Scott Baker | ed4efab | 2020-01-13 19:12:25 -0800 | [diff] [blame] | 1 | // Copyright 2018 Klaus Post. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | // Based on work Copyright (c) 2013, Yann Collet, released under BSD License. |
| 5 | |
| 6 | package fse |
| 7 | |
| 8 | import ( |
| 9 | "errors" |
| 10 | "fmt" |
| 11 | ) |
| 12 | |
| 13 | // Compress the input bytes. Input must be < 2GB. |
| 14 | // Provide a Scratch buffer to avoid memory allocations. |
| 15 | // Note that the output is also kept in the scratch buffer. |
| 16 | // If input is too hard to compress, ErrIncompressible is returned. |
| 17 | // If input is a single byte value repeated ErrUseRLE is returned. |
| 18 | func Compress(in []byte, s *Scratch) ([]byte, error) { |
| 19 | if len(in) <= 1 { |
| 20 | return nil, ErrIncompressible |
| 21 | } |
| 22 | if len(in) > (2<<30)-1 { |
| 23 | return nil, errors.New("input too big, must be < 2GB") |
| 24 | } |
| 25 | s, err := s.prepare(in) |
| 26 | if err != nil { |
| 27 | return nil, err |
| 28 | } |
| 29 | |
| 30 | // Create histogram, if none was provided. |
| 31 | maxCount := s.maxCount |
| 32 | if maxCount == 0 { |
| 33 | maxCount = s.countSimple(in) |
| 34 | } |
| 35 | // Reset for next run. |
| 36 | s.clearCount = true |
| 37 | s.maxCount = 0 |
| 38 | if maxCount == len(in) { |
| 39 | // One symbol, use RLE |
| 40 | return nil, ErrUseRLE |
| 41 | } |
| 42 | if maxCount == 1 || maxCount < (len(in)>>7) { |
| 43 | // Each symbol present maximum once or too well distributed. |
| 44 | return nil, ErrIncompressible |
| 45 | } |
| 46 | s.optimalTableLog() |
| 47 | err = s.normalizeCount() |
| 48 | if err != nil { |
| 49 | return nil, err |
| 50 | } |
| 51 | err = s.writeCount() |
| 52 | if err != nil { |
| 53 | return nil, err |
| 54 | } |
| 55 | |
| 56 | if false { |
| 57 | err = s.validateNorm() |
| 58 | if err != nil { |
| 59 | return nil, err |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | err = s.buildCTable() |
| 64 | if err != nil { |
| 65 | return nil, err |
| 66 | } |
| 67 | err = s.compress(in) |
| 68 | if err != nil { |
| 69 | return nil, err |
| 70 | } |
| 71 | s.Out = s.bw.out |
| 72 | // Check if we compressed. |
| 73 | if len(s.Out) >= len(in) { |
| 74 | return nil, ErrIncompressible |
| 75 | } |
| 76 | return s.Out, nil |
| 77 | } |
| 78 | |
| 79 | // cState contains the compression state of a stream. |
| 80 | type cState struct { |
| 81 | bw *bitWriter |
| 82 | stateTable []uint16 |
| 83 | state uint16 |
| 84 | } |
| 85 | |
| 86 | // init will initialize the compression state to the first symbol of the stream. |
| 87 | func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) { |
| 88 | c.bw = bw |
| 89 | c.stateTable = ct.stateTable |
| 90 | |
| 91 | nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16 |
| 92 | im := int32((nbBitsOut << 16) - first.deltaNbBits) |
| 93 | lu := (im >> nbBitsOut) + first.deltaFindState |
| 94 | c.state = c.stateTable[lu] |
| 95 | return |
| 96 | } |
| 97 | |
| 98 | // encode the output symbol provided and write it to the bitstream. |
| 99 | func (c *cState) encode(symbolTT symbolTransform) { |
| 100 | nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 |
| 101 | dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState |
| 102 | c.bw.addBits16NC(c.state, uint8(nbBitsOut)) |
| 103 | c.state = c.stateTable[dstState] |
| 104 | } |
| 105 | |
| 106 | // encode the output symbol provided and write it to the bitstream. |
| 107 | func (c *cState) encodeZero(symbolTT symbolTransform) { |
| 108 | nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16 |
| 109 | dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState |
| 110 | c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut)) |
| 111 | c.state = c.stateTable[dstState] |
| 112 | } |
| 113 | |
| 114 | // flush will write the tablelog to the output and flush the remaining full bytes. |
| 115 | func (c *cState) flush(tableLog uint8) { |
| 116 | c.bw.flush32() |
| 117 | c.bw.addBits16NC(c.state, tableLog) |
| 118 | c.bw.flush() |
| 119 | } |
| 120 | |
| 121 | // compress is the main compression loop that will encode the input from the last byte to the first. |
| 122 | func (s *Scratch) compress(src []byte) error { |
| 123 | if len(src) <= 2 { |
| 124 | return errors.New("compress: src too small") |
| 125 | } |
| 126 | tt := s.ct.symbolTT[:256] |
| 127 | s.bw.reset(s.Out) |
| 128 | |
| 129 | // Our two states each encodes every second byte. |
| 130 | // Last byte encoded (first byte decoded) will always be encoded by c1. |
| 131 | var c1, c2 cState |
| 132 | |
| 133 | // Encode so remaining size is divisible by 4. |
| 134 | ip := len(src) |
| 135 | if ip&1 == 1 { |
| 136 | c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]]) |
| 137 | c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]]) |
| 138 | c1.encodeZero(tt[src[ip-3]]) |
| 139 | ip -= 3 |
| 140 | } else { |
| 141 | c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]]) |
| 142 | c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]]) |
| 143 | ip -= 2 |
| 144 | } |
| 145 | if ip&2 != 0 { |
| 146 | c2.encodeZero(tt[src[ip-1]]) |
| 147 | c1.encodeZero(tt[src[ip-2]]) |
| 148 | ip -= 2 |
| 149 | } |
| 150 | |
| 151 | // Main compression loop. |
| 152 | switch { |
| 153 | case !s.zeroBits && s.actualTableLog <= 8: |
| 154 | // We can encode 4 symbols without requiring a flush. |
| 155 | // We do not need to check if any output is 0 bits. |
| 156 | for ip >= 4 { |
| 157 | s.bw.flush32() |
| 158 | v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
| 159 | c2.encode(tt[v0]) |
| 160 | c1.encode(tt[v1]) |
| 161 | c2.encode(tt[v2]) |
| 162 | c1.encode(tt[v3]) |
| 163 | ip -= 4 |
| 164 | } |
| 165 | case !s.zeroBits: |
| 166 | // We do not need to check if any output is 0 bits. |
| 167 | for ip >= 4 { |
| 168 | s.bw.flush32() |
| 169 | v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
| 170 | c2.encode(tt[v0]) |
| 171 | c1.encode(tt[v1]) |
| 172 | s.bw.flush32() |
| 173 | c2.encode(tt[v2]) |
| 174 | c1.encode(tt[v3]) |
| 175 | ip -= 4 |
| 176 | } |
| 177 | case s.actualTableLog <= 8: |
| 178 | // We can encode 4 symbols without requiring a flush |
| 179 | for ip >= 4 { |
| 180 | s.bw.flush32() |
| 181 | v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
| 182 | c2.encodeZero(tt[v0]) |
| 183 | c1.encodeZero(tt[v1]) |
| 184 | c2.encodeZero(tt[v2]) |
| 185 | c1.encodeZero(tt[v3]) |
| 186 | ip -= 4 |
| 187 | } |
| 188 | default: |
| 189 | for ip >= 4 { |
| 190 | s.bw.flush32() |
| 191 | v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1] |
| 192 | c2.encodeZero(tt[v0]) |
| 193 | c1.encodeZero(tt[v1]) |
| 194 | s.bw.flush32() |
| 195 | c2.encodeZero(tt[v2]) |
| 196 | c1.encodeZero(tt[v3]) |
| 197 | ip -= 4 |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | // Flush final state. |
| 202 | // Used to initialize state when decoding. |
| 203 | c2.flush(s.actualTableLog) |
| 204 | c1.flush(s.actualTableLog) |
| 205 | |
| 206 | return s.bw.close() |
| 207 | } |
| 208 | |
| 209 | // writeCount will write the normalized histogram count to header. |
| 210 | // This is read back by readNCount. |
| 211 | func (s *Scratch) writeCount() error { |
| 212 | var ( |
| 213 | tableLog = s.actualTableLog |
| 214 | tableSize = 1 << tableLog |
| 215 | previous0 bool |
| 216 | charnum uint16 |
| 217 | |
| 218 | maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3 |
| 219 | |
| 220 | // Write Table Size |
| 221 | bitStream = uint32(tableLog - minTablelog) |
| 222 | bitCount = uint(4) |
| 223 | remaining = int16(tableSize + 1) /* +1 for extra accuracy */ |
| 224 | threshold = int16(tableSize) |
| 225 | nbBits = uint(tableLog + 1) |
| 226 | ) |
| 227 | if cap(s.Out) < maxHeaderSize { |
| 228 | s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize) |
| 229 | } |
| 230 | outP := uint(0) |
| 231 | out := s.Out[:maxHeaderSize] |
| 232 | |
| 233 | // stops at 1 |
| 234 | for remaining > 1 { |
| 235 | if previous0 { |
| 236 | start := charnum |
| 237 | for s.norm[charnum] == 0 { |
| 238 | charnum++ |
| 239 | } |
| 240 | for charnum >= start+24 { |
| 241 | start += 24 |
| 242 | bitStream += uint32(0xFFFF) << bitCount |
| 243 | out[outP] = byte(bitStream) |
| 244 | out[outP+1] = byte(bitStream >> 8) |
| 245 | outP += 2 |
| 246 | bitStream >>= 16 |
| 247 | } |
| 248 | for charnum >= start+3 { |
| 249 | start += 3 |
| 250 | bitStream += 3 << bitCount |
| 251 | bitCount += 2 |
| 252 | } |
| 253 | bitStream += uint32(charnum-start) << bitCount |
| 254 | bitCount += 2 |
| 255 | if bitCount > 16 { |
| 256 | out[outP] = byte(bitStream) |
| 257 | out[outP+1] = byte(bitStream >> 8) |
| 258 | outP += 2 |
| 259 | bitStream >>= 16 |
| 260 | bitCount -= 16 |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | count := s.norm[charnum] |
| 265 | charnum++ |
| 266 | max := (2*threshold - 1) - remaining |
| 267 | if count < 0 { |
| 268 | remaining += count |
| 269 | } else { |
| 270 | remaining -= count |
| 271 | } |
| 272 | count++ // +1 for extra accuracy |
| 273 | if count >= threshold { |
| 274 | count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ |
| 275 | } |
| 276 | bitStream += uint32(count) << bitCount |
| 277 | bitCount += nbBits |
| 278 | if count < max { |
| 279 | bitCount-- |
| 280 | } |
| 281 | |
| 282 | previous0 = count == 1 |
| 283 | if remaining < 1 { |
| 284 | return errors.New("internal error: remaining<1") |
| 285 | } |
| 286 | for remaining < threshold { |
| 287 | nbBits-- |
| 288 | threshold >>= 1 |
| 289 | } |
| 290 | |
| 291 | if bitCount > 16 { |
| 292 | out[outP] = byte(bitStream) |
| 293 | out[outP+1] = byte(bitStream >> 8) |
| 294 | outP += 2 |
| 295 | bitStream >>= 16 |
| 296 | bitCount -= 16 |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | out[outP] = byte(bitStream) |
| 301 | out[outP+1] = byte(bitStream >> 8) |
| 302 | outP += (bitCount + 7) / 8 |
| 303 | |
| 304 | if uint16(charnum) > s.symbolLen { |
| 305 | return errors.New("internal error: charnum > s.symbolLen") |
| 306 | } |
| 307 | s.Out = out[:outP] |
| 308 | return nil |
| 309 | } |
| 310 | |
| 311 | // symbolTransform contains the state transform for a symbol. |
| 312 | type symbolTransform struct { |
| 313 | deltaFindState int32 |
| 314 | deltaNbBits uint32 |
| 315 | } |
| 316 | |
| 317 | // String prints values as a human readable string. |
| 318 | func (s symbolTransform) String() string { |
| 319 | return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState) |
| 320 | } |
| 321 | |
| 322 | // cTable contains tables used for compression. |
| 323 | type cTable struct { |
| 324 | tableSymbol []byte |
| 325 | stateTable []uint16 |
| 326 | symbolTT []symbolTransform |
| 327 | } |
| 328 | |
| 329 | // allocCtable will allocate tables needed for compression. |
| 330 | // If existing tables a re big enough, they are simply re-used. |
| 331 | func (s *Scratch) allocCtable() { |
| 332 | tableSize := 1 << s.actualTableLog |
| 333 | // get tableSymbol that is big enough. |
| 334 | if cap(s.ct.tableSymbol) < int(tableSize) { |
| 335 | s.ct.tableSymbol = make([]byte, tableSize) |
| 336 | } |
| 337 | s.ct.tableSymbol = s.ct.tableSymbol[:tableSize] |
| 338 | |
| 339 | ctSize := tableSize |
| 340 | if cap(s.ct.stateTable) < ctSize { |
| 341 | s.ct.stateTable = make([]uint16, ctSize) |
| 342 | } |
| 343 | s.ct.stateTable = s.ct.stateTable[:ctSize] |
| 344 | |
| 345 | if cap(s.ct.symbolTT) < 256 { |
| 346 | s.ct.symbolTT = make([]symbolTransform, 256) |
| 347 | } |
| 348 | s.ct.symbolTT = s.ct.symbolTT[:256] |
| 349 | } |
| 350 | |
| 351 | // buildCTable will populate the compression table so it is ready to be used. |
| 352 | func (s *Scratch) buildCTable() error { |
| 353 | tableSize := uint32(1 << s.actualTableLog) |
| 354 | highThreshold := tableSize - 1 |
| 355 | var cumul [maxSymbolValue + 2]int16 |
| 356 | |
| 357 | s.allocCtable() |
| 358 | tableSymbol := s.ct.tableSymbol[:tableSize] |
| 359 | // symbol start positions |
| 360 | { |
| 361 | cumul[0] = 0 |
| 362 | for ui, v := range s.norm[:s.symbolLen-1] { |
| 363 | u := byte(ui) // one less than reference |
| 364 | if v == -1 { |
| 365 | // Low proba symbol |
| 366 | cumul[u+1] = cumul[u] + 1 |
| 367 | tableSymbol[highThreshold] = u |
| 368 | highThreshold-- |
| 369 | } else { |
| 370 | cumul[u+1] = cumul[u] + v |
| 371 | } |
| 372 | } |
| 373 | // Encode last symbol separately to avoid overflowing u |
| 374 | u := int(s.symbolLen - 1) |
| 375 | v := s.norm[s.symbolLen-1] |
| 376 | if v == -1 { |
| 377 | // Low proba symbol |
| 378 | cumul[u+1] = cumul[u] + 1 |
| 379 | tableSymbol[highThreshold] = byte(u) |
| 380 | highThreshold-- |
| 381 | } else { |
| 382 | cumul[u+1] = cumul[u] + v |
| 383 | } |
| 384 | if uint32(cumul[s.symbolLen]) != tableSize { |
| 385 | return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize) |
| 386 | } |
| 387 | cumul[s.symbolLen] = int16(tableSize) + 1 |
| 388 | } |
| 389 | // Spread symbols |
| 390 | s.zeroBits = false |
| 391 | { |
| 392 | step := tableStep(tableSize) |
| 393 | tableMask := tableSize - 1 |
| 394 | var position uint32 |
| 395 | // if any symbol > largeLimit, we may have 0 bits output. |
| 396 | largeLimit := int16(1 << (s.actualTableLog - 1)) |
| 397 | for ui, v := range s.norm[:s.symbolLen] { |
| 398 | symbol := byte(ui) |
| 399 | if v > largeLimit { |
| 400 | s.zeroBits = true |
| 401 | } |
| 402 | for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ { |
| 403 | tableSymbol[position] = symbol |
| 404 | position = (position + step) & tableMask |
| 405 | for position > highThreshold { |
| 406 | position = (position + step) & tableMask |
| 407 | } /* Low proba area */ |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | // Check if we have gone through all positions |
| 412 | if position != 0 { |
| 413 | return errors.New("position!=0") |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | // Build table |
| 418 | table := s.ct.stateTable |
| 419 | { |
| 420 | tsi := int(tableSize) |
| 421 | for u, v := range tableSymbol { |
| 422 | // TableU16 : sorted by symbol order; gives next state value |
| 423 | table[cumul[v]] = uint16(tsi + u) |
| 424 | cumul[v]++ |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | // Build Symbol Transformation Table |
| 429 | { |
| 430 | total := int16(0) |
| 431 | symbolTT := s.ct.symbolTT[:s.symbolLen] |
| 432 | tableLog := s.actualTableLog |
| 433 | tl := (uint32(tableLog) << 16) - (1 << tableLog) |
| 434 | for i, v := range s.norm[:s.symbolLen] { |
| 435 | switch v { |
| 436 | case 0: |
| 437 | case -1, 1: |
| 438 | symbolTT[i].deltaNbBits = tl |
| 439 | symbolTT[i].deltaFindState = int32(total - 1) |
| 440 | total++ |
| 441 | default: |
| 442 | maxBitsOut := uint32(tableLog) - highBits(uint32(v-1)) |
| 443 | minStatePlus := uint32(v) << maxBitsOut |
| 444 | symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus |
| 445 | symbolTT[i].deltaFindState = int32(total - v) |
| 446 | total += v |
| 447 | } |
| 448 | } |
| 449 | if total != int16(tableSize) { |
| 450 | return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize) |
| 451 | } |
| 452 | } |
| 453 | return nil |
| 454 | } |
| 455 | |
| 456 | // countSimple will create a simple histogram in s.count. |
| 457 | // Returns the biggest count. |
| 458 | // Does not update s.clearCount. |
| 459 | func (s *Scratch) countSimple(in []byte) (max int) { |
| 460 | for _, v := range in { |
| 461 | s.count[v]++ |
| 462 | } |
| 463 | m := uint32(0) |
| 464 | for i, v := range s.count[:] { |
| 465 | if v > m { |
| 466 | m = v |
| 467 | } |
| 468 | if v > 0 { |
| 469 | s.symbolLen = uint16(i) + 1 |
| 470 | } |
| 471 | } |
| 472 | return int(m) |
| 473 | } |
| 474 | |
| 475 | // minTableLog provides the minimum logSize to safely represent a distribution. |
| 476 | func (s *Scratch) minTableLog() uint8 { |
| 477 | minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1 |
| 478 | minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2 |
| 479 | if minBitsSrc < minBitsSymbols { |
| 480 | return uint8(minBitsSrc) |
| 481 | } |
| 482 | return uint8(minBitsSymbols) |
| 483 | } |
| 484 | |
| 485 | // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog |
| 486 | func (s *Scratch) optimalTableLog() { |
| 487 | tableLog := s.TableLog |
| 488 | minBits := s.minTableLog() |
| 489 | maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2 |
| 490 | if maxBitsSrc < tableLog { |
| 491 | // Accuracy can be reduced |
| 492 | tableLog = maxBitsSrc |
| 493 | } |
| 494 | if minBits > tableLog { |
| 495 | tableLog = minBits |
| 496 | } |
| 497 | // Need a minimum to safely represent all symbol values |
| 498 | if tableLog < minTablelog { |
| 499 | tableLog = minTablelog |
| 500 | } |
| 501 | if tableLog > maxTableLog { |
| 502 | tableLog = maxTableLog |
| 503 | } |
| 504 | s.actualTableLog = tableLog |
| 505 | } |
| 506 | |
| 507 | var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000} |
| 508 | |
| 509 | // normalizeCount will normalize the count of the symbols so |
| 510 | // the total is equal to the table size. |
| 511 | func (s *Scratch) normalizeCount() error { |
| 512 | var ( |
| 513 | tableLog = s.actualTableLog |
| 514 | scale = 62 - uint64(tableLog) |
| 515 | step = (1 << 62) / uint64(s.br.remain()) |
| 516 | vStep = uint64(1) << (scale - 20) |
| 517 | stillToDistribute = int16(1 << tableLog) |
| 518 | largest int |
| 519 | largestP int16 |
| 520 | lowThreshold = (uint32)(s.br.remain() >> tableLog) |
| 521 | ) |
| 522 | |
| 523 | for i, cnt := range s.count[:s.symbolLen] { |
| 524 | // already handled |
| 525 | // if (count[s] == s.length) return 0; /* rle special case */ |
| 526 | |
| 527 | if cnt == 0 { |
| 528 | s.norm[i] = 0 |
| 529 | continue |
| 530 | } |
| 531 | if cnt <= lowThreshold { |
| 532 | s.norm[i] = -1 |
| 533 | stillToDistribute-- |
| 534 | } else { |
| 535 | proba := (int16)((uint64(cnt) * step) >> scale) |
| 536 | if proba < 8 { |
| 537 | restToBeat := vStep * uint64(rtbTable[proba]) |
| 538 | v := uint64(cnt)*step - (uint64(proba) << scale) |
| 539 | if v > restToBeat { |
| 540 | proba++ |
| 541 | } |
| 542 | } |
| 543 | if proba > largestP { |
| 544 | largestP = proba |
| 545 | largest = i |
| 546 | } |
| 547 | s.norm[i] = proba |
| 548 | stillToDistribute -= proba |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | if -stillToDistribute >= (s.norm[largest] >> 1) { |
| 553 | // corner case, need another normalization method |
| 554 | return s.normalizeCount2() |
| 555 | } |
| 556 | s.norm[largest] += stillToDistribute |
| 557 | return nil |
| 558 | } |
| 559 | |
| 560 | // Secondary normalization method. |
| 561 | // To be used when primary method fails. |
| 562 | func (s *Scratch) normalizeCount2() error { |
| 563 | const notYetAssigned = -2 |
| 564 | var ( |
| 565 | distributed uint32 |
| 566 | total = uint32(s.br.remain()) |
| 567 | tableLog = s.actualTableLog |
| 568 | lowThreshold = uint32(total >> tableLog) |
| 569 | lowOne = uint32((total * 3) >> (tableLog + 1)) |
| 570 | ) |
| 571 | for i, cnt := range s.count[:s.symbolLen] { |
| 572 | if cnt == 0 { |
| 573 | s.norm[i] = 0 |
| 574 | continue |
| 575 | } |
| 576 | if cnt <= lowThreshold { |
| 577 | s.norm[i] = -1 |
| 578 | distributed++ |
| 579 | total -= cnt |
| 580 | continue |
| 581 | } |
| 582 | if cnt <= lowOne { |
| 583 | s.norm[i] = 1 |
| 584 | distributed++ |
| 585 | total -= cnt |
| 586 | continue |
| 587 | } |
| 588 | s.norm[i] = notYetAssigned |
| 589 | } |
| 590 | toDistribute := (1 << tableLog) - distributed |
| 591 | |
| 592 | if (total / toDistribute) > lowOne { |
| 593 | // risk of rounding to zero |
| 594 | lowOne = uint32((total * 3) / (toDistribute * 2)) |
| 595 | for i, cnt := range s.count[:s.symbolLen] { |
| 596 | if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) { |
| 597 | s.norm[i] = 1 |
| 598 | distributed++ |
| 599 | total -= cnt |
| 600 | continue |
| 601 | } |
| 602 | } |
| 603 | toDistribute = (1 << tableLog) - distributed |
| 604 | } |
| 605 | if distributed == uint32(s.symbolLen)+1 { |
| 606 | // all values are pretty poor; |
| 607 | // probably incompressible data (should have already been detected); |
| 608 | // find max, then give all remaining points to max |
| 609 | var maxV int |
| 610 | var maxC uint32 |
| 611 | for i, cnt := range s.count[:s.symbolLen] { |
| 612 | if cnt > maxC { |
| 613 | maxV = i |
| 614 | maxC = cnt |
| 615 | } |
| 616 | } |
| 617 | s.norm[maxV] += int16(toDistribute) |
| 618 | return nil |
| 619 | } |
| 620 | |
| 621 | if total == 0 { |
| 622 | // all of the symbols were low enough for the lowOne or lowThreshold |
| 623 | for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) { |
| 624 | if s.norm[i] > 0 { |
| 625 | toDistribute-- |
| 626 | s.norm[i]++ |
| 627 | } |
| 628 | } |
| 629 | return nil |
| 630 | } |
| 631 | |
| 632 | var ( |
| 633 | vStepLog = 62 - uint64(tableLog) |
| 634 | mid = uint64((1 << (vStepLog - 1)) - 1) |
| 635 | rStep = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining |
| 636 | tmpTotal = mid |
| 637 | ) |
| 638 | for i, cnt := range s.count[:s.symbolLen] { |
| 639 | if s.norm[i] == notYetAssigned { |
| 640 | var ( |
| 641 | end = tmpTotal + uint64(cnt)*rStep |
| 642 | sStart = uint32(tmpTotal >> vStepLog) |
| 643 | sEnd = uint32(end >> vStepLog) |
| 644 | weight = sEnd - sStart |
| 645 | ) |
| 646 | if weight < 1 { |
| 647 | return errors.New("weight < 1") |
| 648 | } |
| 649 | s.norm[i] = int16(weight) |
| 650 | tmpTotal = end |
| 651 | } |
| 652 | } |
| 653 | return nil |
| 654 | } |
| 655 | |
| 656 | // validateNorm validates the normalized histogram table. |
| 657 | func (s *Scratch) validateNorm() (err error) { |
| 658 | var total int |
| 659 | for _, v := range s.norm[:s.symbolLen] { |
| 660 | if v >= 0 { |
| 661 | total += int(v) |
| 662 | } else { |
| 663 | total -= int(v) |
| 664 | } |
| 665 | } |
| 666 | defer func() { |
| 667 | if err == nil { |
| 668 | return |
| 669 | } |
| 670 | fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen) |
| 671 | for i, v := range s.norm[:s.symbolLen] { |
| 672 | fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v) |
| 673 | } |
| 674 | }() |
| 675 | if total != (1 << s.actualTableLog) { |
| 676 | return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog) |
| 677 | } |
| 678 | for i, v := range s.count[s.symbolLen:] { |
| 679 | if v != 0 { |
| 680 | return fmt.Errorf("warning: Found symbol out of range, %d after cut", i) |
| 681 | } |
| 682 | } |
| 683 | return nil |
| 684 | } |