blob: 33f61398a1236d7076dccc90342bcedeec1c111c [file] [log] [blame]
Naveen Sampath04696f72022-06-13 15:19:14 +05301// Copyright 2014 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package http2
6
7import (
8 "bytes"
9 "fmt"
10 "log"
11 "net/http"
12 "net/url"
13
14 "golang.org/x/net/http/httpguts"
15 "golang.org/x/net/http2/hpack"
16)
17
18// writeFramer is implemented by any type that is used to write frames.
19type writeFramer interface {
20 writeFrame(writeContext) error
21
22 // staysWithinBuffer reports whether this writer promises that
23 // it will only write less than or equal to size bytes, and it
24 // won't Flush the write context.
25 staysWithinBuffer(size int) bool
26}
27
28// writeContext is the interface needed by the various frame writer
29// types below. All the writeFrame methods below are scheduled via the
30// frame writing scheduler (see writeScheduler in writesched.go).
31//
32// This interface is implemented by *serverConn.
33//
34// TODO: decide whether to a) use this in the client code (which didn't
35// end up using this yet, because it has a simpler design, not
36// currently implementing priorities), or b) delete this and
37// make the server code a bit more concrete.
38type writeContext interface {
39 Framer() *Framer
40 Flush() error
41 CloseConn() error
42 // HeaderEncoder returns an HPACK encoder that writes to the
43 // returned buffer.
44 HeaderEncoder() (*hpack.Encoder, *bytes.Buffer)
45}
46
47// writeEndsStream reports whether w writes a frame that will transition
48// the stream to a half-closed local state. This returns false for RST_STREAM,
49// which closes the entire stream (not just the local half).
50func writeEndsStream(w writeFramer) bool {
51 switch v := w.(type) {
52 case *writeData:
53 return v.endStream
54 case *writeResHeaders:
55 return v.endStream
56 case nil:
57 // This can only happen if the caller reuses w after it's
58 // been intentionally nil'ed out to prevent use. Keep this
59 // here to catch future refactoring breaking it.
60 panic("writeEndsStream called on nil writeFramer")
61 }
62 return false
63}
64
65type flushFrameWriter struct{}
66
67func (flushFrameWriter) writeFrame(ctx writeContext) error {
68 return ctx.Flush()
69}
70
71func (flushFrameWriter) staysWithinBuffer(max int) bool { return false }
72
73type writeSettings []Setting
74
75func (s writeSettings) staysWithinBuffer(max int) bool {
76 const settingSize = 6 // uint16 + uint32
77 return frameHeaderLen+settingSize*len(s) <= max
78
79}
80
81func (s writeSettings) writeFrame(ctx writeContext) error {
82 return ctx.Framer().WriteSettings([]Setting(s)...)
83}
84
85type writeGoAway struct {
86 maxStreamID uint32
87 code ErrCode
88}
89
90func (p *writeGoAway) writeFrame(ctx writeContext) error {
91 err := ctx.Framer().WriteGoAway(p.maxStreamID, p.code, nil)
92 ctx.Flush() // ignore error: we're hanging up on them anyway
93 return err
94}
95
96func (*writeGoAway) staysWithinBuffer(max int) bool { return false } // flushes
97
98type writeData struct {
99 streamID uint32
100 p []byte
101 endStream bool
102}
103
104func (w *writeData) String() string {
105 return fmt.Sprintf("writeData(stream=%d, p=%d, endStream=%v)", w.streamID, len(w.p), w.endStream)
106}
107
108func (w *writeData) writeFrame(ctx writeContext) error {
109 return ctx.Framer().WriteData(w.streamID, w.endStream, w.p)
110}
111
112func (w *writeData) staysWithinBuffer(max int) bool {
113 return frameHeaderLen+len(w.p) <= max
114}
115
116// handlerPanicRST is the message sent from handler goroutines when
117// the handler panics.
118type handlerPanicRST struct {
119 StreamID uint32
120}
121
122func (hp handlerPanicRST) writeFrame(ctx writeContext) error {
123 return ctx.Framer().WriteRSTStream(hp.StreamID, ErrCodeInternal)
124}
125
126func (hp handlerPanicRST) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
127
128func (se StreamError) writeFrame(ctx writeContext) error {
129 return ctx.Framer().WriteRSTStream(se.StreamID, se.Code)
130}
131
132func (se StreamError) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
133
134type writePingAck struct{ pf *PingFrame }
135
136func (w writePingAck) writeFrame(ctx writeContext) error {
137 return ctx.Framer().WritePing(true, w.pf.Data)
138}
139
140func (w writePingAck) staysWithinBuffer(max int) bool { return frameHeaderLen+len(w.pf.Data) <= max }
141
142type writeSettingsAck struct{}
143
144func (writeSettingsAck) writeFrame(ctx writeContext) error {
145 return ctx.Framer().WriteSettingsAck()
146}
147
148func (writeSettingsAck) staysWithinBuffer(max int) bool { return frameHeaderLen <= max }
149
150// splitHeaderBlock splits headerBlock into fragments so that each fragment fits
151// in a single frame, then calls fn for each fragment. firstFrag/lastFrag are true
152// for the first/last fragment, respectively.
153func splitHeaderBlock(ctx writeContext, headerBlock []byte, fn func(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error) error {
154 // For now we're lazy and just pick the minimum MAX_FRAME_SIZE
155 // that all peers must support (16KB). Later we could care
156 // more and send larger frames if the peer advertised it, but
157 // there's little point. Most headers are small anyway (so we
158 // generally won't have CONTINUATION frames), and extra frames
159 // only waste 9 bytes anyway.
160 const maxFrameSize = 16384
161
162 first := true
163 for len(headerBlock) > 0 {
164 frag := headerBlock
165 if len(frag) > maxFrameSize {
166 frag = frag[:maxFrameSize]
167 }
168 headerBlock = headerBlock[len(frag):]
169 if err := fn(ctx, frag, first, len(headerBlock) == 0); err != nil {
170 return err
171 }
172 first = false
173 }
174 return nil
175}
176
177// writeResHeaders is a request to write a HEADERS and 0+ CONTINUATION frames
178// for HTTP response headers or trailers from a server handler.
179type writeResHeaders struct {
180 streamID uint32
181 httpResCode int // 0 means no ":status" line
182 h http.Header // may be nil
183 trailers []string // if non-nil, which keys of h to write. nil means all.
184 endStream bool
185
186 date string
187 contentType string
188 contentLength string
189}
190
191func encKV(enc *hpack.Encoder, k, v string) {
192 if VerboseLogs {
193 log.Printf("http2: server encoding header %q = %q", k, v)
194 }
195 enc.WriteField(hpack.HeaderField{Name: k, Value: v})
196}
197
198func (w *writeResHeaders) staysWithinBuffer(max int) bool {
199 // TODO: this is a common one. It'd be nice to return true
200 // here and get into the fast path if we could be clever and
201 // calculate the size fast enough, or at least a conservative
202 // upper bound that usually fires. (Maybe if w.h and
203 // w.trailers are nil, so we don't need to enumerate it.)
204 // Otherwise I'm afraid that just calculating the length to
205 // answer this question would be slower than the ~2µs benefit.
206 return false
207}
208
209func (w *writeResHeaders) writeFrame(ctx writeContext) error {
210 enc, buf := ctx.HeaderEncoder()
211 buf.Reset()
212
213 if w.httpResCode != 0 {
214 encKV(enc, ":status", httpCodeString(w.httpResCode))
215 }
216
217 encodeHeaders(enc, w.h, w.trailers)
218
219 if w.contentType != "" {
220 encKV(enc, "content-type", w.contentType)
221 }
222 if w.contentLength != "" {
223 encKV(enc, "content-length", w.contentLength)
224 }
225 if w.date != "" {
226 encKV(enc, "date", w.date)
227 }
228
229 headerBlock := buf.Bytes()
230 if len(headerBlock) == 0 && w.trailers == nil {
231 panic("unexpected empty hpack")
232 }
233
234 return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
235}
236
237func (w *writeResHeaders) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
238 if firstFrag {
239 return ctx.Framer().WriteHeaders(HeadersFrameParam{
240 StreamID: w.streamID,
241 BlockFragment: frag,
242 EndStream: w.endStream,
243 EndHeaders: lastFrag,
244 })
245 } else {
246 return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
247 }
248}
249
250// writePushPromise is a request to write a PUSH_PROMISE and 0+ CONTINUATION frames.
251type writePushPromise struct {
252 streamID uint32 // pusher stream
253 method string // for :method
254 url *url.URL // for :scheme, :authority, :path
255 h http.Header
256
257 // Creates an ID for a pushed stream. This runs on serveG just before
258 // the frame is written. The returned ID is copied to promisedID.
259 allocatePromisedID func() (uint32, error)
260 promisedID uint32
261}
262
263func (w *writePushPromise) staysWithinBuffer(max int) bool {
264 // TODO: see writeResHeaders.staysWithinBuffer
265 return false
266}
267
268func (w *writePushPromise) writeFrame(ctx writeContext) error {
269 enc, buf := ctx.HeaderEncoder()
270 buf.Reset()
271
272 encKV(enc, ":method", w.method)
273 encKV(enc, ":scheme", w.url.Scheme)
274 encKV(enc, ":authority", w.url.Host)
275 encKV(enc, ":path", w.url.RequestURI())
276 encodeHeaders(enc, w.h, nil)
277
278 headerBlock := buf.Bytes()
279 if len(headerBlock) == 0 {
280 panic("unexpected empty hpack")
281 }
282
283 return splitHeaderBlock(ctx, headerBlock, w.writeHeaderBlock)
284}
285
286func (w *writePushPromise) writeHeaderBlock(ctx writeContext, frag []byte, firstFrag, lastFrag bool) error {
287 if firstFrag {
288 return ctx.Framer().WritePushPromise(PushPromiseParam{
289 StreamID: w.streamID,
290 PromiseID: w.promisedID,
291 BlockFragment: frag,
292 EndHeaders: lastFrag,
293 })
294 } else {
295 return ctx.Framer().WriteContinuation(w.streamID, lastFrag, frag)
296 }
297}
298
299type write100ContinueHeadersFrame struct {
300 streamID uint32
301}
302
303func (w write100ContinueHeadersFrame) writeFrame(ctx writeContext) error {
304 enc, buf := ctx.HeaderEncoder()
305 buf.Reset()
306 encKV(enc, ":status", "100")
307 return ctx.Framer().WriteHeaders(HeadersFrameParam{
308 StreamID: w.streamID,
309 BlockFragment: buf.Bytes(),
310 EndStream: false,
311 EndHeaders: true,
312 })
313}
314
315func (w write100ContinueHeadersFrame) staysWithinBuffer(max int) bool {
316 // Sloppy but conservative:
317 return 9+2*(len(":status")+len("100")) <= max
318}
319
320type writeWindowUpdate struct {
321 streamID uint32 // or 0 for conn-level
322 n uint32
323}
324
325func (wu writeWindowUpdate) staysWithinBuffer(max int) bool { return frameHeaderLen+4 <= max }
326
327func (wu writeWindowUpdate) writeFrame(ctx writeContext) error {
328 return ctx.Framer().WriteWindowUpdate(wu.streamID, wu.n)
329}
330
331// encodeHeaders encodes an http.Header. If keys is not nil, then (k, h[k])
332// is encoded only if k is in keys.
333func encodeHeaders(enc *hpack.Encoder, h http.Header, keys []string) {
334 if keys == nil {
335 sorter := sorterPool.Get().(*sorter)
336 // Using defer here, since the returned keys from the
337 // sorter.Keys method is only valid until the sorter
338 // is returned:
339 defer sorterPool.Put(sorter)
340 keys = sorter.Keys(h)
341 }
342 for _, k := range keys {
343 vv := h[k]
344 k, ascii := lowerHeader(k)
345 if !ascii {
346 // Skip writing invalid headers. Per RFC 7540, Section 8.1.2, header
347 // field names have to be ASCII characters (just as in HTTP/1.x).
348 continue
349 }
350 if !validWireHeaderFieldName(k) {
351 // Skip it as backup paranoia. Per
352 // golang.org/issue/14048, these should
353 // already be rejected at a higher level.
354 continue
355 }
356 isTE := k == "transfer-encoding"
357 for _, v := range vv {
358 if !httpguts.ValidHeaderFieldValue(v) {
359 // TODO: return an error? golang.org/issue/14048
360 // For now just omit it.
361 continue
362 }
363 // TODO: more of "8.1.2.2 Connection-Specific Header Fields"
364 if isTE && v != "trailers" {
365 continue
366 }
367 encKV(enc, k, v)
368 }
369 }
370}