| package inf |
| |
| import ( |
| "math/big" |
| ) |
| |
| // Rounder represents a method for rounding the (possibly infinite decimal) |
| // result of a division to a finite Dec. It is used by Dec.Round() and |
| // Dec.Quo(). |
| // |
| // See the Example for results of using each Rounder with some sample values. |
| // |
| type Rounder rounder |
| |
| // See http://speleotrove.com/decimal/damodel.html#refround for more detailed |
| // definitions of these rounding modes. |
| var ( |
| RoundDown Rounder // towards 0 |
| RoundUp Rounder // away from 0 |
| RoundFloor Rounder // towards -infinity |
| RoundCeil Rounder // towards +infinity |
| RoundHalfDown Rounder // to nearest; towards 0 if same distance |
| RoundHalfUp Rounder // to nearest; away from 0 if same distance |
| RoundHalfEven Rounder // to nearest; even last digit if same distance |
| ) |
| |
| // RoundExact is to be used in the case when rounding is not necessary. |
| // When used with Quo or Round, it returns the result verbatim when it can be |
| // expressed exactly with the given precision, and it returns nil otherwise. |
| // QuoExact is a shorthand for using Quo with RoundExact. |
| var RoundExact Rounder |
| |
| type rounder interface { |
| |
| // When UseRemainder() returns true, the Round() method is passed the |
| // remainder of the division, expressed as the numerator and denominator of |
| // a rational. |
| UseRemainder() bool |
| |
| // Round sets the rounded value of a quotient to z, and returns z. |
| // quo is rounded down (truncated towards zero) to the scale obtained from |
| // the Scaler in Quo(). |
| // |
| // When the remainder is not used, remNum and remDen are nil. |
| // When used, the remainder is normalized between -1 and 1; that is: |
| // |
| // -|remDen| < remNum < |remDen| |
| // |
| // remDen has the same sign as y, and remNum is zero or has the same sign |
| // as x. |
| Round(z, quo *Dec, remNum, remDen *big.Int) *Dec |
| } |
| |
| type rndr struct { |
| useRem bool |
| round func(z, quo *Dec, remNum, remDen *big.Int) *Dec |
| } |
| |
| func (r rndr) UseRemainder() bool { |
| return r.useRem |
| } |
| |
| func (r rndr) Round(z, quo *Dec, remNum, remDen *big.Int) *Dec { |
| return r.round(z, quo, remNum, remDen) |
| } |
| |
| var intSign = []*big.Int{big.NewInt(-1), big.NewInt(0), big.NewInt(1)} |
| |
| func roundHalf(f func(c int, odd uint) (roundUp bool)) func(z, q *Dec, rA, rB *big.Int) *Dec { |
| return func(z, q *Dec, rA, rB *big.Int) *Dec { |
| z.Set(q) |
| brA, brB := rA.BitLen(), rB.BitLen() |
| if brA < brB-1 { |
| // brA < brB-1 => |rA| < |rB/2| |
| return z |
| } |
| roundUp := false |
| srA, srB := rA.Sign(), rB.Sign() |
| s := srA * srB |
| if brA == brB-1 { |
| rA2 := new(big.Int).Lsh(rA, 1) |
| if s < 0 { |
| rA2.Neg(rA2) |
| } |
| roundUp = f(rA2.Cmp(rB)*srB, z.UnscaledBig().Bit(0)) |
| } else { |
| // brA > brB-1 => |rA| > |rB/2| |
| roundUp = true |
| } |
| if roundUp { |
| z.UnscaledBig().Add(z.UnscaledBig(), intSign[s+1]) |
| } |
| return z |
| } |
| } |
| |
| func init() { |
| RoundExact = rndr{true, |
| func(z, q *Dec, rA, rB *big.Int) *Dec { |
| if rA.Sign() != 0 { |
| return nil |
| } |
| return z.Set(q) |
| }} |
| RoundDown = rndr{false, |
| func(z, q *Dec, rA, rB *big.Int) *Dec { |
| return z.Set(q) |
| }} |
| RoundUp = rndr{true, |
| func(z, q *Dec, rA, rB *big.Int) *Dec { |
| z.Set(q) |
| if rA.Sign() != 0 { |
| z.UnscaledBig().Add(z.UnscaledBig(), intSign[rA.Sign()*rB.Sign()+1]) |
| } |
| return z |
| }} |
| RoundFloor = rndr{true, |
| func(z, q *Dec, rA, rB *big.Int) *Dec { |
| z.Set(q) |
| if rA.Sign()*rB.Sign() < 0 { |
| z.UnscaledBig().Add(z.UnscaledBig(), intSign[0]) |
| } |
| return z |
| }} |
| RoundCeil = rndr{true, |
| func(z, q *Dec, rA, rB *big.Int) *Dec { |
| z.Set(q) |
| if rA.Sign()*rB.Sign() > 0 { |
| z.UnscaledBig().Add(z.UnscaledBig(), intSign[2]) |
| } |
| return z |
| }} |
| RoundHalfDown = rndr{true, roundHalf( |
| func(c int, odd uint) bool { |
| return c > 0 |
| })} |
| RoundHalfUp = rndr{true, roundHalf( |
| func(c int, odd uint) bool { |
| return c >= 0 |
| })} |
| RoundHalfEven = rndr{true, roundHalf( |
| func(c int, odd uint) bool { |
| return c > 0 || c == 0 && odd == 1 |
| })} |
| } |