blob: fdd328bb7f541e68813bb369e21e26ec3c096725 [file] [log] [blame]
Scott Bakere7144bc2019-10-01 14:16:47 -07001// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors. All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10// * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12// * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16// * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32/*
33Package proto converts data structures to and from the wire format of
34protocol buffers. It works in concert with the Go source code generated
35for .proto files by the protocol compiler.
36
37A summary of the properties of the protocol buffer interface
38for a protocol buffer variable v:
39
40 - Names are turned from camel_case to CamelCase for export.
41 - There are no methods on v to set fields; just treat
42 them as structure fields.
43 - There are getters that return a field's value if set,
44 and return the field's default value if unset.
45 The getters work even if the receiver is a nil message.
46 - The zero value for a struct is its correct initialization state.
47 All desired fields must be set before marshaling.
48 - A Reset() method will restore a protobuf struct to its zero state.
49 - Non-repeated fields are pointers to the values; nil means unset.
50 That is, optional or required field int32 f becomes F *int32.
51 - Repeated fields are slices.
52 - Helper functions are available to aid the setting of fields.
53 msg.Foo = proto.String("hello") // set field
54 - Constants are defined to hold the default values of all fields that
55 have them. They have the form Default_StructName_FieldName.
56 Because the getter methods handle defaulted values,
57 direct use of these constants should be rare.
58 - Enums are given type names and maps from names to values.
59 Enum values are prefixed by the enclosing message's name, or by the
60 enum's type name if it is a top-level enum. Enum types have a String
61 method, and a Enum method to assist in message construction.
62 - Nested messages, groups and enums have type names prefixed with the name of
63 the surrounding message type.
64 - Extensions are given descriptor names that start with E_,
65 followed by an underscore-delimited list of the nested messages
66 that contain it (if any) followed by the CamelCased name of the
67 extension field itself. HasExtension, ClearExtension, GetExtension
68 and SetExtension are functions for manipulating extensions.
69 - Oneof field sets are given a single field in their message,
70 with distinguished wrapper types for each possible field value.
71 - Marshal and Unmarshal are functions to encode and decode the wire format.
72
73When the .proto file specifies `syntax="proto3"`, there are some differences:
74
75 - Non-repeated fields of non-message type are values instead of pointers.
76 - Enum types do not get an Enum method.
77
78The simplest way to describe this is to see an example.
79Given file test.proto, containing
80
81 package example;
82
83 enum FOO { X = 17; }
84
85 message Test {
86 required string label = 1;
87 optional int32 type = 2 [default=77];
88 repeated int64 reps = 3;
89 optional group OptionalGroup = 4 {
90 required string RequiredField = 5;
91 }
92 oneof union {
93 int32 number = 6;
94 string name = 7;
95 }
96 }
97
98The resulting file, test.pb.go, is:
99
100 package example
101
102 import proto "github.com/golang/protobuf/proto"
103 import math "math"
104
105 type FOO int32
106 const (
107 FOO_X FOO = 17
108 )
109 var FOO_name = map[int32]string{
110 17: "X",
111 }
112 var FOO_value = map[string]int32{
113 "X": 17,
114 }
115
116 func (x FOO) Enum() *FOO {
117 p := new(FOO)
118 *p = x
119 return p
120 }
121 func (x FOO) String() string {
122 return proto.EnumName(FOO_name, int32(x))
123 }
124 func (x *FOO) UnmarshalJSON(data []byte) error {
125 value, err := proto.UnmarshalJSONEnum(FOO_value, data)
126 if err != nil {
127 return err
128 }
129 *x = FOO(value)
130 return nil
131 }
132
133 type Test struct {
134 Label *string `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
135 Type *int32 `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
136 Reps []int64 `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
137 Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
138 // Types that are valid to be assigned to Union:
139 // *Test_Number
140 // *Test_Name
141 Union isTest_Union `protobuf_oneof:"union"`
142 XXX_unrecognized []byte `json:"-"`
143 }
144 func (m *Test) Reset() { *m = Test{} }
145 func (m *Test) String() string { return proto.CompactTextString(m) }
146 func (*Test) ProtoMessage() {}
147
148 type isTest_Union interface {
149 isTest_Union()
150 }
151
152 type Test_Number struct {
153 Number int32 `protobuf:"varint,6,opt,name=number"`
154 }
155 type Test_Name struct {
156 Name string `protobuf:"bytes,7,opt,name=name"`
157 }
158
159 func (*Test_Number) isTest_Union() {}
160 func (*Test_Name) isTest_Union() {}
161
162 func (m *Test) GetUnion() isTest_Union {
163 if m != nil {
164 return m.Union
165 }
166 return nil
167 }
168 const Default_Test_Type int32 = 77
169
170 func (m *Test) GetLabel() string {
171 if m != nil && m.Label != nil {
172 return *m.Label
173 }
174 return ""
175 }
176
177 func (m *Test) GetType() int32 {
178 if m != nil && m.Type != nil {
179 return *m.Type
180 }
181 return Default_Test_Type
182 }
183
184 func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
185 if m != nil {
186 return m.Optionalgroup
187 }
188 return nil
189 }
190
191 type Test_OptionalGroup struct {
192 RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
193 }
194 func (m *Test_OptionalGroup) Reset() { *m = Test_OptionalGroup{} }
195 func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
196
197 func (m *Test_OptionalGroup) GetRequiredField() string {
198 if m != nil && m.RequiredField != nil {
199 return *m.RequiredField
200 }
201 return ""
202 }
203
204 func (m *Test) GetNumber() int32 {
205 if x, ok := m.GetUnion().(*Test_Number); ok {
206 return x.Number
207 }
208 return 0
209 }
210
211 func (m *Test) GetName() string {
212 if x, ok := m.GetUnion().(*Test_Name); ok {
213 return x.Name
214 }
215 return ""
216 }
217
218 func init() {
219 proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
220 }
221
222To create and play with a Test object:
223
224 package main
225
226 import (
227 "log"
228
229 "github.com/golang/protobuf/proto"
230 pb "./example.pb"
231 )
232
233 func main() {
234 test := &pb.Test{
235 Label: proto.String("hello"),
236 Type: proto.Int32(17),
237 Reps: []int64{1, 2, 3},
238 Optionalgroup: &pb.Test_OptionalGroup{
239 RequiredField: proto.String("good bye"),
240 },
241 Union: &pb.Test_Name{"fred"},
242 }
243 data, err := proto.Marshal(test)
244 if err != nil {
245 log.Fatal("marshaling error: ", err)
246 }
247 newTest := &pb.Test{}
248 err = proto.Unmarshal(data, newTest)
249 if err != nil {
250 log.Fatal("unmarshaling error: ", err)
251 }
252 // Now test and newTest contain the same data.
253 if test.GetLabel() != newTest.GetLabel() {
254 log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
255 }
256 // Use a type switch to determine which oneof was set.
257 switch u := test.Union.(type) {
258 case *pb.Test_Number: // u.Number contains the number.
259 case *pb.Test_Name: // u.Name contains the string.
260 }
261 // etc.
262 }
263*/
264package proto
265
266import (
267 "encoding/json"
268 "fmt"
269 "log"
270 "reflect"
271 "sort"
272 "strconv"
273 "sync"
274)
275
276// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
277// Marshal reports this when a required field is not initialized.
278// Unmarshal reports this when a required field is missing from the wire data.
279type RequiredNotSetError struct{ field string }
280
281func (e *RequiredNotSetError) Error() string {
282 if e.field == "" {
283 return fmt.Sprintf("proto: required field not set")
284 }
285 return fmt.Sprintf("proto: required field %q not set", e.field)
286}
287func (e *RequiredNotSetError) RequiredNotSet() bool {
288 return true
289}
290
291type invalidUTF8Error struct{ field string }
292
293func (e *invalidUTF8Error) Error() string {
294 if e.field == "" {
295 return "proto: invalid UTF-8 detected"
296 }
297 return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
298}
299func (e *invalidUTF8Error) InvalidUTF8() bool {
300 return true
301}
302
303// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
304// This error should not be exposed to the external API as such errors should
305// be recreated with the field information.
306var errInvalidUTF8 = &invalidUTF8Error{}
307
308// isNonFatal reports whether the error is either a RequiredNotSet error
309// or a InvalidUTF8 error.
310func isNonFatal(err error) bool {
311 if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
312 return true
313 }
314 if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
315 return true
316 }
317 return false
318}
319
320type nonFatal struct{ E error }
321
322// Merge merges err into nf and reports whether it was successful.
323// Otherwise it returns false for any fatal non-nil errors.
324func (nf *nonFatal) Merge(err error) (ok bool) {
325 if err == nil {
326 return true // not an error
327 }
328 if !isNonFatal(err) {
329 return false // fatal error
330 }
331 if nf.E == nil {
332 nf.E = err // store first instance of non-fatal error
333 }
334 return true
335}
336
337// Message is implemented by generated protocol buffer messages.
338type Message interface {
339 Reset()
340 String() string
341 ProtoMessage()
342}
343
344// A Buffer is a buffer manager for marshaling and unmarshaling
345// protocol buffers. It may be reused between invocations to
346// reduce memory usage. It is not necessary to use a Buffer;
347// the global functions Marshal and Unmarshal create a
348// temporary Buffer and are fine for most applications.
349type Buffer struct {
350 buf []byte // encode/decode byte stream
351 index int // read point
352
353 deterministic bool
354}
355
356// NewBuffer allocates a new Buffer and initializes its internal data to
357// the contents of the argument slice.
358func NewBuffer(e []byte) *Buffer {
359 return &Buffer{buf: e}
360}
361
362// Reset resets the Buffer, ready for marshaling a new protocol buffer.
363func (p *Buffer) Reset() {
364 p.buf = p.buf[0:0] // for reading/writing
365 p.index = 0 // for reading
366}
367
368// SetBuf replaces the internal buffer with the slice,
369// ready for unmarshaling the contents of the slice.
370func (p *Buffer) SetBuf(s []byte) {
371 p.buf = s
372 p.index = 0
373}
374
375// Bytes returns the contents of the Buffer.
376func (p *Buffer) Bytes() []byte { return p.buf }
377
378// SetDeterministic sets whether to use deterministic serialization.
379//
380// Deterministic serialization guarantees that for a given binary, equal
381// messages will always be serialized to the same bytes. This implies:
382//
383// - Repeated serialization of a message will return the same bytes.
384// - Different processes of the same binary (which may be executing on
385// different machines) will serialize equal messages to the same bytes.
386//
387// Note that the deterministic serialization is NOT canonical across
388// languages. It is not guaranteed to remain stable over time. It is unstable
389// across different builds with schema changes due to unknown fields.
390// Users who need canonical serialization (e.g., persistent storage in a
391// canonical form, fingerprinting, etc.) should define their own
392// canonicalization specification and implement their own serializer rather
393// than relying on this API.
394//
395// If deterministic serialization is requested, map entries will be sorted
396// by keys in lexographical order. This is an implementation detail and
397// subject to change.
398func (p *Buffer) SetDeterministic(deterministic bool) {
399 p.deterministic = deterministic
400}
401
402/*
403 * Helper routines for simplifying the creation of optional fields of basic type.
404 */
405
406// Bool is a helper routine that allocates a new bool value
407// to store v and returns a pointer to it.
408func Bool(v bool) *bool {
409 return &v
410}
411
412// Int32 is a helper routine that allocates a new int32 value
413// to store v and returns a pointer to it.
414func Int32(v int32) *int32 {
415 return &v
416}
417
418// Int is a helper routine that allocates a new int32 value
419// to store v and returns a pointer to it, but unlike Int32
420// its argument value is an int.
421func Int(v int) *int32 {
422 p := new(int32)
423 *p = int32(v)
424 return p
425}
426
427// Int64 is a helper routine that allocates a new int64 value
428// to store v and returns a pointer to it.
429func Int64(v int64) *int64 {
430 return &v
431}
432
433// Float32 is a helper routine that allocates a new float32 value
434// to store v and returns a pointer to it.
435func Float32(v float32) *float32 {
436 return &v
437}
438
439// Float64 is a helper routine that allocates a new float64 value
440// to store v and returns a pointer to it.
441func Float64(v float64) *float64 {
442 return &v
443}
444
445// Uint32 is a helper routine that allocates a new uint32 value
446// to store v and returns a pointer to it.
447func Uint32(v uint32) *uint32 {
448 return &v
449}
450
451// Uint64 is a helper routine that allocates a new uint64 value
452// to store v and returns a pointer to it.
453func Uint64(v uint64) *uint64 {
454 return &v
455}
456
457// String is a helper routine that allocates a new string value
458// to store v and returns a pointer to it.
459func String(v string) *string {
460 return &v
461}
462
463// EnumName is a helper function to simplify printing protocol buffer enums
464// by name. Given an enum map and a value, it returns a useful string.
465func EnumName(m map[int32]string, v int32) string {
466 s, ok := m[v]
467 if ok {
468 return s
469 }
470 return strconv.Itoa(int(v))
471}
472
473// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
474// from their JSON-encoded representation. Given a map from the enum's symbolic
475// names to its int values, and a byte buffer containing the JSON-encoded
476// value, it returns an int32 that can be cast to the enum type by the caller.
477//
478// The function can deal with both JSON representations, numeric and symbolic.
479func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
480 if data[0] == '"' {
481 // New style: enums are strings.
482 var repr string
483 if err := json.Unmarshal(data, &repr); err != nil {
484 return -1, err
485 }
486 val, ok := m[repr]
487 if !ok {
488 return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
489 }
490 return val, nil
491 }
492 // Old style: enums are ints.
493 var val int32
494 if err := json.Unmarshal(data, &val); err != nil {
495 return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
496 }
497 return val, nil
498}
499
500// DebugPrint dumps the encoded data in b in a debugging format with a header
501// including the string s. Used in testing but made available for general debugging.
502func (p *Buffer) DebugPrint(s string, b []byte) {
503 var u uint64
504
505 obuf := p.buf
506 index := p.index
507 p.buf = b
508 p.index = 0
509 depth := 0
510
511 fmt.Printf("\n--- %s ---\n", s)
512
513out:
514 for {
515 for i := 0; i < depth; i++ {
516 fmt.Print(" ")
517 }
518
519 index := p.index
520 if index == len(p.buf) {
521 break
522 }
523
524 op, err := p.DecodeVarint()
525 if err != nil {
526 fmt.Printf("%3d: fetching op err %v\n", index, err)
527 break out
528 }
529 tag := op >> 3
530 wire := op & 7
531
532 switch wire {
533 default:
534 fmt.Printf("%3d: t=%3d unknown wire=%d\n",
535 index, tag, wire)
536 break out
537
538 case WireBytes:
539 var r []byte
540
541 r, err = p.DecodeRawBytes(false)
542 if err != nil {
543 break out
544 }
545 fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
546 if len(r) <= 6 {
547 for i := 0; i < len(r); i++ {
548 fmt.Printf(" %.2x", r[i])
549 }
550 } else {
551 for i := 0; i < 3; i++ {
552 fmt.Printf(" %.2x", r[i])
553 }
554 fmt.Printf(" ..")
555 for i := len(r) - 3; i < len(r); i++ {
556 fmt.Printf(" %.2x", r[i])
557 }
558 }
559 fmt.Printf("\n")
560
561 case WireFixed32:
562 u, err = p.DecodeFixed32()
563 if err != nil {
564 fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
565 break out
566 }
567 fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
568
569 case WireFixed64:
570 u, err = p.DecodeFixed64()
571 if err != nil {
572 fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
573 break out
574 }
575 fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
576
577 case WireVarint:
578 u, err = p.DecodeVarint()
579 if err != nil {
580 fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
581 break out
582 }
583 fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
584
585 case WireStartGroup:
586 fmt.Printf("%3d: t=%3d start\n", index, tag)
587 depth++
588
589 case WireEndGroup:
590 depth--
591 fmt.Printf("%3d: t=%3d end\n", index, tag)
592 }
593 }
594
595 if depth != 0 {
596 fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
597 }
598 fmt.Printf("\n")
599
600 p.buf = obuf
601 p.index = index
602}
603
604// SetDefaults sets unset protocol buffer fields to their default values.
605// It only modifies fields that are both unset and have defined defaults.
606// It recursively sets default values in any non-nil sub-messages.
607func SetDefaults(pb Message) {
608 setDefaults(reflect.ValueOf(pb), true, false)
609}
610
611// v is a pointer to a struct.
612func setDefaults(v reflect.Value, recur, zeros bool) {
613 v = v.Elem()
614
615 defaultMu.RLock()
616 dm, ok := defaults[v.Type()]
617 defaultMu.RUnlock()
618 if !ok {
619 dm = buildDefaultMessage(v.Type())
620 defaultMu.Lock()
621 defaults[v.Type()] = dm
622 defaultMu.Unlock()
623 }
624
625 for _, sf := range dm.scalars {
626 f := v.Field(sf.index)
627 if !f.IsNil() {
628 // field already set
629 continue
630 }
631 dv := sf.value
632 if dv == nil && !zeros {
633 // no explicit default, and don't want to set zeros
634 continue
635 }
636 fptr := f.Addr().Interface() // **T
637 // TODO: Consider batching the allocations we do here.
638 switch sf.kind {
639 case reflect.Bool:
640 b := new(bool)
641 if dv != nil {
642 *b = dv.(bool)
643 }
644 *(fptr.(**bool)) = b
645 case reflect.Float32:
646 f := new(float32)
647 if dv != nil {
648 *f = dv.(float32)
649 }
650 *(fptr.(**float32)) = f
651 case reflect.Float64:
652 f := new(float64)
653 if dv != nil {
654 *f = dv.(float64)
655 }
656 *(fptr.(**float64)) = f
657 case reflect.Int32:
658 // might be an enum
659 if ft := f.Type(); ft != int32PtrType {
660 // enum
661 f.Set(reflect.New(ft.Elem()))
662 if dv != nil {
663 f.Elem().SetInt(int64(dv.(int32)))
664 }
665 } else {
666 // int32 field
667 i := new(int32)
668 if dv != nil {
669 *i = dv.(int32)
670 }
671 *(fptr.(**int32)) = i
672 }
673 case reflect.Int64:
674 i := new(int64)
675 if dv != nil {
676 *i = dv.(int64)
677 }
678 *(fptr.(**int64)) = i
679 case reflect.String:
680 s := new(string)
681 if dv != nil {
682 *s = dv.(string)
683 }
684 *(fptr.(**string)) = s
685 case reflect.Uint8:
686 // exceptional case: []byte
687 var b []byte
688 if dv != nil {
689 db := dv.([]byte)
690 b = make([]byte, len(db))
691 copy(b, db)
692 } else {
693 b = []byte{}
694 }
695 *(fptr.(*[]byte)) = b
696 case reflect.Uint32:
697 u := new(uint32)
698 if dv != nil {
699 *u = dv.(uint32)
700 }
701 *(fptr.(**uint32)) = u
702 case reflect.Uint64:
703 u := new(uint64)
704 if dv != nil {
705 *u = dv.(uint64)
706 }
707 *(fptr.(**uint64)) = u
708 default:
709 log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
710 }
711 }
712
713 for _, ni := range dm.nested {
714 f := v.Field(ni)
715 // f is *T or []*T or map[T]*T
716 switch f.Kind() {
717 case reflect.Ptr:
718 if f.IsNil() {
719 continue
720 }
721 setDefaults(f, recur, zeros)
722
723 case reflect.Slice:
724 for i := 0; i < f.Len(); i++ {
725 e := f.Index(i)
726 if e.IsNil() {
727 continue
728 }
729 setDefaults(e, recur, zeros)
730 }
731
732 case reflect.Map:
733 for _, k := range f.MapKeys() {
734 e := f.MapIndex(k)
735 if e.IsNil() {
736 continue
737 }
738 setDefaults(e, recur, zeros)
739 }
740 }
741 }
742}
743
744var (
745 // defaults maps a protocol buffer struct type to a slice of the fields,
746 // with its scalar fields set to their proto-declared non-zero default values.
747 defaultMu sync.RWMutex
748 defaults = make(map[reflect.Type]defaultMessage)
749
750 int32PtrType = reflect.TypeOf((*int32)(nil))
751)
752
753// defaultMessage represents information about the default values of a message.
754type defaultMessage struct {
755 scalars []scalarField
756 nested []int // struct field index of nested messages
757}
758
759type scalarField struct {
760 index int // struct field index
761 kind reflect.Kind // element type (the T in *T or []T)
762 value interface{} // the proto-declared default value, or nil
763}
764
765// t is a struct type.
766func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
767 sprop := GetProperties(t)
768 for _, prop := range sprop.Prop {
769 fi, ok := sprop.decoderTags.get(prop.Tag)
770 if !ok {
771 // XXX_unrecognized
772 continue
773 }
774 ft := t.Field(fi).Type
775
776 sf, nested, err := fieldDefault(ft, prop)
777 switch {
778 case err != nil:
779 log.Print(err)
780 case nested:
781 dm.nested = append(dm.nested, fi)
782 case sf != nil:
783 sf.index = fi
784 dm.scalars = append(dm.scalars, *sf)
785 }
786 }
787
788 return dm
789}
790
791// fieldDefault returns the scalarField for field type ft.
792// sf will be nil if the field can not have a default.
793// nestedMessage will be true if this is a nested message.
794// Note that sf.index is not set on return.
795func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
796 var canHaveDefault bool
797 switch ft.Kind() {
798 case reflect.Ptr:
799 if ft.Elem().Kind() == reflect.Struct {
800 nestedMessage = true
801 } else {
802 canHaveDefault = true // proto2 scalar field
803 }
804
805 case reflect.Slice:
806 switch ft.Elem().Kind() {
807 case reflect.Ptr:
808 nestedMessage = true // repeated message
809 case reflect.Uint8:
810 canHaveDefault = true // bytes field
811 }
812
813 case reflect.Map:
814 if ft.Elem().Kind() == reflect.Ptr {
815 nestedMessage = true // map with message values
816 }
817 }
818
819 if !canHaveDefault {
820 if nestedMessage {
821 return nil, true, nil
822 }
823 return nil, false, nil
824 }
825
826 // We now know that ft is a pointer or slice.
827 sf = &scalarField{kind: ft.Elem().Kind()}
828
829 // scalar fields without defaults
830 if !prop.HasDefault {
831 return sf, false, nil
832 }
833
834 // a scalar field: either *T or []byte
835 switch ft.Elem().Kind() {
836 case reflect.Bool:
837 x, err := strconv.ParseBool(prop.Default)
838 if err != nil {
839 return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
840 }
841 sf.value = x
842 case reflect.Float32:
843 x, err := strconv.ParseFloat(prop.Default, 32)
844 if err != nil {
845 return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
846 }
847 sf.value = float32(x)
848 case reflect.Float64:
849 x, err := strconv.ParseFloat(prop.Default, 64)
850 if err != nil {
851 return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
852 }
853 sf.value = x
854 case reflect.Int32:
855 x, err := strconv.ParseInt(prop.Default, 10, 32)
856 if err != nil {
857 return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
858 }
859 sf.value = int32(x)
860 case reflect.Int64:
861 x, err := strconv.ParseInt(prop.Default, 10, 64)
862 if err != nil {
863 return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
864 }
865 sf.value = x
866 case reflect.String:
867 sf.value = prop.Default
868 case reflect.Uint8:
869 // []byte (not *uint8)
870 sf.value = []byte(prop.Default)
871 case reflect.Uint32:
872 x, err := strconv.ParseUint(prop.Default, 10, 32)
873 if err != nil {
874 return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
875 }
876 sf.value = uint32(x)
877 case reflect.Uint64:
878 x, err := strconv.ParseUint(prop.Default, 10, 64)
879 if err != nil {
880 return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
881 }
882 sf.value = x
883 default:
884 return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
885 }
886
887 return sf, false, nil
888}
889
890// mapKeys returns a sort.Interface to be used for sorting the map keys.
891// Map fields may have key types of non-float scalars, strings and enums.
892func mapKeys(vs []reflect.Value) sort.Interface {
893 s := mapKeySorter{vs: vs}
894
895 // Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
896 if len(vs) == 0 {
897 return s
898 }
899 switch vs[0].Kind() {
900 case reflect.Int32, reflect.Int64:
901 s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
902 case reflect.Uint32, reflect.Uint64:
903 s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
904 case reflect.Bool:
905 s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
906 case reflect.String:
907 s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
908 default:
909 panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
910 }
911
912 return s
913}
914
915type mapKeySorter struct {
916 vs []reflect.Value
917 less func(a, b reflect.Value) bool
918}
919
920func (s mapKeySorter) Len() int { return len(s.vs) }
921func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
922func (s mapKeySorter) Less(i, j int) bool {
923 return s.less(s.vs[i], s.vs[j])
924}
925
926// isProto3Zero reports whether v is a zero proto3 value.
927func isProto3Zero(v reflect.Value) bool {
928 switch v.Kind() {
929 case reflect.Bool:
930 return !v.Bool()
931 case reflect.Int32, reflect.Int64:
932 return v.Int() == 0
933 case reflect.Uint32, reflect.Uint64:
934 return v.Uint() == 0
935 case reflect.Float32, reflect.Float64:
936 return v.Float() == 0
937 case reflect.String:
938 return v.String() == ""
939 }
940 return false
941}
942
943const (
944 // ProtoPackageIsVersion3 is referenced from generated protocol buffer files
945 // to assert that that code is compatible with this version of the proto package.
946 ProtoPackageIsVersion3 = true
947
948 // ProtoPackageIsVersion2 is referenced from generated protocol buffer files
949 // to assert that that code is compatible with this version of the proto package.
950 ProtoPackageIsVersion2 = true
951
952 // ProtoPackageIsVersion1 is referenced from generated protocol buffer files
953 // to assert that that code is compatible with this version of the proto package.
954 ProtoPackageIsVersion1 = true
955)
956
957// InternalMessageInfo is a type used internally by generated .pb.go files.
958// This type is not intended to be used by non-generated code.
959// This type is not subject to any compatibility guarantee.
960type InternalMessageInfo struct {
961 marshal *marshalInfo
962 unmarshal *unmarshalInfo
963 merge *mergeInfo
964 discard *discardInfo
965}