blob: f1bb7671795e0f8ec19d6d67209d84f238139beb [file] [log] [blame]
Scott Bakered4efab2020-01-13 19:12:25 -08001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package asn1 implements parsing of DER-encoded ASN.1 data structures,
6// as defined in ITU-T Rec X.690.
7//
8// See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
9// http://luca.ntop.org/Teaching/Appunti/asn1.html.
10package asn1
11
12// ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
13// are different encoding formats for those objects. Here, we'll be dealing
14// with DER, the Distinguished Encoding Rules. DER is used in X.509 because
15// it's fast to parse and, unlike BER, has a unique encoding for every object.
16// When calculating hashes over objects, it's important that the resulting
17// bytes be the same at both ends and DER removes this margin of error.
18//
19// ASN.1 is very complex and this package doesn't attempt to implement
20// everything by any means.
21
22import (
23 "errors"
24 "fmt"
25 "math/big"
26 "reflect"
27 "strconv"
28 "time"
29 "unicode/utf8"
30)
31
32// A StructuralError suggests that the ASN.1 data is valid, but the Go type
33// which is receiving it doesn't match.
34type StructuralError struct {
35 Msg string
36}
37
38func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
39
40// A SyntaxError suggests that the ASN.1 data is invalid.
41type SyntaxError struct {
42 Msg string
43}
44
45func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
46
47// We start by dealing with each of the primitive types in turn.
48
49// BOOLEAN
50
51func parseBool(bytes []byte) (ret bool, err error) {
52 if len(bytes) != 1 {
53 err = SyntaxError{"invalid boolean"}
54 return
55 }
56
57 // DER demands that "If the encoding represents the boolean value TRUE,
58 // its single contents octet shall have all eight bits set to one."
59 // Thus only 0 and 255 are valid encoded values.
60 switch bytes[0] {
61 case 0:
62 ret = false
63 case 0xff:
64 ret = true
65 default:
66 err = SyntaxError{"invalid boolean"}
67 }
68
69 return
70}
71
72// INTEGER
73
74// checkInteger returns nil if the given bytes are a valid DER-encoded
75// INTEGER and an error otherwise.
76func checkInteger(bytes []byte) error {
77 if len(bytes) == 0 {
78 return StructuralError{"empty integer"}
79 }
80 if len(bytes) == 1 {
81 return nil
82 }
83 if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
84 return StructuralError{"integer not minimally-encoded"}
85 }
86 return nil
87}
88
89// parseInt64 treats the given bytes as a big-endian, signed integer and
90// returns the result.
91func parseInt64(bytes []byte) (ret int64, err error) {
92 err = checkInteger(bytes)
93 if err != nil {
94 return
95 }
96 if len(bytes) > 8 {
97 // We'll overflow an int64 in this case.
98 err = StructuralError{"integer too large"}
99 return
100 }
101 for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
102 ret <<= 8
103 ret |= int64(bytes[bytesRead])
104 }
105
106 // Shift up and down in order to sign extend the result.
107 ret <<= 64 - uint8(len(bytes))*8
108 ret >>= 64 - uint8(len(bytes))*8
109 return
110}
111
112// parseInt treats the given bytes as a big-endian, signed integer and returns
113// the result.
114func parseInt32(bytes []byte) (int32, error) {
115 if err := checkInteger(bytes); err != nil {
116 return 0, err
117 }
118 ret64, err := parseInt64(bytes)
119 if err != nil {
120 return 0, err
121 }
122 if ret64 != int64(int32(ret64)) {
123 return 0, StructuralError{"integer too large"}
124 }
125 return int32(ret64), nil
126}
127
128var bigOne = big.NewInt(1)
129
130// parseBigInt treats the given bytes as a big-endian, signed integer and returns
131// the result.
132func parseBigInt(bytes []byte) (*big.Int, error) {
133 if err := checkInteger(bytes); err != nil {
134 return nil, err
135 }
136 ret := new(big.Int)
137 if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
138 // This is a negative number.
139 notBytes := make([]byte, len(bytes))
140 for i := range notBytes {
141 notBytes[i] = ^bytes[i]
142 }
143 ret.SetBytes(notBytes)
144 ret.Add(ret, bigOne)
145 ret.Neg(ret)
146 return ret, nil
147 }
148 ret.SetBytes(bytes)
149 return ret, nil
150}
151
152// BIT STRING
153
154// BitString is the structure to use when you want an ASN.1 BIT STRING type. A
155// bit string is padded up to the nearest byte in memory and the number of
156// valid bits is recorded. Padding bits will be zero.
157type BitString struct {
158 Bytes []byte // bits packed into bytes.
159 BitLength int // length in bits.
160}
161
162// At returns the bit at the given index. If the index is out of range it
163// returns false.
164func (b BitString) At(i int) int {
165 if i < 0 || i >= b.BitLength {
166 return 0
167 }
168 x := i / 8
169 y := 7 - uint(i%8)
170 return int(b.Bytes[x]>>y) & 1
171}
172
173// RightAlign returns a slice where the padding bits are at the beginning. The
174// slice may share memory with the BitString.
175func (b BitString) RightAlign() []byte {
176 shift := uint(8 - (b.BitLength % 8))
177 if shift == 8 || len(b.Bytes) == 0 {
178 return b.Bytes
179 }
180
181 a := make([]byte, len(b.Bytes))
182 a[0] = b.Bytes[0] >> shift
183 for i := 1; i < len(b.Bytes); i++ {
184 a[i] = b.Bytes[i-1] << (8 - shift)
185 a[i] |= b.Bytes[i] >> shift
186 }
187
188 return a
189}
190
191// parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
192func parseBitString(bytes []byte) (ret BitString, err error) {
193 if len(bytes) == 0 {
194 err = SyntaxError{"zero length BIT STRING"}
195 return
196 }
197 paddingBits := int(bytes[0])
198 if paddingBits > 7 ||
199 len(bytes) == 1 && paddingBits > 0 ||
200 bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
201 err = SyntaxError{"invalid padding bits in BIT STRING"}
202 return
203 }
204 ret.BitLength = (len(bytes)-1)*8 - paddingBits
205 ret.Bytes = bytes[1:]
206 return
207}
208
209// OBJECT IDENTIFIER
210
211// An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
212type ObjectIdentifier []int
213
214// Equal reports whether oi and other represent the same identifier.
215func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
216 if len(oi) != len(other) {
217 return false
218 }
219 for i := 0; i < len(oi); i++ {
220 if oi[i] != other[i] {
221 return false
222 }
223 }
224
225 return true
226}
227
228func (oi ObjectIdentifier) String() string {
229 var s string
230
231 for i, v := range oi {
232 if i > 0 {
233 s += "."
234 }
235 s += strconv.Itoa(v)
236 }
237
238 return s
239}
240
241// parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
242// returns it. An object identifier is a sequence of variable length integers
243// that are assigned in a hierarchy.
244func parseObjectIdentifier(bytes []byte) (s []int, err error) {
245 if len(bytes) == 0 {
246 err = SyntaxError{"zero length OBJECT IDENTIFIER"}
247 return
248 }
249
250 // In the worst case, we get two elements from the first byte (which is
251 // encoded differently) and then every varint is a single byte long.
252 s = make([]int, len(bytes)+1)
253
254 // The first varint is 40*value1 + value2:
255 // According to this packing, value1 can take the values 0, 1 and 2 only.
256 // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
257 // then there are no restrictions on value2.
258 v, offset, err := parseBase128Int(bytes, 0)
259 if err != nil {
260 return
261 }
262 if v < 80 {
263 s[0] = v / 40
264 s[1] = v % 40
265 } else {
266 s[0] = 2
267 s[1] = v - 80
268 }
269
270 i := 2
271 for ; offset < len(bytes); i++ {
272 v, offset, err = parseBase128Int(bytes, offset)
273 if err != nil {
274 return
275 }
276 s[i] = v
277 }
278 s = s[0:i]
279 return
280}
281
282// ENUMERATED
283
284// An Enumerated is represented as a plain int.
285type Enumerated int
286
287// FLAG
288
289// A Flag accepts any data and is set to true if present.
290type Flag bool
291
292// parseBase128Int parses a base-128 encoded int from the given offset in the
293// given byte slice. It returns the value and the new offset.
294func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
295 offset = initOffset
296 for shifted := 0; offset < len(bytes); shifted++ {
297 if shifted == 4 {
298 err = StructuralError{"base 128 integer too large"}
299 return
300 }
301 ret <<= 7
302 b := bytes[offset]
303 ret |= int(b & 0x7f)
304 offset++
305 if b&0x80 == 0 {
306 return
307 }
308 }
309 err = SyntaxError{"truncated base 128 integer"}
310 return
311}
312
313// UTCTime
314
315func parseUTCTime(bytes []byte) (ret time.Time, err error) {
316 s := string(bytes)
317
318 formatStr := "0601021504Z0700"
319 ret, err = time.Parse(formatStr, s)
320 if err != nil {
321 formatStr = "060102150405Z0700"
322 ret, err = time.Parse(formatStr, s)
323 }
324 if err != nil {
325 return
326 }
327
328 if serialized := ret.Format(formatStr); serialized != s {
329 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
330 return
331 }
332
333 if ret.Year() >= 2050 {
334 // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
335 ret = ret.AddDate(-100, 0, 0)
336 }
337
338 return
339}
340
341// parseGeneralizedTime parses the GeneralizedTime from the given byte slice
342// and returns the resulting time.
343func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
344 const formatStr = "20060102150405Z0700"
345 s := string(bytes)
346
347 if ret, err = time.Parse(formatStr, s); err != nil {
348 return
349 }
350
351 if serialized := ret.Format(formatStr); serialized != s {
352 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
353 }
354
355 return
356}
357
358// PrintableString
359
360// parsePrintableString parses a ASN.1 PrintableString from the given byte
361// array and returns it.
362func parsePrintableString(bytes []byte) (ret string, err error) {
363 for _, b := range bytes {
364 if !isPrintable(b) {
365 err = SyntaxError{"PrintableString contains invalid character"}
366 return
367 }
368 }
369 ret = string(bytes)
370 return
371}
372
373// isPrintable reports whether the given b is in the ASN.1 PrintableString set.
374func isPrintable(b byte) bool {
375 return 'a' <= b && b <= 'z' ||
376 'A' <= b && b <= 'Z' ||
377 '0' <= b && b <= '9' ||
378 '\'' <= b && b <= ')' ||
379 '+' <= b && b <= '/' ||
380 b == ' ' ||
381 b == ':' ||
382 b == '=' ||
383 b == '?' ||
384 // This is technically not allowed in a PrintableString.
385 // However, x509 certificates with wildcard strings don't
386 // always use the correct string type so we permit it.
387 b == '*'
388}
389
390// IA5String
391
392// parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
393// byte slice and returns it.
394func parseIA5String(bytes []byte) (ret string, err error) {
395 for _, b := range bytes {
396 if b >= utf8.RuneSelf {
397 err = SyntaxError{"IA5String contains invalid character"}
398 return
399 }
400 }
401 ret = string(bytes)
402 return
403}
404
405// T61String
406
407// parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
408// byte slice and returns it.
409func parseT61String(bytes []byte) (ret string, err error) {
410 return string(bytes), nil
411}
412
413// UTF8String
414
415// parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
416// array and returns it.
417func parseUTF8String(bytes []byte) (ret string, err error) {
418 if !utf8.Valid(bytes) {
419 return "", errors.New("asn1: invalid UTF-8 string")
420 }
421 return string(bytes), nil
422}
423
424// A RawValue represents an undecoded ASN.1 object.
425type RawValue struct {
426 Class, Tag int
427 IsCompound bool
428 Bytes []byte
429 FullBytes []byte // includes the tag and length
430}
431
432// RawContent is used to signal that the undecoded, DER data needs to be
433// preserved for a struct. To use it, the first field of the struct must have
434// this type. It's an error for any of the other fields to have this type.
435type RawContent []byte
436
437// Tagging
438
439// parseTagAndLength parses an ASN.1 tag and length pair from the given offset
440// into a byte slice. It returns the parsed data and the new offset. SET and
441// SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
442// don't distinguish between ordered and unordered objects in this code.
443func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
444 offset = initOffset
445 // parseTagAndLength should not be called without at least a single
446 // byte to read. Thus this check is for robustness:
447 if offset >= len(bytes) {
448 err = errors.New("asn1: internal error in parseTagAndLength")
449 return
450 }
451 b := bytes[offset]
452 offset++
453 ret.class = int(b >> 6)
454 ret.isCompound = b&0x20 == 0x20
455 ret.tag = int(b & 0x1f)
456
457 // If the bottom five bits are set, then the tag number is actually base 128
458 // encoded afterwards
459 if ret.tag == 0x1f {
460 ret.tag, offset, err = parseBase128Int(bytes, offset)
461 if err != nil {
462 return
463 }
464 // Tags should be encoded in minimal form.
465 if ret.tag < 0x1f {
466 err = SyntaxError{"non-minimal tag"}
467 return
468 }
469 }
470 if offset >= len(bytes) {
471 err = SyntaxError{"truncated tag or length"}
472 return
473 }
474 b = bytes[offset]
475 offset++
476 if b&0x80 == 0 {
477 // The length is encoded in the bottom 7 bits.
478 ret.length = int(b & 0x7f)
479 } else {
480 // Bottom 7 bits give the number of length bytes to follow.
481 numBytes := int(b & 0x7f)
482 if numBytes == 0 {
483 err = SyntaxError{"indefinite length found (not DER)"}
484 return
485 }
486 ret.length = 0
487 for i := 0; i < numBytes; i++ {
488 if offset >= len(bytes) {
489 err = SyntaxError{"truncated tag or length"}
490 return
491 }
492 b = bytes[offset]
493 offset++
494 if ret.length >= 1<<23 {
495 // We can't shift ret.length up without
496 // overflowing.
497 err = StructuralError{"length too large"}
498 return
499 }
500 ret.length <<= 8
501 ret.length |= int(b)
502 if ret.length == 0 {
503 // DER requires that lengths be minimal.
504 err = StructuralError{"superfluous leading zeros in length"}
505 return
506 }
507 }
508 // Short lengths must be encoded in short form.
509 if ret.length < 0x80 {
510 err = StructuralError{"non-minimal length"}
511 return
512 }
513 }
514
515 return
516}
517
518// parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
519// a number of ASN.1 values from the given byte slice and returns them as a
520// slice of Go values of the given type.
521func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
522 expectedTag, compoundType, ok := getUniversalType(elemType)
523 if !ok {
524 err = StructuralError{"unknown Go type for slice"}
525 return
526 }
527
528 // First we iterate over the input and count the number of elements,
529 // checking that the types are correct in each case.
530 numElements := 0
531 for offset := 0; offset < len(bytes); {
532 var t tagAndLength
533 t, offset, err = parseTagAndLength(bytes, offset)
534 if err != nil {
535 return
536 }
537 switch t.tag {
538 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
539 // We pretend that various other string types are
540 // PRINTABLE STRINGs so that a sequence of them can be
541 // parsed into a []string.
542 t.tag = TagPrintableString
543 case TagGeneralizedTime, TagUTCTime:
544 // Likewise, both time types are treated the same.
545 t.tag = TagUTCTime
546 }
547
548 if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag {
549 err = StructuralError{"sequence tag mismatch"}
550 return
551 }
552 if invalidLength(offset, t.length, len(bytes)) {
553 err = SyntaxError{"truncated sequence"}
554 return
555 }
556 offset += t.length
557 numElements++
558 }
559 ret = reflect.MakeSlice(sliceType, numElements, numElements)
560 params := fieldParameters{}
561 offset := 0
562 for i := 0; i < numElements; i++ {
563 offset, err = parseField(ret.Index(i), bytes, offset, params)
564 if err != nil {
565 return
566 }
567 }
568 return
569}
570
571var (
572 bitStringType = reflect.TypeOf(BitString{})
573 objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
574 enumeratedType = reflect.TypeOf(Enumerated(0))
575 flagType = reflect.TypeOf(Flag(false))
576 timeType = reflect.TypeOf(time.Time{})
577 rawValueType = reflect.TypeOf(RawValue{})
578 rawContentsType = reflect.TypeOf(RawContent(nil))
579 bigIntType = reflect.TypeOf(new(big.Int))
580)
581
582// invalidLength returns true iff offset + length > sliceLength, or if the
583// addition would overflow.
584func invalidLength(offset, length, sliceLength int) bool {
585 return offset+length < offset || offset+length > sliceLength
586}
587
588// parseField is the main parsing function. Given a byte slice and an offset
589// into the array, it will try to parse a suitable ASN.1 value out and store it
590// in the given Value.
591func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
592 offset = initOffset
593 fieldType := v.Type()
594
595 // If we have run out of data, it may be that there are optional elements at the end.
596 if offset == len(bytes) {
597 if !setDefaultValue(v, params) {
598 err = SyntaxError{"sequence truncated"}
599 }
600 return
601 }
602
603 // Deal with raw values.
604 if fieldType == rawValueType {
605 var t tagAndLength
606 t, offset, err = parseTagAndLength(bytes, offset)
607 if err != nil {
608 return
609 }
610 if invalidLength(offset, t.length, len(bytes)) {
611 err = SyntaxError{"data truncated"}
612 return
613 }
614 result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
615 offset += t.length
616 v.Set(reflect.ValueOf(result))
617 return
618 }
619
620 // Deal with the ANY type.
621 if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
622 var t tagAndLength
623 t, offset, err = parseTagAndLength(bytes, offset)
624 if err != nil {
625 return
626 }
627 if invalidLength(offset, t.length, len(bytes)) {
628 err = SyntaxError{"data truncated"}
629 return
630 }
631 var result interface{}
632 if !t.isCompound && t.class == ClassUniversal {
633 innerBytes := bytes[offset : offset+t.length]
634 switch t.tag {
635 case TagPrintableString:
636 result, err = parsePrintableString(innerBytes)
637 case TagIA5String:
638 result, err = parseIA5String(innerBytes)
639 // jtasn1 addition of following case
640 case TagGeneralString:
641 result, err = parseIA5String(innerBytes)
642 case TagT61String:
643 result, err = parseT61String(innerBytes)
644 case TagUTF8String:
645 result, err = parseUTF8String(innerBytes)
646 case TagInteger:
647 result, err = parseInt64(innerBytes)
648 case TagBitString:
649 result, err = parseBitString(innerBytes)
650 case TagOID:
651 result, err = parseObjectIdentifier(innerBytes)
652 case TagUTCTime:
653 result, err = parseUTCTime(innerBytes)
654 case TagGeneralizedTime:
655 result, err = parseGeneralizedTime(innerBytes)
656 case TagOctetString:
657 result = innerBytes
658 default:
659 // If we don't know how to handle the type, we just leave Value as nil.
660 }
661 }
662 offset += t.length
663 if err != nil {
664 return
665 }
666 if result != nil {
667 v.Set(reflect.ValueOf(result))
668 }
669 return
670 }
671 universalTag, compoundType, ok1 := getUniversalType(fieldType)
672 if !ok1 {
673 err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
674 return
675 }
676
677 t, offset, err := parseTagAndLength(bytes, offset)
678 if err != nil {
679 return
680 }
681 if params.explicit {
682 expectedClass := ClassContextSpecific
683 if params.application {
684 expectedClass = ClassApplication
685 }
686 if offset == len(bytes) {
687 err = StructuralError{"explicit tag has no child"}
688 return
689 }
690 if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
691 if t.length > 0 {
692 t, offset, err = parseTagAndLength(bytes, offset)
693 if err != nil {
694 return
695 }
696 } else {
697 if fieldType != flagType {
698 err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
699 return
700 }
701 v.SetBool(true)
702 return
703 }
704 } else {
705 // The tags didn't match, it might be an optional element.
706 ok := setDefaultValue(v, params)
707 if ok {
708 offset = initOffset
709 } else {
710 err = StructuralError{"explicitly tagged member didn't match"}
711 }
712 return
713 }
714 }
715
716 // Special case for strings: all the ASN.1 string types map to the Go
717 // type string. getUniversalType returns the tag for PrintableString
718 // when it sees a string, so if we see a different string type on the
719 // wire, we change the universal type to match.
720 if universalTag == TagPrintableString {
721 if t.class == ClassUniversal {
722 switch t.tag {
723 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
724 universalTag = t.tag
725 }
726 } else if params.stringType != 0 {
727 universalTag = params.stringType
728 }
729 }
730
731 // Special case for time: UTCTime and GeneralizedTime both map to the
732 // Go type time.Time.
733 if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
734 universalTag = TagGeneralizedTime
735 }
736
737 if params.set {
738 universalTag = TagSet
739 }
740
741 expectedClass := ClassUniversal
742 expectedTag := universalTag
743
744 if !params.explicit && params.tag != nil {
745 expectedClass = ClassContextSpecific
746 expectedTag = *params.tag
747 }
748
749 if !params.explicit && params.application && params.tag != nil {
750 expectedClass = ClassApplication
751 expectedTag = *params.tag
752 }
753
754 // We have unwrapped any explicit tagging at this point.
755 if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
756 // Tags don't match. Again, it could be an optional element.
757 ok := setDefaultValue(v, params)
758 if ok {
759 offset = initOffset
760 } else {
761 err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
762 }
763 return
764 }
765 if invalidLength(offset, t.length, len(bytes)) {
766 err = SyntaxError{"data truncated"}
767 return
768 }
769 innerBytes := bytes[offset : offset+t.length]
770 offset += t.length
771
772 // We deal with the structures defined in this package first.
773 switch fieldType {
774 case objectIdentifierType:
775 newSlice, err1 := parseObjectIdentifier(innerBytes)
776 v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
777 if err1 == nil {
778 reflect.Copy(v, reflect.ValueOf(newSlice))
779 }
780 err = err1
781 return
782 case bitStringType:
783 bs, err1 := parseBitString(innerBytes)
784 if err1 == nil {
785 v.Set(reflect.ValueOf(bs))
786 }
787 err = err1
788 return
789 case timeType:
790 var time time.Time
791 var err1 error
792 if universalTag == TagUTCTime {
793 time, err1 = parseUTCTime(innerBytes)
794 } else {
795 time, err1 = parseGeneralizedTime(innerBytes)
796 }
797 if err1 == nil {
798 v.Set(reflect.ValueOf(time))
799 }
800 err = err1
801 return
802 case enumeratedType:
803 parsedInt, err1 := parseInt32(innerBytes)
804 if err1 == nil {
805 v.SetInt(int64(parsedInt))
806 }
807 err = err1
808 return
809 case flagType:
810 v.SetBool(true)
811 return
812 case bigIntType:
813 parsedInt, err1 := parseBigInt(innerBytes)
814 if err1 == nil {
815 v.Set(reflect.ValueOf(parsedInt))
816 }
817 err = err1
818 return
819 }
820 switch val := v; val.Kind() {
821 case reflect.Bool:
822 parsedBool, err1 := parseBool(innerBytes)
823 if err1 == nil {
824 val.SetBool(parsedBool)
825 }
826 err = err1
827 return
828 case reflect.Int, reflect.Int32, reflect.Int64:
829 if val.Type().Size() == 4 {
830 parsedInt, err1 := parseInt32(innerBytes)
831 if err1 == nil {
832 val.SetInt(int64(parsedInt))
833 }
834 err = err1
835 } else {
836 parsedInt, err1 := parseInt64(innerBytes)
837 if err1 == nil {
838 val.SetInt(parsedInt)
839 }
840 err = err1
841 }
842 return
843 // TODO(dfc) Add support for the remaining integer types
844 case reflect.Struct:
845 structType := fieldType
846
847 if structType.NumField() > 0 &&
848 structType.Field(0).Type == rawContentsType {
849 bytes := bytes[initOffset:offset]
850 val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
851 }
852
853 innerOffset := 0
854 for i := 0; i < structType.NumField(); i++ {
855 field := structType.Field(i)
856 if i == 0 && field.Type == rawContentsType {
857 continue
858 }
859 innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
860 if err != nil {
861 return
862 }
863 }
864 // We allow extra bytes at the end of the SEQUENCE because
865 // adding elements to the end has been used in X.509 as the
866 // version numbers have increased.
867 return
868 case reflect.Slice:
869 sliceType := fieldType
870 if sliceType.Elem().Kind() == reflect.Uint8 {
871 val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
872 reflect.Copy(val, reflect.ValueOf(innerBytes))
873 return
874 }
875 newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
876 if err1 == nil {
877 val.Set(newSlice)
878 }
879 err = err1
880 return
881 case reflect.String:
882 var v string
883 switch universalTag {
884 case TagPrintableString:
885 v, err = parsePrintableString(innerBytes)
886 case TagIA5String:
887 v, err = parseIA5String(innerBytes)
888 case TagT61String:
889 v, err = parseT61String(innerBytes)
890 case TagUTF8String:
891 v, err = parseUTF8String(innerBytes)
892 case TagGeneralString:
893 // GeneralString is specified in ISO-2022/ECMA-35,
894 // A brief review suggests that it includes structures
895 // that allow the encoding to change midstring and
896 // such. We give up and pass it as an 8-bit string.
897 v, err = parseT61String(innerBytes)
898 default:
899 err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
900 }
901 if err == nil {
902 val.SetString(v)
903 }
904 return
905 }
906 err = StructuralError{"unsupported: " + v.Type().String()}
907 return
908}
909
910// canHaveDefaultValue reports whether k is a Kind that we will set a default
911// value for. (A signed integer, essentially.)
912func canHaveDefaultValue(k reflect.Kind) bool {
913 switch k {
914 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
915 return true
916 }
917
918 return false
919}
920
921// setDefaultValue is used to install a default value, from a tag string, into
922// a Value. It is successful if the field was optional, even if a default value
923// wasn't provided or it failed to install it into the Value.
924func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
925 if !params.optional {
926 return
927 }
928 ok = true
929 if params.defaultValue == nil {
930 return
931 }
932 if canHaveDefaultValue(v.Kind()) {
933 v.SetInt(*params.defaultValue)
934 }
935 return
936}
937
938// Unmarshal parses the DER-encoded ASN.1 data structure b
939// and uses the reflect package to fill in an arbitrary value pointed at by val.
940// Because Unmarshal uses the reflect package, the structs
941// being written to must use upper case field names.
942//
943// An ASN.1 INTEGER can be written to an int, int32, int64,
944// or *big.Int (from the math/big package).
945// If the encoded value does not fit in the Go type,
946// Unmarshal returns a parse error.
947//
948// An ASN.1 BIT STRING can be written to a BitString.
949//
950// An ASN.1 OCTET STRING can be written to a []byte.
951//
952// An ASN.1 OBJECT IDENTIFIER can be written to an
953// ObjectIdentifier.
954//
955// An ASN.1 ENUMERATED can be written to an Enumerated.
956//
957// An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
958//
959// An ASN.1 PrintableString or IA5String can be written to a string.
960//
961// Any of the above ASN.1 values can be written to an interface{}.
962// The value stored in the interface has the corresponding Go type.
963// For integers, that type is int64.
964//
965// An ASN.1 SEQUENCE OF x or SET OF x can be written
966// to a slice if an x can be written to the slice's element type.
967//
968// An ASN.1 SEQUENCE or SET can be written to a struct
969// if each of the elements in the sequence can be
970// written to the corresponding element in the struct.
971//
972// The following tags on struct fields have special meaning to Unmarshal:
973//
974// application specifies that a APPLICATION tag is used
975// default:x sets the default value for optional integer fields
976// explicit specifies that an additional, explicit tag wraps the implicit one
977// optional marks the field as ASN.1 OPTIONAL
978// set causes a SET, rather than a SEQUENCE type to be expected
979// tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
980//
981// If the type of the first field of a structure is RawContent then the raw
982// ASN1 contents of the struct will be stored in it.
983//
984// If the type name of a slice element ends with "SET" then it's treated as if
985// the "set" tag was set on it. This can be used with nested slices where a
986// struct tag cannot be given.
987//
988// Other ASN.1 types are not supported; if it encounters them,
989// Unmarshal returns a parse error.
990func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
991 return UnmarshalWithParams(b, val, "")
992}
993
994// UnmarshalWithParams allows field parameters to be specified for the
995// top-level element. The form of the params is the same as the field tags.
996func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
997 v := reflect.ValueOf(val).Elem()
998 offset, err := parseField(v, b, 0, parseFieldParameters(params))
999 if err != nil {
1000 return nil, err
1001 }
1002 return b[offset:], nil
1003}