blob: 1c66e37234dc73a4d1fb07ea9974acd8fc734326 [file] [log] [blame]
Scott Bakered4efab2020-01-13 19:12:25 -08001// Copyright 2016 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// +build !appengine
6// +build gc
7// +build !noasm
8
9#include "textflag.h"
10
11// The asm code generally follows the pure Go code in decode_other.go, except
12// where marked with a "!!!".
13
14// func decode(dst, src []byte) int
15//
16// All local variables fit into registers. The non-zero stack size is only to
17// spill registers and push args when issuing a CALL. The register allocation:
18// - AX scratch
19// - BX scratch
20// - CX length or x
21// - DX offset
22// - SI &src[s]
23// - DI &dst[d]
24// + R8 dst_base
25// + R9 dst_len
26// + R10 dst_base + dst_len
27// + R11 src_base
28// + R12 src_len
29// + R13 src_base + src_len
30// - R14 used by doCopy
31// - R15 used by doCopy
32//
33// The registers R8-R13 (marked with a "+") are set at the start of the
34// function, and after a CALL returns, and are not otherwise modified.
35//
36// The d variable is implicitly DI - R8, and len(dst)-d is R10 - DI.
37// The s variable is implicitly SI - R11, and len(src)-s is R13 - SI.
38TEXT ·decode(SB), NOSPLIT, $48-56
39 // Initialize SI, DI and R8-R13.
40 MOVQ dst_base+0(FP), R8
41 MOVQ dst_len+8(FP), R9
42 MOVQ R8, DI
43 MOVQ R8, R10
44 ADDQ R9, R10
45 MOVQ src_base+24(FP), R11
46 MOVQ src_len+32(FP), R12
47 MOVQ R11, SI
48 MOVQ R11, R13
49 ADDQ R12, R13
50
51loop:
52 // for s < len(src)
53 CMPQ SI, R13
54 JEQ end
55
56 // CX = uint32(src[s])
57 //
58 // switch src[s] & 0x03
59 MOVBLZX (SI), CX
60 MOVL CX, BX
61 ANDL $3, BX
62 CMPL BX, $1
63 JAE tagCopy
64
65 // ----------------------------------------
66 // The code below handles literal tags.
67
68 // case tagLiteral:
69 // x := uint32(src[s] >> 2)
70 // switch
71 SHRL $2, CX
72 CMPL CX, $60
73 JAE tagLit60Plus
74
75 // case x < 60:
76 // s++
77 INCQ SI
78
79doLit:
80 // This is the end of the inner "switch", when we have a literal tag.
81 //
82 // We assume that CX == x and x fits in a uint32, where x is the variable
83 // used in the pure Go decode_other.go code.
84
85 // length = int(x) + 1
86 //
87 // Unlike the pure Go code, we don't need to check if length <= 0 because
88 // CX can hold 64 bits, so the increment cannot overflow.
89 INCQ CX
90
91 // Prepare to check if copying length bytes will run past the end of dst or
92 // src.
93 //
94 // AX = len(dst) - d
95 // BX = len(src) - s
96 MOVQ R10, AX
97 SUBQ DI, AX
98 MOVQ R13, BX
99 SUBQ SI, BX
100
101 // !!! Try a faster technique for short (16 or fewer bytes) copies.
102 //
103 // if length > 16 || len(dst)-d < 16 || len(src)-s < 16 {
104 // goto callMemmove // Fall back on calling runtime·memmove.
105 // }
106 //
107 // The C++ snappy code calls this TryFastAppend. It also checks len(src)-s
108 // against 21 instead of 16, because it cannot assume that all of its input
109 // is contiguous in memory and so it needs to leave enough source bytes to
110 // read the next tag without refilling buffers, but Go's Decode assumes
111 // contiguousness (the src argument is a []byte).
112 CMPQ CX, $16
113 JGT callMemmove
114 CMPQ AX, $16
115 JLT callMemmove
116 CMPQ BX, $16
117 JLT callMemmove
118
119 // !!! Implement the copy from src to dst as a 16-byte load and store.
120 // (Decode's documentation says that dst and src must not overlap.)
121 //
122 // This always copies 16 bytes, instead of only length bytes, but that's
123 // OK. If the input is a valid Snappy encoding then subsequent iterations
124 // will fix up the overrun. Otherwise, Decode returns a nil []byte (and a
125 // non-nil error), so the overrun will be ignored.
126 //
127 // Note that on amd64, it is legal and cheap to issue unaligned 8-byte or
128 // 16-byte loads and stores. This technique probably wouldn't be as
129 // effective on architectures that are fussier about alignment.
130 MOVOU 0(SI), X0
131 MOVOU X0, 0(DI)
132
133 // d += length
134 // s += length
135 ADDQ CX, DI
136 ADDQ CX, SI
137 JMP loop
138
139callMemmove:
140 // if length > len(dst)-d || length > len(src)-s { etc }
141 CMPQ CX, AX
142 JGT errCorrupt
143 CMPQ CX, BX
144 JGT errCorrupt
145
146 // copy(dst[d:], src[s:s+length])
147 //
148 // This means calling runtime·memmove(&dst[d], &src[s], length), so we push
149 // DI, SI and CX as arguments. Coincidentally, we also need to spill those
150 // three registers to the stack, to save local variables across the CALL.
151 MOVQ DI, 0(SP)
152 MOVQ SI, 8(SP)
153 MOVQ CX, 16(SP)
154 MOVQ DI, 24(SP)
155 MOVQ SI, 32(SP)
156 MOVQ CX, 40(SP)
157 CALL runtime·memmove(SB)
158
159 // Restore local variables: unspill registers from the stack and
160 // re-calculate R8-R13.
161 MOVQ 24(SP), DI
162 MOVQ 32(SP), SI
163 MOVQ 40(SP), CX
164 MOVQ dst_base+0(FP), R8
165 MOVQ dst_len+8(FP), R9
166 MOVQ R8, R10
167 ADDQ R9, R10
168 MOVQ src_base+24(FP), R11
169 MOVQ src_len+32(FP), R12
170 MOVQ R11, R13
171 ADDQ R12, R13
172
173 // d += length
174 // s += length
175 ADDQ CX, DI
176 ADDQ CX, SI
177 JMP loop
178
179tagLit60Plus:
180 // !!! This fragment does the
181 //
182 // s += x - 58; if uint(s) > uint(len(src)) { etc }
183 //
184 // checks. In the asm version, we code it once instead of once per switch case.
185 ADDQ CX, SI
186 SUBQ $58, SI
187 CMPQ SI, R13
188 JA errCorrupt
189
190 // case x == 60:
191 CMPL CX, $61
192 JEQ tagLit61
193 JA tagLit62Plus
194
195 // x = uint32(src[s-1])
196 MOVBLZX -1(SI), CX
197 JMP doLit
198
199tagLit61:
200 // case x == 61:
201 // x = uint32(src[s-2]) | uint32(src[s-1])<<8
202 MOVWLZX -2(SI), CX
203 JMP doLit
204
205tagLit62Plus:
206 CMPL CX, $62
207 JA tagLit63
208
209 // case x == 62:
210 // x = uint32(src[s-3]) | uint32(src[s-2])<<8 | uint32(src[s-1])<<16
211 MOVWLZX -3(SI), CX
212 MOVBLZX -1(SI), BX
213 SHLL $16, BX
214 ORL BX, CX
215 JMP doLit
216
217tagLit63:
218 // case x == 63:
219 // x = uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24
220 MOVL -4(SI), CX
221 JMP doLit
222
223// The code above handles literal tags.
224// ----------------------------------------
225// The code below handles copy tags.
226
227tagCopy4:
228 // case tagCopy4:
229 // s += 5
230 ADDQ $5, SI
231
232 // if uint(s) > uint(len(src)) { etc }
233 CMPQ SI, R13
234 JA errCorrupt
235
236 // length = 1 + int(src[s-5])>>2
237 SHRQ $2, CX
238 INCQ CX
239
240 // offset = int(uint32(src[s-4]) | uint32(src[s-3])<<8 | uint32(src[s-2])<<16 | uint32(src[s-1])<<24)
241 MOVLQZX -4(SI), DX
242 JMP doCopy
243
244tagCopy2:
245 // case tagCopy2:
246 // s += 3
247 ADDQ $3, SI
248
249 // if uint(s) > uint(len(src)) { etc }
250 CMPQ SI, R13
251 JA errCorrupt
252
253 // length = 1 + int(src[s-3])>>2
254 SHRQ $2, CX
255 INCQ CX
256
257 // offset = int(uint32(src[s-2]) | uint32(src[s-1])<<8)
258 MOVWQZX -2(SI), DX
259 JMP doCopy
260
261tagCopy:
262 // We have a copy tag. We assume that:
263 // - BX == src[s] & 0x03
264 // - CX == src[s]
265 CMPQ BX, $2
266 JEQ tagCopy2
267 JA tagCopy4
268
269 // case tagCopy1:
270 // s += 2
271 ADDQ $2, SI
272
273 // if uint(s) > uint(len(src)) { etc }
274 CMPQ SI, R13
275 JA errCorrupt
276
277 // offset = int(uint32(src[s-2])&0xe0<<3 | uint32(src[s-1]))
278 MOVQ CX, DX
279 ANDQ $0xe0, DX
280 SHLQ $3, DX
281 MOVBQZX -1(SI), BX
282 ORQ BX, DX
283
284 // length = 4 + int(src[s-2])>>2&0x7
285 SHRQ $2, CX
286 ANDQ $7, CX
287 ADDQ $4, CX
288
289doCopy:
290 // This is the end of the outer "switch", when we have a copy tag.
291 //
292 // We assume that:
293 // - CX == length && CX > 0
294 // - DX == offset
295
296 // if offset <= 0 { etc }
297 CMPQ DX, $0
298 JLE errCorrupt
299
300 // if d < offset { etc }
301 MOVQ DI, BX
302 SUBQ R8, BX
303 CMPQ BX, DX
304 JLT errCorrupt
305
306 // if length > len(dst)-d { etc }
307 MOVQ R10, BX
308 SUBQ DI, BX
309 CMPQ CX, BX
310 JGT errCorrupt
311
312 // forwardCopy(dst[d:d+length], dst[d-offset:]); d += length
313 //
314 // Set:
315 // - R14 = len(dst)-d
316 // - R15 = &dst[d-offset]
317 MOVQ R10, R14
318 SUBQ DI, R14
319 MOVQ DI, R15
320 SUBQ DX, R15
321
322 // !!! Try a faster technique for short (16 or fewer bytes) forward copies.
323 //
324 // First, try using two 8-byte load/stores, similar to the doLit technique
325 // above. Even if dst[d:d+length] and dst[d-offset:] can overlap, this is
326 // still OK if offset >= 8. Note that this has to be two 8-byte load/stores
327 // and not one 16-byte load/store, and the first store has to be before the
328 // second load, due to the overlap if offset is in the range [8, 16).
329 //
330 // if length > 16 || offset < 8 || len(dst)-d < 16 {
331 // goto slowForwardCopy
332 // }
333 // copy 16 bytes
334 // d += length
335 CMPQ CX, $16
336 JGT slowForwardCopy
337 CMPQ DX, $8
338 JLT slowForwardCopy
339 CMPQ R14, $16
340 JLT slowForwardCopy
341 MOVQ 0(R15), AX
342 MOVQ AX, 0(DI)
343 MOVQ 8(R15), BX
344 MOVQ BX, 8(DI)
345 ADDQ CX, DI
346 JMP loop
347
348slowForwardCopy:
349 // !!! If the forward copy is longer than 16 bytes, or if offset < 8, we
350 // can still try 8-byte load stores, provided we can overrun up to 10 extra
351 // bytes. As above, the overrun will be fixed up by subsequent iterations
352 // of the outermost loop.
353 //
354 // The C++ snappy code calls this technique IncrementalCopyFastPath. Its
355 // commentary says:
356 //
357 // ----
358 //
359 // The main part of this loop is a simple copy of eight bytes at a time
360 // until we've copied (at least) the requested amount of bytes. However,
361 // if d and d-offset are less than eight bytes apart (indicating a
362 // repeating pattern of length < 8), we first need to expand the pattern in
363 // order to get the correct results. For instance, if the buffer looks like
364 // this, with the eight-byte <d-offset> and <d> patterns marked as
365 // intervals:
366 //
367 // abxxxxxxxxxxxx
368 // [------] d-offset
369 // [------] d
370 //
371 // a single eight-byte copy from <d-offset> to <d> will repeat the pattern
372 // once, after which we can move <d> two bytes without moving <d-offset>:
373 //
374 // ababxxxxxxxxxx
375 // [------] d-offset
376 // [------] d
377 //
378 // and repeat the exercise until the two no longer overlap.
379 //
380 // This allows us to do very well in the special case of one single byte
381 // repeated many times, without taking a big hit for more general cases.
382 //
383 // The worst case of extra writing past the end of the match occurs when
384 // offset == 1 and length == 1; the last copy will read from byte positions
385 // [0..7] and write to [4..11], whereas it was only supposed to write to
386 // position 1. Thus, ten excess bytes.
387 //
388 // ----
389 //
390 // That "10 byte overrun" worst case is confirmed by Go's
391 // TestSlowForwardCopyOverrun, which also tests the fixUpSlowForwardCopy
392 // and finishSlowForwardCopy algorithm.
393 //
394 // if length > len(dst)-d-10 {
395 // goto verySlowForwardCopy
396 // }
397 SUBQ $10, R14
398 CMPQ CX, R14
399 JGT verySlowForwardCopy
400
401makeOffsetAtLeast8:
402 // !!! As above, expand the pattern so that offset >= 8 and we can use
403 // 8-byte load/stores.
404 //
405 // for offset < 8 {
406 // copy 8 bytes from dst[d-offset:] to dst[d:]
407 // length -= offset
408 // d += offset
409 // offset += offset
410 // // The two previous lines together means that d-offset, and therefore
411 // // R15, is unchanged.
412 // }
413 CMPQ DX, $8
414 JGE fixUpSlowForwardCopy
415 MOVQ (R15), BX
416 MOVQ BX, (DI)
417 SUBQ DX, CX
418 ADDQ DX, DI
419 ADDQ DX, DX
420 JMP makeOffsetAtLeast8
421
422fixUpSlowForwardCopy:
423 // !!! Add length (which might be negative now) to d (implied by DI being
424 // &dst[d]) so that d ends up at the right place when we jump back to the
425 // top of the loop. Before we do that, though, we save DI to AX so that, if
426 // length is positive, copying the remaining length bytes will write to the
427 // right place.
428 MOVQ DI, AX
429 ADDQ CX, DI
430
431finishSlowForwardCopy:
432 // !!! Repeat 8-byte load/stores until length <= 0. Ending with a negative
433 // length means that we overrun, but as above, that will be fixed up by
434 // subsequent iterations of the outermost loop.
435 CMPQ CX, $0
436 JLE loop
437 MOVQ (R15), BX
438 MOVQ BX, (AX)
439 ADDQ $8, R15
440 ADDQ $8, AX
441 SUBQ $8, CX
442 JMP finishSlowForwardCopy
443
444verySlowForwardCopy:
445 // verySlowForwardCopy is a simple implementation of forward copy. In C
446 // parlance, this is a do/while loop instead of a while loop, since we know
447 // that length > 0. In Go syntax:
448 //
449 // for {
450 // dst[d] = dst[d - offset]
451 // d++
452 // length--
453 // if length == 0 {
454 // break
455 // }
456 // }
457 MOVB (R15), BX
458 MOVB BX, (DI)
459 INCQ R15
460 INCQ DI
461 DECQ CX
462 JNZ verySlowForwardCopy
463 JMP loop
464
465// The code above handles copy tags.
466// ----------------------------------------
467
468end:
469 // This is the end of the "for s < len(src)".
470 //
471 // if d != len(dst) { etc }
472 CMPQ DI, R10
473 JNE errCorrupt
474
475 // return 0
476 MOVQ $0, ret+48(FP)
477 RET
478
479errCorrupt:
480 // return decodeErrCodeCorrupt
481 MOVQ $1, ret+48(FP)
482 RET