blob: 30599aaae41fcd5432a8c3552f382d9cef58790e [file] [log] [blame]
Takahiro Suzukid7bf8202020-12-17 20:21:59 +09001/*
2* xxHash - Fast Hash algorithm
3* Copyright (C) 2012-2016, Yann Collet
4*
5* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6*
7* Redistribution and use in source and binary forms, with or without
8* modification, are permitted provided that the following conditions are
9* met:
10*
11* * Redistributions of source code must retain the above copyright
12* notice, this list of conditions and the following disclaimer.
13* * Redistributions in binary form must reproduce the above
14* copyright notice, this list of conditions and the following disclaimer
15* in the documentation and/or other materials provided with the
16* distribution.
17*
18* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29*
30* You can contact the author at :
31* - xxHash homepage: http://www.xxhash.com
32* - xxHash source repository : https://github.com/Cyan4973/xxHash
33*/
34
35
36/* *************************************
37* Tuning parameters
38***************************************/
39/*!XXH_FORCE_MEMORY_ACCESS :
40 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42 * The below switch allow to select different access method for improved performance.
43 * Method 0 (default) : use `memcpy()`. Safe and portable.
44 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47 * It can generate buggy code on targets which do not support unaligned memory accesses.
48 * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49 * See http://stackoverflow.com/a/32095106/646947 for details.
50 * Prefer these methods in priority order (0 > 1 > 2)
51 */
52#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
53# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
54# define XXH_FORCE_MEMORY_ACCESS 2
55# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
56 (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
57# define XXH_FORCE_MEMORY_ACCESS 1
58# endif
59#endif
60
61/*!XXH_ACCEPT_NULL_INPUT_POINTER :
62 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
63 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
64 * By default, this option is disabled. To enable it, uncomment below define :
65 */
66/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
67
68/*!XXH_FORCE_NATIVE_FORMAT :
69 * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
70 * Results are therefore identical for little-endian and big-endian CPU.
71 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
72 * Should endian-independence be of no importance for your application, you may set the #define below to 1,
73 * to improve speed for Big-endian CPU.
74 * This option has no impact on Little_Endian CPU.
75 */
76#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
77# define XXH_FORCE_NATIVE_FORMAT 0
78#endif
79
80/*!XXH_FORCE_ALIGN_CHECK :
81 * This is a minor performance trick, only useful with lots of very small keys.
82 * It means : check for aligned/unaligned input.
83 * The check costs one initial branch per hash; set to 0 when the input data
84 * is guaranteed to be aligned.
85 */
86#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
87# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
88# define XXH_FORCE_ALIGN_CHECK 0
89# else
90# define XXH_FORCE_ALIGN_CHECK 1
91# endif
92#endif
93
94
95/* *************************************
96* Includes & Memory related functions
97***************************************/
98/* Modify the local functions below should you wish to use some other memory routines */
99/* for malloc(), free() */
100#include <stdlib.h>
101#include <stddef.h> /* size_t */
102static void* XXH_malloc(size_t s) { return malloc(s); }
103static void XXH_free (void* p) { free(p); }
104/* for memcpy() */
105#include <string.h>
106static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
107
108#ifndef XXH_STATIC_LINKING_ONLY
109# define XXH_STATIC_LINKING_ONLY
110#endif
111#include "xxhash.h"
112
113
114/* *************************************
115* Compiler Specific Options
116***************************************/
117#if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
118# define INLINE_KEYWORD inline
119#else
120# define INLINE_KEYWORD
121#endif
122
123#if defined(__GNUC__)
124# define FORCE_INLINE_ATTR __attribute__((always_inline))
125#elif defined(_MSC_VER)
126# define FORCE_INLINE_ATTR __forceinline
127#else
128# define FORCE_INLINE_ATTR
129#endif
130
131#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
132
133
134#ifdef _MSC_VER
135# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
136#endif
137
138
139/* *************************************
140* Basic Types
141***************************************/
142#ifndef MEM_MODULE
143# define MEM_MODULE
144# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
145# include <stdint.h>
146 typedef uint8_t BYTE;
147 typedef uint16_t U16;
148 typedef uint32_t U32;
149 typedef int32_t S32;
150 typedef uint64_t U64;
151# else
152 typedef unsigned char BYTE;
153 typedef unsigned short U16;
154 typedef unsigned int U32;
155 typedef signed int S32;
156 typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
157# endif
158#endif
159
160
161#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
162
163/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
164static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
165static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
166
167#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
168
169/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
170/* currently only defined for gcc and icc */
171typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
172
173static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
174static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
175
176#else
177
178/* portable and safe solution. Generally efficient.
179 * see : http://stackoverflow.com/a/32095106/646947
180 */
181
182static U32 XXH_read32(const void* memPtr)
183{
184 U32 val;
185 memcpy(&val, memPtr, sizeof(val));
186 return val;
187}
188
189static U64 XXH_read64(const void* memPtr)
190{
191 U64 val;
192 memcpy(&val, memPtr, sizeof(val));
193 return val;
194}
195
196#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
197
198
199/* ****************************************
200* Compiler-specific Functions and Macros
201******************************************/
202#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
203
204/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
205#if defined(_MSC_VER)
206# define XXH_rotl32(x,r) _rotl(x,r)
207# define XXH_rotl64(x,r) _rotl64(x,r)
208#else
209# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
210# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
211#endif
212
213#if defined(_MSC_VER) /* Visual Studio */
214# define XXH_swap32 _byteswap_ulong
215# define XXH_swap64 _byteswap_uint64
216#elif GCC_VERSION >= 403
217# define XXH_swap32 __builtin_bswap32
218# define XXH_swap64 __builtin_bswap64
219#else
220static U32 XXH_swap32 (U32 x)
221{
222 return ((x << 24) & 0xff000000 ) |
223 ((x << 8) & 0x00ff0000 ) |
224 ((x >> 8) & 0x0000ff00 ) |
225 ((x >> 24) & 0x000000ff );
226}
227static U64 XXH_swap64 (U64 x)
228{
229 return ((x << 56) & 0xff00000000000000ULL) |
230 ((x << 40) & 0x00ff000000000000ULL) |
231 ((x << 24) & 0x0000ff0000000000ULL) |
232 ((x << 8) & 0x000000ff00000000ULL) |
233 ((x >> 8) & 0x00000000ff000000ULL) |
234 ((x >> 24) & 0x0000000000ff0000ULL) |
235 ((x >> 40) & 0x000000000000ff00ULL) |
236 ((x >> 56) & 0x00000000000000ffULL);
237}
238#endif
239
240
241/* *************************************
242* Architecture Macros
243***************************************/
244typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
245
246/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
247#ifndef XXH_CPU_LITTLE_ENDIAN
248 static const int g_one = 1;
249# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
250#endif
251
252
253/* ***************************
254* Memory reads
255*****************************/
256typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
257
258FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
259{
260 if (align==XXH_unaligned)
261 return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
262 else
263 return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
264}
265
266FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
267{
268 return XXH_readLE32_align(ptr, endian, XXH_unaligned);
269}
270
271static U32 XXH_readBE32(const void* ptr)
272{
273 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
274}
275
276FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
277{
278 if (align==XXH_unaligned)
279 return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
280 else
281 return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
282}
283
284FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
285{
286 return XXH_readLE64_align(ptr, endian, XXH_unaligned);
287}
288
289static U64 XXH_readBE64(const void* ptr)
290{
291 return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
292}
293
294
295/* *************************************
296* Macros
297***************************************/
298#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
299
300
301/* *************************************
302* Constants
303***************************************/
304static const U32 PRIME32_1 = 2654435761U;
305static const U32 PRIME32_2 = 2246822519U;
306static const U32 PRIME32_3 = 3266489917U;
307static const U32 PRIME32_4 = 668265263U;
308static const U32 PRIME32_5 = 374761393U;
309
310static const U64 PRIME64_1 = 11400714785074694791ULL;
311static const U64 PRIME64_2 = 14029467366897019727ULL;
312static const U64 PRIME64_3 = 1609587929392839161ULL;
313static const U64 PRIME64_4 = 9650029242287828579ULL;
314static const U64 PRIME64_5 = 2870177450012600261ULL;
315
316XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
317
318
319/* **************************
320* Utils
321****************************/
322XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
323{
324 memcpy(dstState, srcState, sizeof(*dstState));
325}
326
327XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
328{
329 memcpy(dstState, srcState, sizeof(*dstState));
330}
331
332
333/* ***************************
334* Simple Hash Functions
335*****************************/
336
337static U32 XXH32_round(U32 seed, U32 input)
338{
339 seed += input * PRIME32_2;
340 seed = XXH_rotl32(seed, 13);
341 seed *= PRIME32_1;
342 return seed;
343}
344
345FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
346{
347 const BYTE* p = (const BYTE*)input;
348 const BYTE* bEnd = p + len;
349 U32 h32;
350#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
351
352#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
353 if (p==NULL) {
354 len=0;
355 bEnd=p=(const BYTE*)(size_t)16;
356 }
357#endif
358
359 if (len>=16) {
360 const BYTE* const limit = bEnd - 16;
361 U32 v1 = seed + PRIME32_1 + PRIME32_2;
362 U32 v2 = seed + PRIME32_2;
363 U32 v3 = seed + 0;
364 U32 v4 = seed - PRIME32_1;
365
366 do {
367 v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
368 v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
369 v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
370 v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
371 } while (p<=limit);
372
373 h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
374 } else {
375 h32 = seed + PRIME32_5;
376 }
377
378 h32 += (U32) len;
379
380 while (p+4<=bEnd) {
381 h32 += XXH_get32bits(p) * PRIME32_3;
382 h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
383 p+=4;
384 }
385
386 while (p<bEnd) {
387 h32 += (*p) * PRIME32_5;
388 h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
389 p++;
390 }
391
392 h32 ^= h32 >> 15;
393 h32 *= PRIME32_2;
394 h32 ^= h32 >> 13;
395 h32 *= PRIME32_3;
396 h32 ^= h32 >> 16;
397
398 return h32;
399}
400
401
402XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
403{
404#if 0
405 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
406 XXH32_CREATESTATE_STATIC(state);
407 XXH32_reset(state, seed);
408 XXH32_update(state, input, len);
409 return XXH32_digest(state);
410#else
411 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
412
413 if (XXH_FORCE_ALIGN_CHECK) {
414 if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
415 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
416 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
417 else
418 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
419 } }
420
421 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
422 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
423 else
424 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
425#endif
426}
427
428
429static U64 XXH64_round(U64 acc, U64 input)
430{
431 acc += input * PRIME64_2;
432 acc = XXH_rotl64(acc, 31);
433 acc *= PRIME64_1;
434 return acc;
435}
436
437static U64 XXH64_mergeRound(U64 acc, U64 val)
438{
439 val = XXH64_round(0, val);
440 acc ^= val;
441 acc = acc * PRIME64_1 + PRIME64_4;
442 return acc;
443}
444
445FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
446{
447 const BYTE* p = (const BYTE*)input;
448 const BYTE* const bEnd = p + len;
449 U64 h64;
450#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
451
452#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
453 if (p==NULL) {
454 len=0;
455 bEnd=p=(const BYTE*)(size_t)32;
456 }
457#endif
458
459 if (len>=32) {
460 const BYTE* const limit = bEnd - 32;
461 U64 v1 = seed + PRIME64_1 + PRIME64_2;
462 U64 v2 = seed + PRIME64_2;
463 U64 v3 = seed + 0;
464 U64 v4 = seed - PRIME64_1;
465
466 do {
467 v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
468 v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
469 v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
470 v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
471 } while (p<=limit);
472
473 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
474 h64 = XXH64_mergeRound(h64, v1);
475 h64 = XXH64_mergeRound(h64, v2);
476 h64 = XXH64_mergeRound(h64, v3);
477 h64 = XXH64_mergeRound(h64, v4);
478
479 } else {
480 h64 = seed + PRIME64_5;
481 }
482
483 h64 += (U64) len;
484
485 while (p+8<=bEnd) {
486 U64 const k1 = XXH64_round(0, XXH_get64bits(p));
487 h64 ^= k1;
488 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
489 p+=8;
490 }
491
492 if (p+4<=bEnd) {
493 h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
494 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
495 p+=4;
496 }
497
498 while (p<bEnd) {
499 h64 ^= (*p) * PRIME64_5;
500 h64 = XXH_rotl64(h64, 11) * PRIME64_1;
501 p++;
502 }
503
504 h64 ^= h64 >> 33;
505 h64 *= PRIME64_2;
506 h64 ^= h64 >> 29;
507 h64 *= PRIME64_3;
508 h64 ^= h64 >> 32;
509
510 return h64;
511}
512
513
514XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
515{
516#if 0
517 /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
518 XXH64_CREATESTATE_STATIC(state);
519 XXH64_reset(state, seed);
520 XXH64_update(state, input, len);
521 return XXH64_digest(state);
522#else
523 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
524
525 if (XXH_FORCE_ALIGN_CHECK) {
526 if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
527 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
528 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
529 else
530 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
531 } }
532
533 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
534 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
535 else
536 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
537#endif
538}
539
540
541/* **************************************************
542* Advanced Hash Functions
543****************************************************/
544
545XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
546{
547 return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
548}
549XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
550{
551 XXH_free(statePtr);
552 return XXH_OK;
553}
554
555XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
556{
557 return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
558}
559XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
560{
561 XXH_free(statePtr);
562 return XXH_OK;
563}
564
565
566/*** Hash feed ***/
567
568XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
569{
570 XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
571 memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
572 state.v1 = seed + PRIME32_1 + PRIME32_2;
573 state.v2 = seed + PRIME32_2;
574 state.v3 = seed + 0;
575 state.v4 = seed - PRIME32_1;
576 memcpy(statePtr, &state, sizeof(state));
577 return XXH_OK;
578}
579
580
581XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
582{
583 XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
584 memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
585 state.v1 = seed + PRIME64_1 + PRIME64_2;
586 state.v2 = seed + PRIME64_2;
587 state.v3 = seed + 0;
588 state.v4 = seed - PRIME64_1;
589 memcpy(statePtr, &state, sizeof(state));
590 return XXH_OK;
591}
592
593
594FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
595{
596 const BYTE* p = (const BYTE*)input;
597 const BYTE* const bEnd = p + len;
598
599#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
600 if (input==NULL) return XXH_ERROR;
601#endif
602
603 state->total_len_32 += (unsigned)len;
604 state->large_len |= (len>=16) | (state->total_len_32>=16);
605
606 if (state->memsize + len < 16) { /* fill in tmp buffer */
607 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
608 state->memsize += (unsigned)len;
609 return XXH_OK;
610 }
611
612 if (state->memsize) { /* some data left from previous update */
613 XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
614 { const U32* p32 = state->mem32;
615 state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
616 state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
617 state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
618 state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
619 }
620 p += 16-state->memsize;
621 state->memsize = 0;
622 }
623
624 if (p <= bEnd-16) {
625 const BYTE* const limit = bEnd - 16;
626 U32 v1 = state->v1;
627 U32 v2 = state->v2;
628 U32 v3 = state->v3;
629 U32 v4 = state->v4;
630
631 do {
632 v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
633 v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
634 v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
635 v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
636 } while (p<=limit);
637
638 state->v1 = v1;
639 state->v2 = v2;
640 state->v3 = v3;
641 state->v4 = v4;
642 }
643
644 if (p < bEnd) {
645 XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
646 state->memsize = (unsigned)(bEnd-p);
647 }
648
649 return XXH_OK;
650}
651
652XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
653{
654 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
655
656 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
657 return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
658 else
659 return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
660}
661
662
663
664FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
665{
666 const BYTE * p = (const BYTE*)state->mem32;
667 const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
668 U32 h32;
669
670 if (state->large_len) {
671 h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
672 } else {
673 h32 = state->v3 /* == seed */ + PRIME32_5;
674 }
675
676 h32 += state->total_len_32;
677
678 while (p+4<=bEnd) {
679 h32 += XXH_readLE32(p, endian) * PRIME32_3;
680 h32 = XXH_rotl32(h32, 17) * PRIME32_4;
681 p+=4;
682 }
683
684 while (p<bEnd) {
685 h32 += (*p) * PRIME32_5;
686 h32 = XXH_rotl32(h32, 11) * PRIME32_1;
687 p++;
688 }
689
690 h32 ^= h32 >> 15;
691 h32 *= PRIME32_2;
692 h32 ^= h32 >> 13;
693 h32 *= PRIME32_3;
694 h32 ^= h32 >> 16;
695
696 return h32;
697}
698
699
700XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
701{
702 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
703
704 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
705 return XXH32_digest_endian(state_in, XXH_littleEndian);
706 else
707 return XXH32_digest_endian(state_in, XXH_bigEndian);
708}
709
710
711
712/* **** XXH64 **** */
713
714FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
715{
716 const BYTE* p = (const BYTE*)input;
717 const BYTE* const bEnd = p + len;
718
719#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
720 if (input==NULL) return XXH_ERROR;
721#endif
722
723 state->total_len += len;
724
725 if (state->memsize + len < 32) { /* fill in tmp buffer */
726 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
727 state->memsize += (U32)len;
728 return XXH_OK;
729 }
730
731 if (state->memsize) { /* tmp buffer is full */
732 XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
733 state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
734 state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
735 state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
736 state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
737 p += 32-state->memsize;
738 state->memsize = 0;
739 }
740
741 if (p+32 <= bEnd) {
742 const BYTE* const limit = bEnd - 32;
743 U64 v1 = state->v1;
744 U64 v2 = state->v2;
745 U64 v3 = state->v3;
746 U64 v4 = state->v4;
747
748 do {
749 v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
750 v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
751 v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
752 v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
753 } while (p<=limit);
754
755 state->v1 = v1;
756 state->v2 = v2;
757 state->v3 = v3;
758 state->v4 = v4;
759 }
760
761 if (p < bEnd) {
762 XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
763 state->memsize = (unsigned)(bEnd-p);
764 }
765
766 return XXH_OK;
767}
768
769XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
770{
771 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
772
773 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
774 return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
775 else
776 return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
777}
778
779
780
781FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
782{
783 const BYTE * p = (const BYTE*)state->mem64;
784 const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
785 U64 h64;
786
787 if (state->total_len >= 32) {
788 U64 const v1 = state->v1;
789 U64 const v2 = state->v2;
790 U64 const v3 = state->v3;
791 U64 const v4 = state->v4;
792
793 h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
794 h64 = XXH64_mergeRound(h64, v1);
795 h64 = XXH64_mergeRound(h64, v2);
796 h64 = XXH64_mergeRound(h64, v3);
797 h64 = XXH64_mergeRound(h64, v4);
798 } else {
799 h64 = state->v3 + PRIME64_5;
800 }
801
802 h64 += (U64) state->total_len;
803
804 while (p+8<=bEnd) {
805 U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
806 h64 ^= k1;
807 h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
808 p+=8;
809 }
810
811 if (p+4<=bEnd) {
812 h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
813 h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
814 p+=4;
815 }
816
817 while (p<bEnd) {
818 h64 ^= (*p) * PRIME64_5;
819 h64 = XXH_rotl64(h64, 11) * PRIME64_1;
820 p++;
821 }
822
823 h64 ^= h64 >> 33;
824 h64 *= PRIME64_2;
825 h64 ^= h64 >> 29;
826 h64 *= PRIME64_3;
827 h64 ^= h64 >> 32;
828
829 return h64;
830}
831
832
833XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
834{
835 XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
836
837 if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
838 return XXH64_digest_endian(state_in, XXH_littleEndian);
839 else
840 return XXH64_digest_endian(state_in, XXH_bigEndian);
841}
842
843
844/* **************************
845* Canonical representation
846****************************/
847
848/*! Default XXH result types are basic unsigned 32 and 64 bits.
849* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
850* These functions allow transformation of hash result into and from its canonical format.
851* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
852*/
853
854XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
855{
856 XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
857 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
858 memcpy(dst, &hash, sizeof(*dst));
859}
860
861XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
862{
863 XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
864 if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
865 memcpy(dst, &hash, sizeof(*dst));
866}
867
868XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
869{
870 return XXH_readBE32(src);
871}
872
873XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
874{
875 return XXH_readBE64(src);
876}