Scott Baker | e7144bc | 2019-10-01 14:16:47 -0700 | [diff] [blame] | 1 | /* |
| 2 | Copyright 2014 The Kubernetes Authors. |
| 3 | |
| 4 | Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | you may not use this file except in compliance with the License. |
| 6 | You may obtain a copy of the License at |
| 7 | |
| 8 | http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | |
| 10 | Unless required by applicable law or agreed to in writing, software |
| 11 | distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | See the License for the specific language governing permissions and |
| 14 | limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | package resource |
| 18 | |
| 19 | import ( |
| 20 | "math/big" |
| 21 | |
| 22 | inf "gopkg.in/inf.v0" |
| 23 | ) |
| 24 | |
| 25 | const ( |
| 26 | // maxInt64Factors is the highest value that will be checked when removing factors of 10 from an int64. |
| 27 | // It is also the maximum decimal digits that can be represented with an int64. |
| 28 | maxInt64Factors = 18 |
| 29 | ) |
| 30 | |
| 31 | var ( |
| 32 | // Commonly needed big.Int values-- treat as read only! |
| 33 | bigTen = big.NewInt(10) |
| 34 | bigZero = big.NewInt(0) |
| 35 | bigOne = big.NewInt(1) |
| 36 | bigThousand = big.NewInt(1000) |
| 37 | big1024 = big.NewInt(1024) |
| 38 | |
| 39 | // Commonly needed inf.Dec values-- treat as read only! |
| 40 | decZero = inf.NewDec(0, 0) |
| 41 | decOne = inf.NewDec(1, 0) |
| 42 | decMinusOne = inf.NewDec(-1, 0) |
| 43 | decThousand = inf.NewDec(1000, 0) |
| 44 | dec1024 = inf.NewDec(1024, 0) |
| 45 | decMinus1024 = inf.NewDec(-1024, 0) |
| 46 | |
| 47 | // Largest (in magnitude) number allowed. |
| 48 | maxAllowed = infDecAmount{inf.NewDec((1<<63)-1, 0)} // == max int64 |
| 49 | |
| 50 | // The maximum value we can represent milli-units for. |
| 51 | // Compare with the return value of Quantity.Value() to |
| 52 | // see if it's safe to use Quantity.MilliValue(). |
| 53 | MaxMilliValue = int64(((1 << 63) - 1) / 1000) |
| 54 | ) |
| 55 | |
| 56 | const mostNegative = -(mostPositive + 1) |
| 57 | const mostPositive = 1<<63 - 1 |
| 58 | |
| 59 | // int64Add returns a+b, or false if that would overflow int64. |
| 60 | func int64Add(a, b int64) (int64, bool) { |
| 61 | c := a + b |
| 62 | switch { |
| 63 | case a > 0 && b > 0: |
| 64 | if c < 0 { |
| 65 | return 0, false |
| 66 | } |
| 67 | case a < 0 && b < 0: |
| 68 | if c > 0 { |
| 69 | return 0, false |
| 70 | } |
| 71 | if a == mostNegative && b == mostNegative { |
| 72 | return 0, false |
| 73 | } |
| 74 | } |
| 75 | return c, true |
| 76 | } |
| 77 | |
| 78 | // int64Multiply returns a*b, or false if that would overflow or underflow int64. |
| 79 | func int64Multiply(a, b int64) (int64, bool) { |
| 80 | if a == 0 || b == 0 || a == 1 || b == 1 { |
| 81 | return a * b, true |
| 82 | } |
| 83 | if a == mostNegative || b == mostNegative { |
| 84 | return 0, false |
| 85 | } |
| 86 | c := a * b |
| 87 | return c, c/b == a |
| 88 | } |
| 89 | |
| 90 | // int64MultiplyScale returns a*b, assuming b is greater than one, or false if that would overflow or underflow int64. |
| 91 | // Use when b is known to be greater than one. |
| 92 | func int64MultiplyScale(a int64, b int64) (int64, bool) { |
| 93 | if a == 0 || a == 1 { |
| 94 | return a * b, true |
| 95 | } |
| 96 | if a == mostNegative && b != 1 { |
| 97 | return 0, false |
| 98 | } |
| 99 | c := a * b |
| 100 | return c, c/b == a |
| 101 | } |
| 102 | |
| 103 | // int64MultiplyScale10 multiplies a by 10, or returns false if that would overflow. This method is faster than |
| 104 | // int64Multiply(a, 10) because the compiler can optimize constant factor multiplication. |
| 105 | func int64MultiplyScale10(a int64) (int64, bool) { |
| 106 | if a == 0 || a == 1 { |
| 107 | return a * 10, true |
| 108 | } |
| 109 | if a == mostNegative { |
| 110 | return 0, false |
| 111 | } |
| 112 | c := a * 10 |
| 113 | return c, c/10 == a |
| 114 | } |
| 115 | |
| 116 | // int64MultiplyScale100 multiplies a by 100, or returns false if that would overflow. This method is faster than |
| 117 | // int64Multiply(a, 100) because the compiler can optimize constant factor multiplication. |
| 118 | func int64MultiplyScale100(a int64) (int64, bool) { |
| 119 | if a == 0 || a == 1 { |
| 120 | return a * 100, true |
| 121 | } |
| 122 | if a == mostNegative { |
| 123 | return 0, false |
| 124 | } |
| 125 | c := a * 100 |
| 126 | return c, c/100 == a |
| 127 | } |
| 128 | |
| 129 | // int64MultiplyScale1000 multiplies a by 1000, or returns false if that would overflow. This method is faster than |
| 130 | // int64Multiply(a, 1000) because the compiler can optimize constant factor multiplication. |
| 131 | func int64MultiplyScale1000(a int64) (int64, bool) { |
| 132 | if a == 0 || a == 1 { |
| 133 | return a * 1000, true |
| 134 | } |
| 135 | if a == mostNegative { |
| 136 | return 0, false |
| 137 | } |
| 138 | c := a * 1000 |
| 139 | return c, c/1000 == a |
| 140 | } |
| 141 | |
| 142 | // positiveScaleInt64 multiplies base by 10^scale, returning false if the |
| 143 | // value overflows. Passing a negative scale is undefined. |
| 144 | func positiveScaleInt64(base int64, scale Scale) (int64, bool) { |
| 145 | switch scale { |
| 146 | case 0: |
| 147 | return base, true |
| 148 | case 1: |
| 149 | return int64MultiplyScale10(base) |
| 150 | case 2: |
| 151 | return int64MultiplyScale100(base) |
| 152 | case 3: |
| 153 | return int64MultiplyScale1000(base) |
| 154 | case 6: |
| 155 | return int64MultiplyScale(base, 1000000) |
| 156 | case 9: |
| 157 | return int64MultiplyScale(base, 1000000000) |
| 158 | default: |
| 159 | value := base |
| 160 | var ok bool |
| 161 | for i := Scale(0); i < scale; i++ { |
| 162 | if value, ok = int64MultiplyScale(value, 10); !ok { |
| 163 | return 0, false |
| 164 | } |
| 165 | } |
| 166 | return value, true |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | // negativeScaleInt64 reduces base by the provided scale, rounding up, until the |
| 171 | // value is zero or the scale is reached. Passing a negative scale is undefined. |
| 172 | // The value returned, if not exact, is rounded away from zero. |
| 173 | func negativeScaleInt64(base int64, scale Scale) (result int64, exact bool) { |
| 174 | if scale == 0 { |
| 175 | return base, true |
| 176 | } |
| 177 | |
| 178 | value := base |
| 179 | var fraction bool |
| 180 | for i := Scale(0); i < scale; i++ { |
| 181 | if !fraction && value%10 != 0 { |
| 182 | fraction = true |
| 183 | } |
| 184 | value = value / 10 |
| 185 | if value == 0 { |
| 186 | if fraction { |
| 187 | if base > 0 { |
| 188 | return 1, false |
| 189 | } |
| 190 | return -1, false |
| 191 | } |
| 192 | return 0, true |
| 193 | } |
| 194 | } |
| 195 | if fraction { |
| 196 | if base > 0 { |
| 197 | value += 1 |
| 198 | } else { |
| 199 | value += -1 |
| 200 | } |
| 201 | } |
| 202 | return value, !fraction |
| 203 | } |
| 204 | |
| 205 | func pow10Int64(b int64) int64 { |
| 206 | switch b { |
| 207 | case 0: |
| 208 | return 1 |
| 209 | case 1: |
| 210 | return 10 |
| 211 | case 2: |
| 212 | return 100 |
| 213 | case 3: |
| 214 | return 1000 |
| 215 | case 4: |
| 216 | return 10000 |
| 217 | case 5: |
| 218 | return 100000 |
| 219 | case 6: |
| 220 | return 1000000 |
| 221 | case 7: |
| 222 | return 10000000 |
| 223 | case 8: |
| 224 | return 100000000 |
| 225 | case 9: |
| 226 | return 1000000000 |
| 227 | case 10: |
| 228 | return 10000000000 |
| 229 | case 11: |
| 230 | return 100000000000 |
| 231 | case 12: |
| 232 | return 1000000000000 |
| 233 | case 13: |
| 234 | return 10000000000000 |
| 235 | case 14: |
| 236 | return 100000000000000 |
| 237 | case 15: |
| 238 | return 1000000000000000 |
| 239 | case 16: |
| 240 | return 10000000000000000 |
| 241 | case 17: |
| 242 | return 100000000000000000 |
| 243 | case 18: |
| 244 | return 1000000000000000000 |
| 245 | default: |
| 246 | return 0 |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | // negativeScaleInt64 returns the result of dividing base by scale * 10 and the remainder, or |
| 251 | // false if no such division is possible. Dividing by negative scales is undefined. |
| 252 | func divideByScaleInt64(base int64, scale Scale) (result, remainder int64, exact bool) { |
| 253 | if scale == 0 { |
| 254 | return base, 0, true |
| 255 | } |
| 256 | // the max scale representable in base 10 in an int64 is 18 decimal places |
| 257 | if scale >= 18 { |
| 258 | return 0, base, false |
| 259 | } |
| 260 | divisor := pow10Int64(int64(scale)) |
| 261 | return base / divisor, base % divisor, true |
| 262 | } |
| 263 | |
| 264 | // removeInt64Factors divides in a loop; the return values have the property that |
| 265 | // value == result * base ^ scale |
| 266 | func removeInt64Factors(value int64, base int64) (result int64, times int32) { |
| 267 | times = 0 |
| 268 | result = value |
| 269 | negative := result < 0 |
| 270 | if negative { |
| 271 | result = -result |
| 272 | } |
| 273 | switch base { |
| 274 | // allow the compiler to optimize the common cases |
| 275 | case 10: |
| 276 | for result >= 10 && result%10 == 0 { |
| 277 | times++ |
| 278 | result = result / 10 |
| 279 | } |
| 280 | // allow the compiler to optimize the common cases |
| 281 | case 1024: |
| 282 | for result >= 1024 && result%1024 == 0 { |
| 283 | times++ |
| 284 | result = result / 1024 |
| 285 | } |
| 286 | default: |
| 287 | for result >= base && result%base == 0 { |
| 288 | times++ |
| 289 | result = result / base |
| 290 | } |
| 291 | } |
| 292 | if negative { |
| 293 | result = -result |
| 294 | } |
| 295 | return result, times |
| 296 | } |
| 297 | |
| 298 | // removeBigIntFactors divides in a loop; the return values have the property that |
| 299 | // d == result * factor ^ times |
| 300 | // d may be modified in place. |
| 301 | // If d == 0, then the return values will be (0, 0) |
| 302 | func removeBigIntFactors(d, factor *big.Int) (result *big.Int, times int32) { |
| 303 | q := big.NewInt(0) |
| 304 | m := big.NewInt(0) |
| 305 | for d.Cmp(bigZero) != 0 { |
| 306 | q.DivMod(d, factor, m) |
| 307 | if m.Cmp(bigZero) != 0 { |
| 308 | break |
| 309 | } |
| 310 | times++ |
| 311 | d, q = q, d |
| 312 | } |
| 313 | return d, times |
| 314 | } |