName = "range"
// RoundRobinBalanceStrategyName identifies strategies that use the round-robin partition assignment strategy
RoundRobinBalanceStrategyName = "roundrobin"
// StickyBalanceStrategyName identifies strategies that use the sticky-partition assignment strategy
StickyBalanceStrategyName = "sticky"
defaultGeneration = -1
)
// BalanceStrategyPlan is the results of any BalanceStrategy.Plan attempt.
// It contains an allocation of topic/partitions by memberID in the form of
// a `memberID -> topic -> partitions` map.
type BalanceStrategyPlan map[string]map[string][]int32
// Add assigns a topic with a number partitions to a member.
func (p BalanceStrategyPlan) Add(memberID, topic string, partitions ...int32) {
if len(partitions) == 0 {
return
}
if _, ok := p[memberID]; !ok {
p[memberID] = make(map[string][]int32, 1)
}
p[memberID][topic] = append(p[memberID][topic], partitions...)
}
// --------------------------------------------------------------------
// BalanceStrategy is used to balance topics and partitions
// across members of a consumer group
type BalanceStrategy interface {
// Name uniquely identifies the strategy.
Name() string
// Plan accepts a map of `memberID -> metadata` and a map of `topic -> partitions`
// and returns a distribution plan.
Plan(members map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error)
// AssignmentData returns the serialized assignment data for the specified
// memberID
AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error)
}
// --------------------------------------------------------------------
// BalanceStrategyRange is the default and assigns partitions as ranges to consumer group members.
// Example with one topic T with six partitions (0..5) and two members (M1, M2):
// M1: {T: [0, 1, 2]}
// M2: {T: [3, 4, 5]}
var BalanceStrategyRange = &balanceStrategy{
name: RangeBalanceStrategyName,
coreFn: func(plan BalanceStrategyPlan, memberIDs []string, topic string, partitions []int32) {
step := float64(len(partitions)) / float64(len(memberIDs))
for i, memberID := range memberIDs {
pos := float64(i)
min := int(math.Floor(pos*step + 0.5))
max := int(math.Floor((pos+1)*step + 0.5))
plan.Add(memberID, topic, partitions[min:max]...)
}
},
}
// BalanceStrategySticky assigns partitions to members with an attempt to preserve earlier assignments
// while maintain a balanced partition distribution.
// Example with topic T with six partitions (0..5) and two members (M1, M2):
// M1: {T: [0, 2, 4]}
// M2: {T: [1, 3, 5]}
//
// On reassignment with an additional consumer, you might get an assignment plan like:
// M1: {T: [0, 2]}
// M2: {T: [1, 3]}
// M3: {T: [4, 5]}
//
var BalanceStrategySticky = &stickyBalanceStrategy{}
// --------------------------------------------------------------------
type balanceStrategy struct {
name string
coreFn func(plan BalanceStrategyPlan, memberIDs []string, topic string, partitions []int32)
}
// Name implements BalanceStrategy.
func (s *balanceStrategy) Name() string { return s.name }
// Plan implements BalanceStrategy.
func (s *balanceStrategy) Plan(members map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error) {
// Build members by topic map
mbt := make(map[string][]string)
for memberID, meta := range members {
for _, topic := range meta.Topics {
mbt[topic] = append(mbt[topic], memberID)
}
}
// Sort members for each topic
for topic, memberIDs := range mbt {
sort.Sort(&balanceStrategySortable{
topic: topic,
memberIDs: memberIDs,
})
}
// Assemble plan
plan := make(BalanceStrategyPlan, len(members))
for topic, memberIDs := range mbt {
s.coreFn(plan, memberIDs, topic, topics[topic])
}
return plan, nil
}
// AssignmentData simple strategies do not require any shared assignment data
func (s *balanceStrategy) AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error) {
return nil, nil
}
type balanceStrategySortable struct {
topic string
memberIDs []string
}
func (p balanceStrategySortable) Len() int { return len(p.memberIDs) }
func (p balanceStrategySortable) Swap(i, j int) {
p.memberIDs[i], p.memberIDs[j] = p.memberIDs[j], p.memberIDs[i]
}
func (p balanceStrategySortable) Less(i, j int) bool {
return balanceStrategyHashValue(p.topic, p.memberIDs[i]) < balanceStrategyHashValue(p.topic, p.memberIDs[j])
}
func balanceStrategyHashValue(vv ...string) uint32 {
h := uint32(2166136261)
for _, s := range vv {
for _, c := range s {
h ^= uint32(c)
h *= 16777619
}
}
return h
}
type stickyBalanceStrategy struct {
movements partitionMovements
}
// Name implements BalanceStrategy.
func (s *stickyBalanceStrategy) Name() string { return StickyBalanceStrategyName }
// Plan implements BalanceStrategy.
func (s *stickyBalanceStrategy) Plan(members map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error) {
// track partition movements during generation of the partition assignment plan
s.movements = partitionMovements{
Movements: make(map[topicPartitionAssignment]consumerPair),
PartitionMovementsByTopic: make(map[string]map[consumerPair]map[topicPartitionAssignment]bool),
}
// prepopulate the current assignment state from userdata on the consumer group members
currentAssignment, prevAssignment, err := prepopulateCurrentAssignments(members)
if err != nil {
return nil, err
}
// determine if we're dealing with a completely fresh assignment, or if there's existing assignment state
isFreshAssignment := false
if len(currentAssignment) == 0 {
isFreshAssignment = true
}
// create a mapping of all current topic partitions and the consumers that can be assigned to them
partition2AllPotentialConsumers := make(map[topicPartitionAssignment][]string)
for topic, partitions := range topics {
for _, partition := range partitions {
partition2AllPotentialConsumers[topicPartitionAssignment{Topic: topic, Partition: partition}] = []string{}
}
}
// create a mapping of all consumers to all potential topic partitions that can be assigned to them
// also, populate the mapping of partitions to potential consumers
consumer2AllPotentialPartitions := make(map[string][]topicPartitionAssignment, len(members))
for memberID, meta := range members {
consumer2AllPotentialPartitions[memberID] = make([]topicPartitionAssignment, 0)
for _, topicSubscription := range meta.Topics {
// only evaluate topic subscriptions that are present in the supplied topics map
if _, found := topics[topicSubscription]; found {
for _, partition := range topics[topicSubscription] {
topicPartition := topicPartitionAssignment{Topic: topicSubscription, Partition: partition}
consumer2AllPotentialPartitions[memberID] = append(consumer2AllPotentialPartitions[memberID], topicPartition)
partition2AllPotentialConsumers[topicPartition] = append(partition2AllPotentialConsumers[topicPartition], memberID)
}
}
}
// add this consumer to currentAssignment (with an empty topic partition assignment) if it does not already exist
if _, exists := currentAssignment[memberID]; !exists {
currentAssignment[memberID] = make([]topicPartitionAssignment, 0)
}
}
// create a mapping of each partition to its current consumer, where possible
currentPartitionConsumers := make(map[topicPartitionAssignment]string, len(currentAssignment))
unvisitedPartitions := make(map[topicPartitionAssignment]bool, len(partition2AllPotentialConsumers))
for partition := range partition2AllPotentialConsumers {
unvisitedPartitions[partition] = true
}
var unassignedPartitions []topicPartitionAssignment
for memberID, partitions := range currentAssignment {
var keepPartitions []topicPartitionAssignment
for _, partition := range partitions {
// If this partition no longer exists at all, likely due to the
// topic being deleted, we remove the partition from the member.
if _, exists := partition2AllPotentialConsumers[partition]; !exists {
continue
}
delete(unvisitedPartitions, partition)
currentPartitionConsumers[partition] = memberID
if !strsContains(members[memberID].Topics, partition.Topic) {
unassignedPartitions = append(unassignedPartitions, partition)
continue
}
keepPartitions = append(keepPartitions, partition)
}
currentAssignment[memberID] = keepPartitions
}
for unvisited := range unvisitedPartitions {
unassignedPartitions = append(unassignedPartitions, unvisited)
}
// sort the topic partitions in order of priority for reassignment
sortedPartitions := sortPartitions(currentAssignment, prevAssignment, isFreshAssignment, partition2AllPotentialConsumers, consumer2AllPotentialPartitions)
// at this point we have preserved all valid topic partition to consumer assignments and removed
// all invalid topic partitions and invalid consumers. Now we need to assign unassignedPartitions
// to consumers so that the topic partition assignments are as balanced as possible.
// an ascending sorted set of consumers based on how many topic partitions are already assigned to them
sortedCurrentSubscriptions := sortMemberIDsByPartitionAssignments(currentAssignment)
s.balance(currentAssignment, prevAssignment, sortedPartitions, unassignedPartitions, sortedCurrentSubscriptions, consumer2AllPotentialPartitions, partition2AllPotentialConsumers, currentPartitionConsumers)
// Assemble plan
plan := make(BalanceStrategyPlan, len(currentAssignment))
for memberID, assignments := range currentAssignment {
if len(assignments) == 0 {
plan[memberID] = make(map[string][]int32)
} else {
for _, assignment := range assignments {
plan.Add(memberID, assignment.Topic, assignment.Partition)
}
}
}
return plan, nil
}
// AssignmentData serializes the set of topics currently assigned to the
// specified member as part of the supplied balance plan
func (s *stickyBalanceStrategy) AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error) {
return encode(&StickyAssignorUserDataV1{
Topics: topics,
Generation: generationID,
}, nil)
}
func strsContains(s []string, value string) bool {
for _, entry := range s {
if entry == value {
return true
}
}
return false
}
// Balance assignments across consumers for maximum fairness and stickiness.
func (s *stickyBalanceStrategy) balance(currentAssignment map[string][]topicPartitionAssignment, prevAssignment map[topicPartitionAssignment]consumerGenerationPair, sortedPartitions []topicPartitionAssignment, unassignedPartitions []topicPartitionAssignment, sortedCurrentSubscriptions []string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string, currentPartitionConsumer map[topicPartitionAssignment]string) {
initializing := false
if len(sortedCurrentSubscriptions) == 0 || len(currentAssignment[sortedCurrentSubscriptions[0]]) == 0 {
initializing = true
}
// assign all unassigned partitions
for _, partition := range unassignedPartitions {
// skip if there is no potential consumer for the partition
if len(partition2AllPotentialConsumers[partition]) == 0 {
continue
}
sortedCurrentSubscriptions = assignPartition(partition, sortedCurrentSubscriptions, currentAssignment, consumer2AllPotentialPartitions, currentPartitionConsumer)
}
// narrow down the reassignment scope to only those partitions that can actually be reassigned
for partition := range partition2AllPotentialConsumers {
if !canTopicPartitionParticipateInReassignment(partition, partition2AllPotentialConsumers) {
sortedPartitions = removeTopicPartitionFromMemberAssignments(sortedPartitions, partition)
}
}
// narrow down the reassignment scope to only those consumers that are subject to reassignment
fixedAssignments := make(map[string][]topicPartitionAssignment)
for memberID := range consumer2AllPotentialPartitions {
if !canConsumerParticipateInReassignment(memberID, currentAssignment, consumer2AllPotentialPartitions, partition2AllPotentialConsumers) {
fixedAssignments[memberID] = currentAssignment[memberID]
delete(currentAssignment, memberID)
sortedCurrentSubscriptions = sortMemberIDsByPartitionAssignments(currentAssignment)
}
}
// create a deep copy of the current assignment so we can revert to it if we do not get a more balanced assignment later
preBalanceAssignment := deepCopyAssignment(currentAssignment)
preBalancePartitionConsumers := make(map[topicPartitionAssignment]string, len(currentPartitionConsumer))
for k, v := range currentPartitionConsumer {
preBalancePartitionConsumers[k] = v
}
reassignmentPerformed := s.performReassignments(sortedPartitions, currentAssignment, prevAssignment, sortedCurrentSubscriptions, consumer2AllPotentialPartitions, partition2AllPotentialConsumers, currentPartitionConsumer)
// if we are not preserving existing assignments and we have made changes to the current assignment
// make sure we are getting a more balanced assignment; otherwise, revert to previous assignment
if !initializing && reassignmentPerformed && getBalanceScore(currentAssignment) >= getBalanceScore(preBalanceAssignment) {
currentAssignment = deepCopyAssignment(preBalanceAssignment)
currentPartitionConsumer = make(map[topicPartitionAssignment]string, len(preBalancePartitionConsumers))
for k, v := range preBalancePartitionConsumers {
currentPartitionConsumer[k] = v
}
}
// add the fixed assignments (those that could not change) back
for consumer, assignments := range fixedAssignments {
currentAssignment[consumer] = assignments
}
}
// BalanceStrategyRoundRobin assigns partitions to members in alternating order.
// For example, there are two topics (t0, t1) and two consumer (m0, m1), and each topic has three partitions (p0, p1, p2):
// M0: [t0p0, t0p2, t1p1]
// M1: [t0p1, t1p0, t1p2]
var BalanceStrategyRoundRobin = new(roundRobinBalancer)
type roundRobinBalancer struct{}
func (b *roundRobinBalancer) Name() string {
return RoundRobinBalanceStrategyName
}
func (b *roundRobinBalancer) Plan(memberAndMetadata map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error) {
if len(memberAndMetadata) == 0 || len(topics) == 0 {
return nil, errors.New("members and topics are not provided")
}
// sort partitions
var topicPartitions []topicAndPartition
for topic, partitions := range topics {
for _, partition := range partitions {
topicPartitions = append(topicPartitions, topicAndPartition{topic: topic, partition: partition})
}
}
sort.SliceStable(topicPartitions, func(i, j int) bool {
pi := topicPartitions[i]
pj := topicPartitions[j]
return pi.comparedValue() < pj.comparedValue()
})
// sort members
var members []memberAndTopic
for memberID, meta := range memberAndMetadata {
m := memberAndTopic{
memberID: memberID,
topics: make(map[string]struct{}),
}
for _, t := range meta.Topics {
m.topics[t] = struct{}{}
}
members = append(members, m)
}
sort.SliceStable(members, func(i, j int) bool {
mi := members[i]
mj := members[j]
return mi.memberID < mj.memberID
})
// assign partitions
plan := make(BalanceStrategyPlan, len(members))
i := 0
n := len(members)
for _, tp := range topicPartitions {
m := members[i%n]
for !m.hasTopic(tp.topic) {
i++
m = members[i%n]
}
plan.Add(m.memberID, tp.topic, tp.partition)
i++
}
return plan, nil
}
func (b *roundRobinBalancer) AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error) {
return nil, nil // do nothing for now
}
type topicAndPartition struct {
topic string
partition int32
}
func (tp *topicAndPartition) comparedValue() string {
return fmt.Sprintf("%s-%d", tp.topic, tp.partition)
}
type memberAndTopic struct {
memberID string
topics map[string]struct{}
}
func (m *memberAndTopic) hasTopic(topic string) bool {
_, isExist := m.topics[topic]
return isExist
}
// Calculate the balance score of the given assignment, as the sum of assigned partitions size difference of all consumer pairs.
// A perfectly balanced assignment (with all consumers getting the same number of partitions) has a balance score of 0.
// Lower balance score indicates a more balanced assignment.
func getBalanceScore(assignment map[string][]topicPartitionAssignment) int {
consumer2AssignmentSize := make(map[string]int, len(assignment))
for memberID, partitions := range assignment {
consumer2AssignmentSize[memberID] = len(partitions)
}
var score float64
for memberID, consumerAssignmentSize := range consumer2AssignmentSize {
delete(consumer2AssignmentSize, memberID)
for _, otherConsumerAssignmentSize := range consumer2AssignmentSize {
score += math.Abs(float64(consumerAssignmentSize - otherConsumerAssignmentSize))
}
}
return int(score)
}
// Determine whether the current assignment plan is balanced.
func isBalanced(currentAssignment map[string][]topicPartitionAssignment, allSubscriptions map[string][]topicPartitionAssignment) bool {
sortedCurrentSubscriptions := sortMemberIDsByPartitionAssignments(currentAssignment)
min := len(currentAssignment[sortedCurrentSubscriptions[0]])
max := len(currentAssignment[sortedCurrentSubscriptions[len(sortedCurrentSubscriptions)-1]])
if min >= max-1 {
// if minimum and maximum numbers of partitions assigned to consumers differ by at most one return true
return true
}
// create a mapping from partitions to the consumer assigned to them
allPartitions := make(map[topicPartitionAssignment]string)
for memberID, partitions := range currentAssignment {
for _, partition := range partitions {
if _, exists := allPartitions[partition]; exists {
Logger.Printf("Topic %s Partition %d is assigned more than one consumer", partition.Topic, partition.Partition)
}
allPartitions[partition] = memberID
}
}
// for each consumer that does not have all the topic partitions it can get make sure none of the topic partitions it
// could but did not get cannot be moved to it (because that would break the balance)
for _, memberID := range sortedCurrentSubscriptions {
consumerPartitions := currentAssignment[memberID]
consumerPartitionCount := len(consumerPartitions)
// skip if this consumer already has all the topic partitions it can get
if consumerPartitionCount == len(allSubscriptions[memberID]) {
continue
}
// otherwise make sure it cannot get any more
potentialTopicPartitions := allSubscriptions[memberID]
for _, partition := range potentialTopicPartitions {
if !memberAssignmentsIncludeTopicPartition(currentAssignment[memberID], partition) {
otherConsumer := allPartitions[partition]
otherConsumerPartitionCount := len(currentAssignment[otherConsumer])
if consumerPartitionCount < otherConsumerPartitionCount {
return false
}
}
}
}
return true
}
// Reassign all topic partitions that need reassignment until balanced.
func (s *stickyBalanceStrategy) performReassignments(reassignablePartitions []topicPartitionAssignment, currentAssignment map[string][]topicPartitionAssignment, prevAssignment map[topicPartitionAssignment]consumerGenerationPair, sortedCurrentSubscriptions []string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string, currentPartitionConsumer map[topicPartitionAssignment]string) bool {
reassignmentPerformed := false
modified := false
// repeat reassignment until no partition can be moved to improve the balance
for {
modified = false
// reassign all reassignable partitions (starting from the partition with least potential consumers and if needed)
// until the full list is processed or a balance is achieved
for _, partition := range reassignablePartitions {
if isBalanced(currentAssignment, consumer2AllPotentialPartitions) {
break
}
// the partition must have at least two consumers
if len(partition2AllPotentialConsumers[partition]) <= 1 {
Logger.Printf("Expected more than one potential consumer for partition %s topic %d", partition.Topic, partition.Partition)
}
// the partition must have a consumer
consumer := currentPartitionConsumer[partition]
if consumer == "" {
Logger.Printf("Expected topic %s partition %d to be assigned to a consumer", partition.Topic, partition.Partition)
}
if _, exists := prevAssignment[partition]; exists {
if len(currentAssignment[consumer]) > (len(currentAssignment[prevAssignment[partition].MemberID]) + 1) {
sortedCurrentSubscriptions = s.reassignPartition(partition, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer, prevAssignment[partition].MemberID)
reassignmentPerformed = true
modified = true
continue
}
}
// check if a better-suited consumer exists for the partition; if so, reassign it
for _, otherConsumer := range partition2AllPotentialConsumers[partition] {
if len(currentAssignment[consumer]) > (len(currentAssignment[otherConsumer]) + 1) {
sortedCurrentSubscriptions = s.reassignPartitionToNewConsumer(partition, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer, consumer2AllPotentialPartitions)
reassignmentPerformed = true
modified = true
break
}
}
}
if !modified {
return reassignmentPerformed
}
}
}
// Identify a new consumer for a topic partition and reassign it.
func (s *stickyBalanceStrategy) reassignPartitionToNewConsumer(partition topicPartitionAssignment, currentAssignment map[string][]topicPartitionAssignment, sortedCurrentSubscriptions []string, currentPartitionConsumer map[topicPartitionAssignment]string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment) []string {
for _, anotherConsumer := range sortedCurrentSubscriptions {
if memberAssignmentsIncludeTopicPartition(consumer2AllPotentialPartitions[anotherConsumer], partition) {
return s.reassignPartition(partition, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer, anotherConsumer)
}
}
return sortedCurrentSubscriptions
}
// Reassign a specific partition to a new consumer
func (s *stickyBalanceStrategy) reassignPartition(partition topicPartitionAssignment, currentAssignment map[string][]topicPartitionAssignment, sortedCurrentSubscriptions []string, currentPartitionConsumer map[topicPartitionAssignment]string, newConsumer string) []string {
consumer := currentPartitionConsumer[partition]
// find the correct partition movement considering the stickiness requirement
partitionToBeMoved := s.movements.getTheActualPartitionToBeMoved(partition, consumer, newConsumer)
return s.processPartitionMovement(partitionToBeMoved, newConsumer, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer)
}
// Track the movement of a topic partition after assignment
func (s *stickyBalanceStrategy) processPartitionMovement(partition topicPartitionAssignment, newConsumer string, currentAssignment map[string][]topicPartitionAssignment, sortedCurrentSubscriptions []string, currentPartitionConsumer map[topicPartitionAssignment]string) []string {
oldConsumer := currentPartitionConsumer[partition]
s.movements.movePartition(partition, oldConsumer, newConsumer)
currentAssignment[oldConsumer] = removeTopicPartitionFromMemberAssignments(currentAssignment[oldConsumer], partition)
currentAssignment[newConsumer] = append(currentAssignment[newConsumer], partition)
currentPartitionConsumer[partition] = newConsumer
return sortMemberIDsByPartitionAssignments(currentAssignment)
}
// Determine whether a specific consumer should be considered for topic partition assignment.
func canConsumerParticipateInReassignment(memberID string, currentAssignment map[string][]topicPartitionAssignment, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string) bool {
currentPartitions := currentAssignment[memberID]
currentAssignmentSize := len(currentPartitions)
maxAssignmentSize := len(consumer2AllPotentialPartitions[memberID])
if currentAssignmentSize > maxAssignmentSize {
Logger.Printf("The consumer %s is assigned more partitions than the maximum possible", memberID)
}
if currentAssignmentSize < maxAssignmentSize {
// if a consumer is not assigned all its potential partitions it is subject to reassignment
return true
}
for _, partition := range currentPartitions {
if canTopicPartitionParticipateInReassignment(partition, partition2AllPotentialConsumers) {
return true
}
}
return false
}
// Only consider reassigning those topic partitions that have two or more potential consumers.
func canTopicPartitionParticipateInReassignment(partition topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string) bool {
return len(partition2AllPotentialConsumers[partition]) >= 2
}
// The assignment should improve the overall balance of the partition assignments to consumers.
func assignPartition(partition topicPartitionAssignment, sortedCurrentSubscriptions []string, currentAssignment map[string][]topicPartitionAssignment, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, currentPartitionConsumer map[topicPartitionAssignment]string) []string {
for _, memberID := range sortedCurrentSubscriptions {
if memberAssignmentsIncludeTopicPartition(consumer2AllPotentialPartitions[memberID], partition) {
currentAssignment[memberID] = append(currentAssignment[memberID], partition)
currentPartitionConsumer[partition] = memberID
break
}
}
return sortMemberIDsByPartitionAssignments(currentAssignment)
}
// Deserialize topic partition assignment data to aid with creation of a sticky assignment.
func deserializeTopicPartitionAssignment(userDataBytes []byte) (StickyAssignorUserData, error) {
userDataV1 := &StickyAssignorUserDataV1{}
if err := decode(userDataBytes, userDataV1); err != nil {
userDataV0 := &StickyAssignorUserDataV0{}
if err := decode(userDataBytes, userDataV0); err != nil {
return nil, err
}
return userDataV0, nil
}
return userDataV1, nil
}
// filterAssignedPartitions returns a map of consumer group members to their list of previously-assigned topic partitions, limited
// to those topic partitions currently reported by the Kafka cluster.
func filterAssignedPartitions(currentAssignment map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string) map[string][]topicPartitionAssignment {
assignments := deepCopyAssignment(currentAssignment)
for memberID, partitions := range assignments {
// perform in-place filtering
i := 0
for _, partition := range partitions {
if _, exists := partition2AllPotentialConsumers[partition]; exists {
partitions[i] = partition
i++
}
}
assignments[memberID] = partitions[:i]
}
return assignments
}
func removeTopicPartitionFromMemberAssignments(assignments []topicPartitionAssignment, topic topicPartitionAssignment) []topicPartitionAssignment {
for i, assignment := range assignments {
if assignment == topic {
return append(assignments[:i], assignments[i+1:]...)
}
}
return assignments
}
func memberAssignmentsIncludeTopicPartition(assignments []topicPartitionAssignment, topic topicPartitionAssignment) bool {
for _, assignment := range assignments {
if assignment == topic {
return true
}
}
return false
}
func sortPartitions(currentAssignment map[string][]topicPartitionAssignment, partitionsWithADifferentPreviousAssignment map[topicPartitionAssignment]consumerGenerationPair, isFreshAssignment bool, partition2AllPotentialConsumers map[topicPartitionAssignment][]string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment) []topicPartitionAssignment {
unassignedPartitions := make(map[topicPartitionAssignment]bool, len(partition2AllPotentialConsumers))
for partition := range partition2AllPotentialConsumers {
unassignedPartitions[partition] = true
}
sortedPartitions := make([]topicPartitionAssignment, 0)
if !isFreshAssignment && areSubscriptionsIdentical(partition2AllPotentialConsumers, consumer2AllPotentialPartitions) {
// if this is a reassignment and the subscriptions are identical (all consumers can consumer from all topics)
// then we just need to simply list partitions in a round robin fashion (from consumers with
// most assigned partitions to those with least)
assignments := filterAssignedPartitions(currentAssignment, partition2AllPotentialConsumers)
// use priority-queue to evaluate consumer group members in descending-order based on
// the number of topic partition assignments (i.e. consumers with most assignments first)
pq := make(assignmentPriorityQueue, len(assignments))
i := 0
for consumerID, consumerAssignments := range assignments {
pq[i] = &consumerGroupMember{
id: consumerID,
assignments: consumerAssignments,
}
i++
}
heap.Init(&pq)
for {
// loop until no consumer-group members remain
if pq.Len() == 0 {
break
}
member := pq[0]
// partitions that were assigned to a different consumer last time
var prevPartitionIndex int
for i, partition := range member.assignments {
if _, exists := partitionsWithADifferentPreviousAssignment[partition]; exists {
prevPartitionIndex = i
break
}
}
if len(member.assignments) > 0 {
partition := member.assignments[prevPartitionIndex]
sortedPartitions = append(sortedPartitions, partition)
delete(unassignedPartitions, partition)
if prevPartitionIndex == 0 {
member.assignments = member.assignments[1:]
} else {
member.assignments = append(member.assignments[:prevPartitionIndex], member.assignments[prevPartitionIndex+1:]...)
}
heap.Fix(&pq, 0)
} else {
heap.Pop(&pq)
}
}
for partition := range unassignedPartitions {
sortedPartitions = append(sortedPartitions, partition)
}
} else {
// an ascending sorted set of topic partitions based on how many consumers can potentially use them
sortedPartitions = sortPartitionsByPotentialConsumerAssignments(partition2AllPotentialConsumers)
}
return sortedPartitions
}
func sortMemberIDsByPartitionAssignments(assignments map[string][]topicPartitionAssignment) []string {
// sort the members by the number of partition assignments in ascending order
sortedMemberIDs := make([]string, 0, len(assignments))
for memberID := range assignments {
sortedMemberIDs = append(sortedMemberIDs, memberID)
}
sort.SliceStable(sortedMemberIDs, func(i, j int) bool {
ret := len(assignments[sortedMemberIDs[i]]) - len(assignments[sortedMemberIDs[j]])
if ret == 0 {
return sortedMemberIDs[i] < sortedMemberIDs[j]
}
return len(assignments[sortedMemberIDs[i]]) < len(assignments[sortedMemberIDs[j]])
})
return sortedMemberIDs
}
func sortPartitionsByPotentialConsumerAssignments(partition2AllPotentialConsumers map[topicPartitionAssignment][]string) []topicPartitionAssignment {
// sort the members by the number of partition assignments in descending order
sortedPartionIDs := make([]topicPartitionAssignment, len(partition2AllPotentialConsumers))
i := 0
for partition := range partition2AllPotentialConsumers {
sortedPartionIDs[i] = partition
i++
}
sort.Slice(sortedPartionIDs, func(i, j int) bool {
if len(partition2AllPotentialConsumers[sortedPartionIDs[i]]) == len(partition2AllPotentialConsumers[sortedPartionIDs[j]]) {
ret := strings.Compare(sortedPartionIDs[i].Topic, sortedPartionIDs[j].Topic)
if ret == 0 {
return sortedPartionIDs[i].Partition < sortedPartionIDs[j].Partition
}
return ret < 0
}
return len(partition2AllPotentialConsumers[sortedPartionIDs[i]]) < len(partition2AllPotentialConsumers[sortedPartionIDs[j]])
})
return sortedPartionIDs
}
func deepCopyAssignment(assignment map[string][]topicPartitionAssignment) map[string][]topicPartitionAssignment {
m := make(map[string][]topicPartitionAssignment, len(assignment))
for memberID, subscriptions := range assignment {
m[memberID] = append(subscriptions[:0:0], subscriptions...)
}
return m
}
func areSubscriptionsIdentical(partition2AllPotentialConsumers map[topicPartitionAssignment][]string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment) bool {
curMembers := make(map[string]int)
for _, cur := range partition2AllPotentialConsumers {
if len(curMembers) == 0 {
for _, curMembersElem := range cur {
curMembers[curMembersElem]++
}
continue
}
if len(curMembers) != len(cur) {
return false
}
yMap := make(map[string]int)
for _, yElem := range cur {
yMap[yElem]++
}
for curMembersMapKey, curMembersMapVal := range curMembers {
if yMap[curMembersMapKey] != curMembersMapVal {
return false
}
}
}
curPartitions := make(map[topicPartitionAssignment]int)
for _, cur := range consumer2AllPotentialPartitions {
if len(curPartitions) == 0 {
for _, curPartitionElem := range cur {
curPartitions[curPartitionElem]++
}
continue
}
if len(curPartitions) != len(cur) {
return false
}
yMap := make(map[topicPartitionAssignment]int)
for _, yElem := range cur {
yMap[yElem]++
}
for curMembersMapKey, curMembersMapVal := range curPartitions {
if yMap[curMembersMapKey] != curMembersMapVal {
return false
}
}
}
return true
}
// We need to process subscriptions' user data with each consumer's reported generation in mind
// higher generations overwrite lower generations in case of a conflict
// note that a conflict could exist only if user data is for different generations
func prepopulateCurrentAssignments(members map[string]ConsumerGroupMemberMetadata) (map[string][]topicPartitionAssignment, map[topicPartitionAssignment]consumerGenerationPair, error) {
currentAssignment := make(map[string][]topicPartitionAssignment)
prevAssignment := make(map[topicPartitionAssignment]consumerGenerationPair)
// for each partition we create a sorted map of its consumers by generation
sortedPartitionConsumersByGeneration := make(map[topicPartitionAssignment]map[int]string)
for memberID, meta := range members {
consumerUserData, err := deserializeTopicPartitionAssignment(meta.UserData)
if err != nil {
return nil, nil, err
}
for _, partition := range consumerUserData.partitions() {
if consumers, exists := sortedPartitionConsumersByGeneration[partition]; exists {
if consumerUserData.hasGeneration() {
if _, generationExists := consumers[consumerUserData.generation()]; generationExists {
// same partition is assigned to two consumers during the same rebalance.
// log a warning and skip this record
Logger.Printf("Topic %s Partition %d is assigned to multiple consumers following sticky assignment generation %d", partition.Topic, partition.Partition, consumerUserData.generation())
continue
} else {
consumers[consumerUserData.generation()] = memberID
}
} else {
consumers[defaultGeneration] = memberID
}
} else {
generation := defaultGeneration
if consumerUserData.hasGeneration() {
generation = consumerUserData.generation()
}
sortedPartitionConsumersByGeneration[partition] = map[int]string{generation: memberID}
}
}
}
// prevAssignment holds the prior ConsumerGenerationPair (before current) of each partition
// current and previous consumers are the last two consumers of each partition in the above sorted map
for partition, consumers := range sortedPartitionConsumersByGeneration {
// sort consumers by generation in decreasing order
var generations []int
for generation := range consumers {
generations = append(generations, generation)
}
sort.Sort(sort.Reverse(sort.IntSlice(generations)))
consumer := consumers[generations[0]]
if _, exists := currentAssignment[consumer]; !exists {
currentAssignment[consumer] = []topicPartitionAssignment{partition}
} else {
currentAssignment[consumer] = append(currentAssignment[consumer], partition)
}
// check for previous assignment, if any
if len(generations) > 1 {
prevAssignment[partition] = consumerGenerationPair{
MemberID: consumers[generations[1]],
Generation: generations[1],
}
}
}
return currentAssignment, prevAssignment, nil
}
type consumerGenerationPair struct {
MemberID string
Generation int
}
// consumerPair represents a pair of Kafka consumer ids involved in a partition reassignment.
type consumerPair struct {
SrcMemberID string
DstMemberID string
}
// partitionMovements maintains some data structures to simplify lookup of partition movements among consumers.
type partitionMovements struct {
PartitionMovementsByTopic map[string]map[consumerPair]map[topicPartitionAssignment]bool
Movements map[topicPartitionAssignment]consumerPair
}
func (p *partitionMovements) removeMovementRecordOfPartition(partition topicPartitionAssignment) consumerPair {
pair := p.Movements[partition]
delete(p.Movements, partition)
partitionMovementsForThisTopic := p.PartitionMovementsByTopic[partition.Topic]
delete(partitionMovementsForThisTopic[pair], partition)
if len(partitionMovementsForThisTopic[pair]) == 0 {
delete(partitionMovementsForThisTopic, pair)
}
if len(p.PartitionMovementsByTopic[partition.Topic]) == 0 {
delete(p.PartitionMovementsByTopic, partition.Topic)
}
return pair
}
func (p *partitionMovements) addPartitionMovementRecord(partition topicPartitionAssignment, pair consumerPair) {
p.Movements[partition] = pair
if _, exists := p.PartitionMovementsByTopic[partition.Topic]; !exists {
p.PartitionMovementsByTopic[partition.Topic] = make(map[consumerPair]map[topicPartitionAssignment]bool)
}
partitionMovementsForThisTopic := p.PartitionMovementsByTopic[partition.Topic]
if _, exists := partitionMovementsForThisTopic[pair]; !exists {
partitionMovementsForThisTopic[pair] = make(map[topicPartitionAssignment]bool)
}
partitionMovementsForThisTopic[pair][partition] = true
}
func (p *partitionMovements) movePartition(partition topicPartitionAssignment, oldConsumer, newConsumer string) {
pair := consumerPair{
SrcMemberID: oldConsumer,
DstMemberID: newConsumer,
}
if _, exists := p.Movements[partition]; exists {
// this partition has previously moved
existingPair := p.removeMovementRecordOfPartition(partition)
if existingPair.DstMemberID != oldConsumer {
Logger.Printf("Existing pair DstMemberID %s was not equal to the oldConsumer ID %s", existingPair.DstMemberID, oldConsumer)
}
if existingPair.SrcMemberID != newConsumer {
// the partition is not moving back to its previous consumer
p.addPartitionMovementRecord(partition, consumerPair{
SrcMemberID: existingPair.SrcMemberID,
DstMemberID: newConsumer,
})
}
} else {
p.addPartitionMovementRecord(partition, pair)
}
}
func (p *partitionMovements) getTheActualPartitionToBeMoved(partition topicPartitionAssignment, oldConsumer, newConsumer string) topicPartitionAssignment {
if _, exists := p.PartitionMovementsByTopic[partition.Topic]; !exists {
return partition
}
if _, exists := p.Movements[partition]; exists {
// this partition has previously moved
if oldConsumer != p.Movements[partition].DstMemberID {
Logger.Printf("Partition movement DstMemberID %s was not equal to the oldConsumer ID %s", p.Movements[partition].DstMemberID, oldConsumer)
}
oldConsumer = p.Movements[partition].SrcMemberID
}
partitionMovementsForThisTopic := p.PartitionMovementsByTopic[partition.Topic]
reversePair := consumerPair{
SrcMemberID: newConsumer,
DstMemberID: oldConsumer,
}
if _, exists := partitionMovementsForThisTopic[reversePair]; !exists {
return partition
}
var reversePairPartition topicPartitionAssignment
for otherPartition := range partitionMovementsForThisTopic[reversePair] {
reversePairPartition = otherPartition
}
return reversePairPartition
}
func (p *partitionMovements) isLinked(src, dst string, pairs []consumerPair, currentPath []string) ([]string, bool) {
if src == dst {
return currentPath, false
}
if len(pairs) == 0 {
return currentPath, false
}
for _, pair := range pairs {
if src == pair.SrcMemberID && dst == pair.DstMemberID {
currentPath = append(currentPath, src, dst)
return currentPath, true
}
}
for _, pair := range pairs {
if pair.SrcMemberID == src {
// create a deep copy of the pairs, excluding the current pair
reducedSet := make([]consumerPair, len(pairs)-1)
i := 0
for _, p := range pairs {
if p != pair {
reducedSet[i] = pair
i++
}
}
currentPath = append(currentPath, pair.SrcMemberID)
return p.isLinked(pair.DstMemberID, dst, reducedSet, currentPath)
}
}
return currentPath, false
}
func (p *partitionMovements) in(cycle []string, cycles [][]string) bool {
superCycle := make([]string, len(cycle)-1)
for i := 0; i < len(cycle)-1; i++ {
superCycle[i] = cycle[i]
}
superCycle = append(superCycle, cycle...)
for _, foundCycle := range cycles {
if len(foundCycle) == len(cycle) && indexOfSubList(superCycle, foundCycle) != -1 {
return true
}
}
return false
}
func (p *partitionMovements) hasCycles(pairs []consumerPair) bool {
cycles := make([][]string, 0)
for _, pair := range pairs {
// create a deep copy of the pairs, excluding the current pair
reducedPairs := make([]consumerPair, len(pairs)-1)
i := 0
for _, p := range pairs {
if p != pair {
reducedPairs[i] = pair
i++
}
}
if path, linked := p.isLinked(pair.DstMemberID, pair.SrcMemberID, reducedPairs, []string{pair.SrcMemberID}); linked {
if !p.in(path, cycles) {
cycles = append(cycles, path)
Logger.Printf("A cycle of length %d was found: %v", len(path)-1, path)
}
}
}
// for now we want to make sure there is no partition movements of the same topic between a pair of consumers.
// the odds of finding a cycle among more than two consumers seem to be very low (according to various randomized
// tests with the given sticky algorithm) that it should not worth the added complexity of handling those cases.
for _, cycle := range cycles {
if len(cycle) == 3 {
return true
}
}
return false
}
func (p *partitionMovements) isSticky() bool {
for topic, movements := range p.PartitionMovementsByTopic {
movementPairs := make([]consumerPair, len(movements))
i := 0
for pair := range movements {
movementPairs[i] = pair
i++
}
if p.hasCycles(movementPairs) {
Logger.Printf("Stickiness is violated for topic %s", topic)
Logger.Printf("Partition movements for this topic occurred among the following consumer pairs: %v", movements)
return false
}
}
return true
}
func indexOfSubList(source []string, target []string) int {
targetSize := len(target)
maxCandidate := len(source) - targetSize
nextCand:
for candidate := 0; candidate <= maxCandidate; candidate++ {
j := candidate
for i := 0; i < targetSize; i++ {
if target[i] != source[j] {
// Element mismatch, try next cand
continue nextCand
}
j++
}
// All elements of candidate matched target
return candidate
}
return -1
}
type consumerGroupMember struct {
id string
assignments []topicPartitionAssignment
}
// assignmentPriorityQueue is a priority-queue of consumer group members that is sorted
// in descending order (most assignments to least assignments).
type assignmentPriorityQueue []*consumerGroupMember
func (pq assignmentPriorityQueue) Len() int { return len(pq) }
func (pq assignmentPriorityQueue) Less(i, j int) bool {
// order asssignment priority queue in descending order using assignment-count/member-id
if len(pq[i].assignments) == len(pq[j].assignments) {
return strings.Compare(pq[i].id, pq[j].id) > 0
}
return len(pq[i].assignments) > len(pq[j].assignments)
}
func (pq assignmentPriorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
func (pq *assignmentPriorityQueue) Push(x interface{}) {
member := x.(*consumerGroupMember)
*pq = append(*pq, member)
}
func (pq *assignmentPriorityQueue) Pop() interface{} {
old := *pq
n := len(old)
member := old[n-1]
*pq = old[0 : n-1]
return member
}