Scott Baker | e7144bc | 2019-10-01 14:16:47 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This source code is licensed under both the BSD-style license (found in the |
| 6 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| 7 | * in the COPYING file in the root directory of this source tree). |
| 8 | * You may select, at your option, one of the above-listed licenses. |
| 9 | */ |
| 10 | |
| 11 | #ifndef MEM_H_MODULE |
| 12 | #define MEM_H_MODULE |
| 13 | |
| 14 | #if defined (__cplusplus) |
| 15 | extern "C" { |
| 16 | #endif |
| 17 | |
| 18 | /*-**************************************** |
| 19 | * Dependencies |
| 20 | ******************************************/ |
| 21 | #include <stddef.h> /* size_t, ptrdiff_t */ |
| 22 | #include <string.h> /* memcpy */ |
| 23 | |
| 24 | |
| 25 | /*-**************************************** |
| 26 | * Compiler specifics |
| 27 | ******************************************/ |
| 28 | #if defined(_MSC_VER) /* Visual Studio */ |
| 29 | # include <stdlib.h> /* _byteswap_ulong */ |
| 30 | # include <intrin.h> /* _byteswap_* */ |
| 31 | #endif |
| 32 | #if defined(__GNUC__) |
| 33 | # define MEM_STATIC static __inline __attribute__((unused)) |
| 34 | #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) |
| 35 | # define MEM_STATIC static inline |
| 36 | #elif defined(_MSC_VER) |
| 37 | # define MEM_STATIC static __inline |
| 38 | #else |
| 39 | # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ |
| 40 | #endif |
| 41 | |
| 42 | /* code only tested on 32 and 64 bits systems */ |
| 43 | #define MEM_STATIC_ASSERT(c) { enum { MEM_static_assert = 1/(int)(!!(c)) }; } |
| 44 | MEM_STATIC void MEM_check(void) { MEM_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); } |
| 45 | |
| 46 | |
| 47 | /*-************************************************************** |
| 48 | * Basic Types |
| 49 | *****************************************************************/ |
| 50 | #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
| 51 | # include <stdint.h> |
| 52 | typedef uint8_t BYTE; |
| 53 | typedef uint16_t U16; |
| 54 | typedef int16_t S16; |
| 55 | typedef uint32_t U32; |
| 56 | typedef int32_t S32; |
| 57 | typedef uint64_t U64; |
| 58 | typedef int64_t S64; |
| 59 | #else |
| 60 | typedef unsigned char BYTE; |
| 61 | typedef unsigned short U16; |
| 62 | typedef signed short S16; |
| 63 | typedef unsigned int U32; |
| 64 | typedef signed int S32; |
| 65 | typedef unsigned long long U64; |
| 66 | typedef signed long long S64; |
| 67 | #endif |
| 68 | |
| 69 | |
| 70 | /*-************************************************************** |
| 71 | * Memory I/O |
| 72 | *****************************************************************/ |
| 73 | /* MEM_FORCE_MEMORY_ACCESS : |
| 74 | * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
| 75 | * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
| 76 | * The below switch allow to select different access method for improved performance. |
| 77 | * Method 0 (default) : use `memcpy()`. Safe and portable. |
| 78 | * Method 1 : `__packed` statement. It depends on compiler extension (i.e., not portable). |
| 79 | * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
| 80 | * Method 2 : direct access. This method is portable but violate C standard. |
| 81 | * It can generate buggy code on targets depending on alignment. |
| 82 | * In some circumstances, it's the only known way to get the most performance (i.e. GCC + ARMv6) |
| 83 | * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. |
| 84 | * Prefer these methods in priority order (0 > 1 > 2) |
| 85 | */ |
| 86 | #ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
| 87 | # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
| 88 | # define MEM_FORCE_MEMORY_ACCESS 2 |
| 89 | # elif defined(__INTEL_COMPILER) || defined(__GNUC__) |
| 90 | # define MEM_FORCE_MEMORY_ACCESS 1 |
| 91 | # endif |
| 92 | #endif |
| 93 | |
| 94 | MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; } |
| 95 | MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; } |
| 96 | |
| 97 | MEM_STATIC unsigned MEM_isLittleEndian(void) |
| 98 | { |
| 99 | const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ |
| 100 | return one.c[0]; |
| 101 | } |
| 102 | |
| 103 | #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) |
| 104 | |
| 105 | /* violates C standard, by lying on structure alignment. |
| 106 | Only use if no other choice to achieve best performance on target platform */ |
| 107 | MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } |
| 108 | MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } |
| 109 | MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } |
| 110 | MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; } |
| 111 | |
| 112 | MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } |
| 113 | MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; } |
| 114 | MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; } |
| 115 | |
| 116 | #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) |
| 117 | |
| 118 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
| 119 | /* currently only defined for gcc and icc */ |
| 120 | #if defined(_MSC_VER) || (defined(__INTEL_COMPILER) && defined(WIN32)) |
| 121 | __pragma( pack(push, 1) ) |
| 122 | typedef struct { U16 v; } unalign16; |
| 123 | typedef struct { U32 v; } unalign32; |
| 124 | typedef struct { U64 v; } unalign64; |
| 125 | typedef struct { size_t v; } unalignArch; |
| 126 | __pragma( pack(pop) ) |
| 127 | #else |
| 128 | typedef struct { U16 v; } __attribute__((packed)) unalign16; |
| 129 | typedef struct { U32 v; } __attribute__((packed)) unalign32; |
| 130 | typedef struct { U64 v; } __attribute__((packed)) unalign64; |
| 131 | typedef struct { size_t v; } __attribute__((packed)) unalignArch; |
| 132 | #endif |
| 133 | |
| 134 | MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign16*)ptr)->v; } |
| 135 | MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign32*)ptr)->v; } |
| 136 | MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign64*)ptr)->v; } |
| 137 | MEM_STATIC size_t MEM_readST(const void* ptr) { return ((const unalignArch*)ptr)->v; } |
| 138 | |
| 139 | MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign16*)memPtr)->v = value; } |
| 140 | MEM_STATIC void MEM_write32(void* memPtr, U32 value) { ((unalign32*)memPtr)->v = value; } |
| 141 | MEM_STATIC void MEM_write64(void* memPtr, U64 value) { ((unalign64*)memPtr)->v = value; } |
| 142 | |
| 143 | #else |
| 144 | |
| 145 | /* default method, safe and standard. |
| 146 | can sometimes prove slower */ |
| 147 | |
| 148 | MEM_STATIC U16 MEM_read16(const void* memPtr) |
| 149 | { |
| 150 | U16 val; memcpy(&val, memPtr, sizeof(val)); return val; |
| 151 | } |
| 152 | |
| 153 | MEM_STATIC U32 MEM_read32(const void* memPtr) |
| 154 | { |
| 155 | U32 val; memcpy(&val, memPtr, sizeof(val)); return val; |
| 156 | } |
| 157 | |
| 158 | MEM_STATIC U64 MEM_read64(const void* memPtr) |
| 159 | { |
| 160 | U64 val; memcpy(&val, memPtr, sizeof(val)); return val; |
| 161 | } |
| 162 | |
| 163 | MEM_STATIC size_t MEM_readST(const void* memPtr) |
| 164 | { |
| 165 | size_t val; memcpy(&val, memPtr, sizeof(val)); return val; |
| 166 | } |
| 167 | |
| 168 | MEM_STATIC void MEM_write16(void* memPtr, U16 value) |
| 169 | { |
| 170 | memcpy(memPtr, &value, sizeof(value)); |
| 171 | } |
| 172 | |
| 173 | MEM_STATIC void MEM_write32(void* memPtr, U32 value) |
| 174 | { |
| 175 | memcpy(memPtr, &value, sizeof(value)); |
| 176 | } |
| 177 | |
| 178 | MEM_STATIC void MEM_write64(void* memPtr, U64 value) |
| 179 | { |
| 180 | memcpy(memPtr, &value, sizeof(value)); |
| 181 | } |
| 182 | |
| 183 | #endif /* MEM_FORCE_MEMORY_ACCESS */ |
| 184 | |
| 185 | MEM_STATIC U32 MEM_swap32(U32 in) |
| 186 | { |
| 187 | #if defined(_MSC_VER) /* Visual Studio */ |
| 188 | return _byteswap_ulong(in); |
| 189 | #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403) |
| 190 | return __builtin_bswap32(in); |
| 191 | #else |
| 192 | return ((in << 24) & 0xff000000 ) | |
| 193 | ((in << 8) & 0x00ff0000 ) | |
| 194 | ((in >> 8) & 0x0000ff00 ) | |
| 195 | ((in >> 24) & 0x000000ff ); |
| 196 | #endif |
| 197 | } |
| 198 | |
| 199 | MEM_STATIC U64 MEM_swap64(U64 in) |
| 200 | { |
| 201 | #if defined(_MSC_VER) /* Visual Studio */ |
| 202 | return _byteswap_uint64(in); |
| 203 | #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403) |
| 204 | return __builtin_bswap64(in); |
| 205 | #else |
| 206 | return ((in << 56) & 0xff00000000000000ULL) | |
| 207 | ((in << 40) & 0x00ff000000000000ULL) | |
| 208 | ((in << 24) & 0x0000ff0000000000ULL) | |
| 209 | ((in << 8) & 0x000000ff00000000ULL) | |
| 210 | ((in >> 8) & 0x00000000ff000000ULL) | |
| 211 | ((in >> 24) & 0x0000000000ff0000ULL) | |
| 212 | ((in >> 40) & 0x000000000000ff00ULL) | |
| 213 | ((in >> 56) & 0x00000000000000ffULL); |
| 214 | #endif |
| 215 | } |
| 216 | |
| 217 | MEM_STATIC size_t MEM_swapST(size_t in) |
| 218 | { |
| 219 | if (MEM_32bits()) |
| 220 | return (size_t)MEM_swap32((U32)in); |
| 221 | else |
| 222 | return (size_t)MEM_swap64((U64)in); |
| 223 | } |
| 224 | |
| 225 | /*=== Little endian r/w ===*/ |
| 226 | |
| 227 | MEM_STATIC U16 MEM_readLE16(const void* memPtr) |
| 228 | { |
| 229 | if (MEM_isLittleEndian()) |
| 230 | return MEM_read16(memPtr); |
| 231 | else { |
| 232 | const BYTE* p = (const BYTE*)memPtr; |
| 233 | return (U16)(p[0] + (p[1]<<8)); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) |
| 238 | { |
| 239 | if (MEM_isLittleEndian()) { |
| 240 | MEM_write16(memPtr, val); |
| 241 | } else { |
| 242 | BYTE* p = (BYTE*)memPtr; |
| 243 | p[0] = (BYTE)val; |
| 244 | p[1] = (BYTE)(val>>8); |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | MEM_STATIC U32 MEM_readLE24(const void* memPtr) |
| 249 | { |
| 250 | return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16); |
| 251 | } |
| 252 | |
| 253 | MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val) |
| 254 | { |
| 255 | MEM_writeLE16(memPtr, (U16)val); |
| 256 | ((BYTE*)memPtr)[2] = (BYTE)(val>>16); |
| 257 | } |
| 258 | |
| 259 | MEM_STATIC U32 MEM_readLE32(const void* memPtr) |
| 260 | { |
| 261 | if (MEM_isLittleEndian()) |
| 262 | return MEM_read32(memPtr); |
| 263 | else |
| 264 | return MEM_swap32(MEM_read32(memPtr)); |
| 265 | } |
| 266 | |
| 267 | MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32) |
| 268 | { |
| 269 | if (MEM_isLittleEndian()) |
| 270 | MEM_write32(memPtr, val32); |
| 271 | else |
| 272 | MEM_write32(memPtr, MEM_swap32(val32)); |
| 273 | } |
| 274 | |
| 275 | MEM_STATIC U64 MEM_readLE64(const void* memPtr) |
| 276 | { |
| 277 | if (MEM_isLittleEndian()) |
| 278 | return MEM_read64(memPtr); |
| 279 | else |
| 280 | return MEM_swap64(MEM_read64(memPtr)); |
| 281 | } |
| 282 | |
| 283 | MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64) |
| 284 | { |
| 285 | if (MEM_isLittleEndian()) |
| 286 | MEM_write64(memPtr, val64); |
| 287 | else |
| 288 | MEM_write64(memPtr, MEM_swap64(val64)); |
| 289 | } |
| 290 | |
| 291 | MEM_STATIC size_t MEM_readLEST(const void* memPtr) |
| 292 | { |
| 293 | if (MEM_32bits()) |
| 294 | return (size_t)MEM_readLE32(memPtr); |
| 295 | else |
| 296 | return (size_t)MEM_readLE64(memPtr); |
| 297 | } |
| 298 | |
| 299 | MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val) |
| 300 | { |
| 301 | if (MEM_32bits()) |
| 302 | MEM_writeLE32(memPtr, (U32)val); |
| 303 | else |
| 304 | MEM_writeLE64(memPtr, (U64)val); |
| 305 | } |
| 306 | |
| 307 | /*=== Big endian r/w ===*/ |
| 308 | |
| 309 | MEM_STATIC U32 MEM_readBE32(const void* memPtr) |
| 310 | { |
| 311 | if (MEM_isLittleEndian()) |
| 312 | return MEM_swap32(MEM_read32(memPtr)); |
| 313 | else |
| 314 | return MEM_read32(memPtr); |
| 315 | } |
| 316 | |
| 317 | MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32) |
| 318 | { |
| 319 | if (MEM_isLittleEndian()) |
| 320 | MEM_write32(memPtr, MEM_swap32(val32)); |
| 321 | else |
| 322 | MEM_write32(memPtr, val32); |
| 323 | } |
| 324 | |
| 325 | MEM_STATIC U64 MEM_readBE64(const void* memPtr) |
| 326 | { |
| 327 | if (MEM_isLittleEndian()) |
| 328 | return MEM_swap64(MEM_read64(memPtr)); |
| 329 | else |
| 330 | return MEM_read64(memPtr); |
| 331 | } |
| 332 | |
| 333 | MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64) |
| 334 | { |
| 335 | if (MEM_isLittleEndian()) |
| 336 | MEM_write64(memPtr, MEM_swap64(val64)); |
| 337 | else |
| 338 | MEM_write64(memPtr, val64); |
| 339 | } |
| 340 | |
| 341 | MEM_STATIC size_t MEM_readBEST(const void* memPtr) |
| 342 | { |
| 343 | if (MEM_32bits()) |
| 344 | return (size_t)MEM_readBE32(memPtr); |
| 345 | else |
| 346 | return (size_t)MEM_readBE64(memPtr); |
| 347 | } |
| 348 | |
| 349 | MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val) |
| 350 | { |
| 351 | if (MEM_32bits()) |
| 352 | MEM_writeBE32(memPtr, (U32)val); |
| 353 | else |
| 354 | MEM_writeBE64(memPtr, (U64)val); |
| 355 | } |
| 356 | |
| 357 | |
| 358 | #if defined (__cplusplus) |
| 359 | } |
| 360 | #endif |
| 361 | |
| 362 | #endif /* MEM_H_MODULE */ |