| /* |
| Copyright 2014 The Kubernetes Authors. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| */ |
| |
| package resource |
| |
| import ( |
| "math/big" |
| |
| inf "gopkg.in/inf.v0" |
| ) |
| |
| const ( |
| // maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64. |
| // It is also the maximum decimal digits that can be represented with an int64. |
| maxInt64Factors = 18 |
| ) |
| |
| var ( |
| // Commonly needed big.Int values-- treat as read only! |
| bigTen = big.NewInt(10) |
| bigZero = big.NewInt(0) |
| bigOne = big.NewInt(1) |
| bigThousand = big.NewInt(1000) |
| big1024 = big.NewInt(1024) |
| |
| // Commonly needed inf.Dec values-- treat as read only! |
| decZero = inf.NewDec(0, 0) |
| decOne = inf.NewDec(1, 0) |
| decMinusOne = inf.NewDec(-1, 0) |
| decThousand = inf.NewDec(1000, 0) |
| dec1024 = inf.NewDec(1024, 0) |
| decMinus1024 = inf.NewDec(-1024, 0) |
| |
| // Largest (in magnitude) number allowed. |
| maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64 |
| |
| // The maximum value we can represent milli-units for. |
| // Compare with the return value of Quantity.Value() to |
| // see if it's safe to use Quantity.MilliValue(). |
| MaxMilliValue = int64(((1 << 63) - 1) / 1000) |
| ) |
| |
| const mostNegative = -(mostPositive + 1) |
| const mostPositive = 1<<63 - 1 |
| |
| // int64Add returns a+b, or false if that would overflow int64. |
| func int64Add(a, b int64) (int64, bool) { |
| c := a + b |
| switch { |
| case a > 0 && b > 0: |
| if c < 0 { |
| return 0, false |
| } |
| case a < 0 && b < 0: |
| if c > 0 { |
| return 0, false |
| } |
| if a == mostNegative && b == mostNegative { |
| return 0, false |
| } |
| } |
| return c, true |
| } |
| |
| // int64Multiply returns a*b, or false if that would overflow or underflow int64. |
| func int64Multiply(a, b int64) (int64, bool) { |
| if a == 0 || b == 0 || a == 1 || b == 1 { |
| return a * b, true |
| } |
| if a == mostNegative || b == mostNegative { |
| return 0, false |
| } |
| c := a * b |
| return c, c/b == a |
| } |
| |
| // int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64. |
| // Use when b is known to be greater than one. |
| func int64MultiplyScale(a int64, b int64) (int64, bool) { |
| if a == 0 || a == 1 { |
| return a * b, true |
| } |
| if a == mostNegative && b != 1 { |
| return 0, false |
| } |
| c := a * b |
| return c, c/b == a |
| } |
| |
| // int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than |
| // int64Multiply(a, 10) because the compiler can optimize constant factor multiplication. |
| func int64MultiplyScale10(a int64) (int64, bool) { |
| if a == 0 || a == 1 { |
| return a * 10, true |
| } |
| if a == mostNegative { |
| return 0, false |
| } |
| c := a * 10 |
| return c, c/10 == a |
| } |
| |
| // int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than |
| // int64Multiply(a, 100) because the compiler can optimize constant factor multiplication. |
| func int64MultiplyScale100(a int64) (int64, bool) { |
| if a == 0 || a == 1 { |
| return a * 100, true |
| } |
| if a == mostNegative { |
| return 0, false |
| } |
| c := a * 100 |
| return c, c/100 == a |
| } |
| |
| // int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than |
| // int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication. |
| func int64MultiplyScale1000(a int64) (int64, bool) { |
| if a == 0 || a == 1 { |
| return a * 1000, true |
| } |
| if a == mostNegative { |
| return 0, false |
| } |
| c := a * 1000 |
| return c, c/1000 == a |
| } |
| |
| // positiveScaleInt64 multiplies base by 10^scale, returning false if the |
| // value overflows. Passing a negative scale is undefined. |
| func positiveScaleInt64(base int64, scale Scale) (int64, bool) { |
| switch scale { |
| case 0: |
| return base, true |
| case 1: |
| return int64MultiplyScale10(base) |
| case 2: |
| return int64MultiplyScale100(base) |
| case 3: |
| return int64MultiplyScale1000(base) |
| case 6: |
| return int64MultiplyScale(base, 1000000) |
| case 9: |
| return int64MultiplyScale(base, 1000000000) |
| default: |
| value := base |
| var ok bool |
| for i := Scale(0); i < scale; i++ { |
| if value, ok = int64MultiplyScale(value, 10); !ok { |
| return 0, false |
| } |
| } |
| return value, true |
| } |
| } |
| |
| // negativeScaleInt64 reduces base by the provided scale, rounding up, until the |
| // value is zero or the scale is reached. Passing a negative scale is undefined. |
| // The value returned, if not exact, is rounded away from zero. |
| func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) { |
| if scale == 0 { |
| return base, true |
| } |
| |
| value := base |
| var fraction bool |
| for i := Scale(0); i < scale; i++ { |
| if !fraction && value%10 != 0 { |
| fraction = true |
| } |
| value = value / 10 |
| if value == 0 { |
| if fraction { |
| if base > 0 { |
| return 1, false |
| } |
| return -1, false |
| } |
| return 0, true |
| } |
| } |
| if fraction { |
| if base > 0 { |
| value += 1 |
| } else { |
| value += -1 |
| } |
| } |
| return value, !fraction |
| } |
| |
| func pow10Int64(b int64) int64 { |
| switch b { |
| case 0: |
| return 1 |
| case 1: |
| return 10 |
| case 2: |
| return 100 |
| case 3: |
| return 1000 |
| case 4: |
| return 10000 |
| case 5: |
| return 100000 |
| case 6: |
| return 1000000 |
| case 7: |
| return 10000000 |
| case 8: |
| return 100000000 |
| case 9: |
| return 1000000000 |
| case 10: |
| return 10000000000 |
| case 11: |
| return 100000000000 |
| case 12: |
| return 1000000000000 |
| case 13: |
| return 10000000000000 |
| case 14: |
| return 100000000000000 |
| case 15: |
| return 1000000000000000 |
| case 16: |
| return 10000000000000000 |
| case 17: |
| return 100000000000000000 |
| case 18: |
| return 1000000000000000000 |
| default: |
| return 0 |
| } |
| } |
| |
| // negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or |
| // false if no such division is possible. Dividing by negative scales is undefined. |
| func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) { |
| if scale == 0 { |
| return base, 0, true |
| } |
| // the max scale representable in base 10 in an int64 is 18 decimal places |
| if scale >= 18 { |
| return 0, base, false |
| } |
| divisor := pow10Int64(int64(scale)) |
| return base / divisor, base % divisor, true |
| } |
| |
| // removeInt64Factors divides in a loop; the return values have the property that |
| // value == result * base ^ scale |
| func removeInt64Factors(value int64, base int64) (result int64, times int32) { |
| times = 0 |
| result = value |
| negative := result < 0 |
| if negative { |
| result = -result |
| } |
| switch base { |
| // allow the compiler to optimize the common cases |
| case 10: |
| for result >= 10 && result%10 == 0 { |
| times++ |
| result = result / 10 |
| } |
| // allow the compiler to optimize the common cases |
| case 1024: |
| for result >= 1024 && result%1024 == 0 { |
| times++ |
| result = result / 1024 |
| } |
| default: |
| for result >= base && result%base == 0 { |
| times++ |
| result = result / base |
| } |
| } |
| if negative { |
| result = -result |
| } |
| return result, times |
| } |
| |
| // removeBigIntFactors divides in a loop; the return values have the property that |
| // d == result * factor ^ times |
| // d may be modified in place. |
| // If d == 0, then the return values will be (0, 0) |
| func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) { |
| q := big.NewInt(0) |
| m := big.NewInt(0) |
| for d.Cmp(bigZero) != 0 { |
| q.DivMod(d, factor, m) |
| if m.Cmp(bigZero) != 0 { |
| break |
| } |
| times++ |
| d, q = q, d |
| } |
| return d, times |
| } |