blob: 06f4628c53b41fd1bef6b81613867236c279ae19 [file] [log] [blame]
/*
* Copyright 2018-present Open Networking Foundation
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package main
import (
//"os"
"fmt"
"time"
"regexp"
"errors"
"strconv"
//"io/ioutil"
//"encoding/json"
"k8s.io/client-go/rest"
"google.golang.org/grpc"
"golang.org/x/net/context"
"k8s.io/client-go/kubernetes"
"github.com/golang/protobuf/ptypes"
//"k8s.io/apimachinery/pkg/api/errors"
"github.com/opencord/voltha-go/common/log"
kafka "github.com/opencord/voltha-go/kafka"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
empty "github.com/golang/protobuf/ptypes/empty"
vpb "github.com/opencord/voltha-go/protos/voltha"
pb "github.com/opencord/voltha-go/protos/afrouter"
ic "github.com/opencord/voltha-go/protos/inter_container"
)
type configConn struct {
Server string `json:"Server"`
Cluster string `json:"Cluster"`
Backend string `json:"Backend"`
connections map[string]connection
}
type connection struct {
Name string `json:"Connection"`
Addr string `json:"Addr"`
Port uint64 `json:"Port"`
}
type rwPod struct {
name string
ipAddr string
node string
devIds map[string]struct{}
backend string
connection string
}
type podTrack struct {
pod *rwPod
dn bool
}
// Topic is affinityRouter
// port: 9092
func newKafkaClient(clientType string, host string, port int, instanceID string) (kafka.Client, error) {
log.Infow("kafka-client-type", log.Fields{"client": clientType})
switch clientType {
case "sarama":
return kafka.NewSaramaClient(
kafka.Host(host),
kafka.Port(port),
kafka.ConsumerType(kafka.GroupCustomer),
kafka.ProducerReturnOnErrors(true),
kafka.ProducerReturnOnSuccess(true),
kafka.ProducerMaxRetries(6),
kafka.NumPartitions(3),
kafka.ConsumerGroupName(instanceID),
kafka.ConsumerGroupPrefix(instanceID),
kafka.AutoCreateTopic(false),
kafka.ProducerFlushFrequency(5),
kafka.ProducerRetryBackoff(time.Millisecond*30)), nil
}
return nil, errors.New("unsupported-client-type")
}
func k8sClientSet() *kubernetes.Clientset {
// creates the in-cluster config
config, err := rest.InClusterConfig()
if err != nil {
panic(err.Error())
}
// creates the clientset
clientset, err := kubernetes.NewForConfig(config)
if err != nil {
panic(err.Error())
}
return clientset
}
func connect(addr string) (*grpc.ClientConn, error) {
for ctr :=0 ; ctr < 100; ctr++ {
log.Debug("Trying to connect to %s", addr)
conn, err := grpc.Dial(addr, grpc.WithInsecure())
if err != nil {
log.Debugf("Attempt to connect failed, retrying %v:", err)
} else {
log.Debugf("Connection succeeded")
return conn,err
}
time.Sleep(10 * time.Second)
}
log.Debugf("Too many connection attempts, giving up!")
return nil,errors.New("Timeout attempting to conect")
}
func getRwPods(cs *kubernetes.Clientset, coreFilter * regexp.Regexp) []*rwPod {
var rtrn []*rwPod
pods, err := cs.CoreV1().Pods("").List(metav1.ListOptions{})
if err != nil {
panic(err.Error())
}
log.Debugf("There are a total of %d pods in the cluster\n", len(pods.Items))
for k,v := range pods.Items {
if v.Namespace == "voltha" && coreFilter.MatchString(v.Name) {
fmt.Printf("Namespace: %s, PodName: %s, PodIP: %s, Host: %s\n", v.Namespace, v.Name,
v.Status.PodIP, v.Spec.NodeName)
//fmt.Printf("Pod %v,%v\n\n\n",k,v)
_ = k
// Add this pod to the core structure.
rtrn = append(rtrn, &rwPod{name:v.Name,ipAddr:v.Status.PodIP,node:v.Spec.NodeName,
devIds:make(map[string]struct{}), backend:"", connection:""})
}
}
return rtrn
}
func queryDevices(pods []*rwPod) {
for pk,pv := range pods {
// Open a connection to the pod
// port 50057
conn, err := connect(pv.ipAddr+":50057")
if (err != nil) {
log.Debugf("Could not query devices from %s, could not connect", pv.name)
continue
}
client := vpb.NewVolthaServiceClient(conn)
devs,err := client.ListDevices(context.Background(), &empty.Empty{})
if err != nil {
log.Error(err)
conn.Close()
continue
}
for _,dv := range devs.Items {
pods[pk].devIds[dv.Id]=struct{}{}
}
conn.Close()
}
}
func allEmpty(pods []*rwPod) bool {
for k,_ := range pods {
if len(pods[k].devIds) != 0 {
return false
}
}
return true
}
//func groupEmptyCores(pods []*rwPod) [][]*rwPod {
// return [][]*rwPod{}
//}
//func groupPods(pods []*rwPod) [][]*rwPod {
// if allEmpty(pods) == true {
// return groupEmptyCores(pods)
// } else {
// return groupPopulatedCores(pods)
// }
//}
func rmPod(pods []*rwPod, idx int) []*rwPod {
return append(pods[:idx],pods[idx+1:]...)
}
func groupIntersectingPods1(pods []*rwPod, podCt int) ([][]*rwPod,[]*rwPod) {
var rtrn [][]*rwPod
var out []*rwPod
for {
if len(pods) == 0 {
break
}
if len(pods[0].devIds) == 0 { // Ignore pods with no devices
////log.Debugf("%s empty pod", pd[k].pod.name)
out = append(out, pods[0])
pods = rmPod(pods, 0)
continue
}
// Start a pod group with this pod
var grp []*rwPod
grp = append(grp, pods[0])
pods = rmPod(pods,0)
//log.Debugf("Creating new group %s", pd[k].pod.name)
// Find the peer pod based on device overlap
// It's ok if one isn't found, an empty one will be used instead
for k,_ := range pods {
if len(pods[k].devIds) == 0 { // Skip pods with no devices
//log.Debugf("%s empty pod", pd[k1].pod.name)
continue
}
if intersect(grp[0].devIds, pods[k].devIds) == true {
//log.Debugf("intersection found %s:%s", pd[k].pod.name, pd[k1].pod.name)
if grp[0].node == pods[k].node {
// This should never happen
log.Errorf("pods %s and %s intersect and are on the same server!! Not pairing",
grp[0].name, pods[k].name)
continue
}
grp = append(grp, pods[k])
pods = rmPod(pods, k)
break
}
}
rtrn = append(rtrn, grp)
//log.Debugf("Added group %s", grp[0].name)
// Check if the number of groups = half the pods, if so all groups are started.
if len(rtrn) == podCt >> 1 {
// Append any remaining pods to out
out = append(out,pods[0:]...)
break
}
}
return rtrn,out
}
func groupIntersectingPods(pd []*podTrack) ([][]*rwPod,[]*podTrack) {
var rtrn [][]*rwPod
for k,_ := range pd {
if pd[k].dn == true { // Already processed?
//log.Debugf("%s already processed", pd[k].pod.name)
continue
}
if len(pd[k].pod.devIds) == 0 { // Ignore pods with no devices
////log.Debugf("%s empty pod", pd[k].pod.name)
continue
}
// Start a pod group with this pod
var grp []*rwPod
grp = append(grp, pd[k].pod)
pd[k].dn = true
//log.Debugf("Creating new group %s", pd[k].pod.name)
// Find the peer pod based on device overlap
// It's ok if one isn't found, an empty one will be used instead
for k1,_ := range pd {
if pd[k1].dn == true { // Skip over eliminated pods
//log.Debugf("%s eliminated pod", pd[k1].pod.name)
continue
}
if len(pd[k1].pod.devIds) == 0 { // Skip pods with no devices
//log.Debugf("%s empty pod", pd[k1].pod.name)
continue
}
if intersect(pd[k].pod.devIds, pd[k1].pod.devIds) == true {
//log.Debugf("intersection found %s:%s", pd[k].pod.name, pd[k1].pod.name)
if pd[k].pod.node == pd[k1].pod.node {
// This should never happen
log.Errorf("pods %s and %s intersect and are on the same server!! Not pairing",
pd[k].pod.name, pd[k1].pod.name)
continue
}
pd[k1].dn = true
grp = append(grp, pd[k1].pod)
break
}
}
rtrn = append(rtrn, grp)
//log.Debugf("Added group %s", grp[0].name)
// Check if the number of groups = half the pods, if so all groups are started.
if len(rtrn) == len(pd) >> 1 {
break
}
}
return rtrn,pd
}
func unallocPodCount(pd []*podTrack) int {
var rtrn int = 0
for _,v := range pd {
if v.dn == false {
rtrn++
}
}
return rtrn
}
func sameNode(pod *rwPod, grps [][]*rwPod) bool {
for _,v := range grps {
if v[0].node == pod.node {
return true
}
if len(v) == 2 && v[1].node == pod.node {
return true
}
}
return false
}
func startRemainingGroups1(grps [][]*rwPod, pods []*rwPod, podCt int) ([][]*rwPod, []*rwPod) {
var grp []*rwPod
for k,_ := range pods {
if sameNode(pods[k], grps) {
continue
}
grp = []*rwPod{}
grp = append(grp, pods[k])
pods = rmPod(pods, k)
grps = append(grps, grp)
if len(grps) == podCt >> 1 {
break
}
}
return grps, pods
}
func startRemainingGroups(grps [][]*rwPod, pd []*podTrack) ([][]*rwPod, []*podTrack) {
var grp []*rwPod
for k,_ := range pd {
if sameNode(pd[k].pod, grps) == true {
continue
}
grp = append(grp, pd[k].pod)
grps = append(grps, grp)
pd[k].dn = true
if len(grps) == len(pd) >> 1 {
break
}
}
return grps, pd
}
func hasSingleSecondNode(grp []*rwPod) bool {
var srvrs map[string]struct{} = make(map[string]struct{})
for k,_ := range grp {
if k == 0 {
continue // Ignore the first item
}
srvrs[grp[k].node] = struct{}{}
}
if len(srvrs) == 1 {
return true
}
return false
}
func addNode(grps [][]*rwPod, idx *rwPod, item *rwPod) [][]*rwPod {
for k,_ := range grps {
if grps[k][0].name == idx.name {
grps[k] = append(grps[k], item)
return grps
}
}
// TODO: Error checking required here.
return grps
}
func removeNode(grps [][]*rwPod, item *rwPod) [][]*rwPod {
for k,_ := range grps {
for k1,_ := range grps[k] {
if grps[k][k1].name == item.name {
grps[k] = append(grps[k][:k1],grps[k][k1+1:]...)
break
}
}
}
return grps
}
func groupRemainingPods1(grps [][]*rwPod, pods []*rwPod) [][]*rwPod {
var lgrps [][]*rwPod
// All groups must be started when this function is called.
// Copy incomplete groups
for k,_ := range grps {
if len(grps[k]) != 2 {
lgrps = append(lgrps, grps[k])
}
}
// Add all pairing candidates to each started group.
for k,_ := range pods {
for k2,_ := range lgrps {
if lgrps[k2][0].node != pods[k].node {
lgrps[k2] = append(lgrps[k2], pods[k])
}
}
}
//TODO: If any member of lgrps doesn't have at least 2
// nodes something is wrong. Check for that here
for {
for { // Address groups with only a single server choice
var ssn bool = false
for k,_ := range lgrps {
// Now if any of the groups only have a single
// node as the choice for the second member
// address that one first.
if hasSingleSecondNode(lgrps[k]) == true {
ssn = true
// Add this pairing to the groups
grps = addNode(grps, lgrps[k][0], lgrps[k][1])
// Since this node is now used, remove it from all
// remaining tenative groups
lgrps = removeNode(lgrps, lgrps[k][1])
// Now remove this group completely since
// it's been addressed
lgrps = append(lgrps[:k],lgrps[k+1:]...)
break
}
}
if ssn == false {
break
}
}
// Now adress one of the remaining groups
if len(lgrps) == 0 {
break // Nothing left to do, exit the loop
}
grps = addNode(grps, lgrps[0][0], lgrps[0][1])
lgrps = removeNode(lgrps, lgrps[0][1])
lgrps = append(lgrps[:0],lgrps[1:]...)
}
return grps
}
func groupRemainingPods(grps [][]*rwPod, pd []*podTrack) [][]*rwPod{
var lgrps [][]*rwPod
// All groups must be started when this function is called.
// Copy incomplete groups
for k,_ := range grps {
if len(grps[k]) != 2 {
lgrps = append(lgrps, grps[k])
}
}
// Add all pairing candidates to each started group.
for k,_ := range pd {
if pd[k].dn == true {
continue
}
for k2,_ := range lgrps {
if lgrps[k2][0].node != pd[k].pod.node {
lgrps[k2] = append(lgrps[k2], pd[k].pod)
}
}
}
//TODO: If any member of lgrps doesn't have at least 2
// nodes something is wrong. Check for that here
for {
for { // Address groups with only a single server choice
var ssn bool = false
for k,_ := range lgrps {
// Now if any of the groups only have a single
// node as the choice for the second member
// address that one first.
if hasSingleSecondNode(lgrps[k]) == true {
ssn = true
// Add this pairing to the groups
grps = addNode(grps, lgrps[k][0], lgrps[k][1])
// Since this node is now used, remove it from all
// remaining tenative groups
lgrps = removeNode(lgrps, lgrps[k][1])
// Now remove this group completely since
// it's been addressed
lgrps = append(lgrps[:k],lgrps[k+1:]...)
break
}
}
if ssn == false {
break
}
}
// Now adress one of the remaining groups
if len(lgrps) == 0 {
break // Nothing left to do, exit the loop
}
grps = addNode(grps, lgrps[0][0], lgrps[0][1])
lgrps = removeNode(lgrps, lgrps[0][1])
lgrps = append(lgrps[:0],lgrps[1:]...)
}
return grps
}
func groupPods1(pods []*rwPod) [][]*rwPod {
var rtrn [][]*rwPod
var podCt int = len(pods)
rtrn,pods = groupIntersectingPods1(pods, podCt)
// There are several outcomes here
// 1) All pods have been paired and we're done
// 2) Some un-allocated pods remain
// 2.a) All groups have been started
// 2.b) Not all groups have been started
if len(pods) == 0 {
return rtrn
} else if len(rtrn) == podCt >> 1 { // All groupings started
// Allocate the remaining (presumably empty) pods to the started groups
return groupRemainingPods1(rtrn, pods)
} else { // Some groupings started
// Start empty groups with remaining pods
// each grouping is on a different server then
// allocate remaining pods.
rtrn, pods = startRemainingGroups1(rtrn, pods, podCt)
return groupRemainingPods1(rtrn, pods)
}
}
func groupPods(pods []*rwPod) [][]*rwPod {
var rtrn [][]*rwPod
var pd []*podTrack
// Tracking of the grouping process
for k,_ := range pods {
pd = append(pd, &podTrack{pods[k],false})
}
rtrn,pd = groupIntersectingPods(pd)
// There are several outcomes here
// 1) All pods have been paired and we're done
// 2) Some un-allocated pods remain
// 2.a) All groups have been started
// 2.b) Not all groups have been started
if unallocPodCount(pd) == 0 {
return rtrn
} else if len(rtrn) == len(pd) >> 1 { // All groupings started
// Allocate the remaining (presumably empty) pods to the started groups
return groupRemainingPods(rtrn, pd)
} else { // Some groupings started
// Start empty groups with remaining pods
// each grouping is on a different server then
// allocate remaining pods.
rtrn, pd = startRemainingGroups(rtrn, pd)
return groupRemainingPods(rtrn, pd)
}
// Establish groupings of non-empty pods that have overlapping devices.
for k,_ := range pd {
if pd[k].dn == true { // Already processed?
//log.Debugf("%s already processed", pd[k].pod.name)
continue
}
if len(pd[k].pod.devIds) == 0 { // Ignore pods with no devices
////log.Debugf("%s empty pod", pd[k].pod.name)
continue
}
// Start a pod group with this pod
var grp []*rwPod
grp = append(grp, pd[k].pod)
pd[k].dn = true
//log.Debugf("Creating new group %s", pd[k].pod.name)
// Find the peer pod based on device overlap
// It's ok if one isn't found, an empty one will be used instead
for k1,_ := range pd {
if pd[k1].dn == true { // Skip over eliminated pods
//log.Debugf("%s eliminated pod", pd[k1].pod.name)
continue
}
if len(pd[k1].pod.devIds) == 0 { // Skip pods with no devices
//log.Debugf("%s empty pod", pd[k1].pod.name)
continue
}
if intersect(pd[k].pod.devIds, pd[k1].pod.devIds) == true {
//log.Debugf("intersection found %s:%s", pd[k].pod.name, pd[k1].pod.name)
pd[k1].dn = true
grp = append(grp, pd[k1].pod)
break
}
}
rtrn = append(rtrn, grp)
//log.Debugf("Added group %s", grp[0].name)
}
// Now find any grouping without 2 members and assign one of the
// pods with no devices and on a different server to it.
// If there are no pods with no devices left before all
// groups are filled report an exception but leave one of the
// groups with only one pod.
for k,_ := range rtrn {
if len(rtrn[k]) < 2 {
for k2,_ := range pd {
if pd[k2].dn == true {
continue
}
// There should be only empty pods here
if len(pd[k2].pod.devIds) != 0 {
log.Error("Non empty pod found where empty pod was expected")
continue
}
if pd[k2].pod.node == rtrn[k][0].node {
//log.Error("Pods aren't on different servers, continuing")
continue
}
// Add this empty and unused pod to the group
//log.Debugf("Adding empty pod %s", pd[k2].pod.name)
rtrn[k] = append(rtrn[k], pd[k2].pod)
pd[k2].dn = true
break
}
}
}
return rtrn
}
func intersect(d1 map[string]struct{}, d2 map[string]struct{}) bool {
for k,_ := range d1 {
if _,ok := d2[k]; ok == true {
return true
}
}
return false
}
func setConnection(client pb.ConfigurationClient, backend string, connection string, addr string, port uint64) {
log.Debugf("Configuring backend %s : connection %s\n\n", backend, connection)
cnf := &pb.Conn{Server:"grpc_command",Cluster:"vcore",Backend:backend,
Connection:connection,Addr:addr,
Port:port}
if res, err := client.SetConnection(context.Background(), cnf); err != nil {
log.Debugf("failed SetConnection RPC call: %s", err)
} else {
log.Debugf("Result: %v", res)
}
}
func setAffinity(client pb.ConfigurationClient, ids map[string]struct{}, backend string) {
log.Debugf("Configuring backend %s : affinities \n", backend)
aff := &pb.Affinity{Router:"vcore",Route:"dev_manager",Cluster:"vcore",Backend:backend}
for k,_ := range ids {
log.Debugf("Setting affinity for id %s", k)
aff.Id = k
if res, err := client.SetAffinity(context.Background(), aff); err != nil {
log.Debugf("failed affinity RPC call: %s", err)
} else {
log.Debugf("Result: %v", res)
}
}
}
func getBackendForCore(coreId string, coreGroups [][]*rwPod) string {
for _,v := range(coreGroups) {
for _,v2 := range(v) {
if v2.name == coreId {
return v2.backend
}
}
}
log.Errorf("No backend found for core %s\n", coreId)
return ""
}
func monitorDiscovery(client pb.ConfigurationClient,
ch <-chan *ic.InterContainerMessage,
coreGroups [][]*rwPod) {
var id map[string]struct{} = make(map[string]struct{})
select {
case msg := <-ch:
log.Debugf("Received a device discovery notification")
device := &ic.DeviceDiscovered{}
if err := ptypes.UnmarshalAny(msg.Body, device); err != nil {
log.Errorf("Could not unmarshal received notification %v", msg)
} else {
// Set the affinity of the discovered device.
if be := getBackendForCore(device.Id, coreGroups); be != "" {
id[device.Id]=struct{}{}
setAffinity(client, id, be)
} else {
log.Error("Cant use an empty string as a backend name")
}
}
break
}
}
func startDiscoveryMonitor(client pb.ConfigurationClient,
coreGroups [][]*rwPod) error {
var ch <-chan *ic.InterContainerMessage
// Connect to kafka for discovery events
topic := &kafka.Topic{Name: "AffinityRouter"}
kc,err := newKafkaClient("sarama", "kafka", 9092, "arouterd")
kc.Start()
if ch, err = kc.Subscribe(topic); err != nil {
log.Error("Could not subscribe to the 'AffinityRouter' channel, discovery disabled")
return err
}
go monitorDiscovery(client, ch, coreGroups)
return nil
}
func startCoreMonitor(client pb.ConfigurationClient,
clientset *kubernetes.Clientset,
coreFltr *regexp.Regexp,
coreGroups [][]*rwPod) error {
// Now that initial allocation has been completed, monitor the pods
// for IP changes
// The main loop needs to do the following:
// 1) Periodically query the pods and filter out
// the vcore ones
// 2) Validate that the pods running are the same
// as the previous check
// 3) Validate that the IP addresses are the same
// as the last check.
// If the pod name(s) ha(s/ve) changed then remove
// the unused pod names and add in the new pod names
// maintaining the cluster/backend information.
// If an IP address has changed (which shouldn't
// happen unless a pod is re-started) it should get
// caught by the pod name change.
for {
time.Sleep(10 * time.Second) // Wait a while
// Get the rw core list from k8s
rwPods := getRwPods(clientset, coreFltr)
// If we didn't get 2n+1 pods then wait since
// something is down and will hopefully come
// back up at some point.
// TODO: remove the 6 pod hardcoding
if len(rwPods) != 6 {
continue
}
// We have all pods, check if any IP addresses
// have changed.
for _,v := range rwPods {
//if hasIpAddr(coreGroups, v.ipAddr) == false {
//log.Debug("Address has changed...")
//applyAddrDiffs(coreGroups, rwPods)
//}
_ = v
}
}
}
func main() {
// This is currently hard coded to a cluster with 3 servers
//var connections map[string]configConn = make(map[string]configConn)
//var rwCorePodsPrev map[string]rwPod = make(map[string]rwPod)
var rwCoreNodesPrev map[string][]rwPod = make(map[string][]rwPod)
var firstTime bool = true
var err error
var conn *grpc.ClientConn
// Set up the regular expression to identify the voltha cores
coreFltr := regexp.MustCompile(`rw-core[0-9]-`)
// Set up logging
if _, err := log.SetDefaultLogger(log.JSON, 0, nil); err != nil {
log.With(log.Fields{"error": err}).Fatal("Cannot setup logging")
}
// Set up kubernetes api
clientset := k8sClientSet()
// Connect to the affinity router and set up the client
conn, err = connect("localhost:55554") // This is a sidecar container so communicating over localhost
if err != nil {
panic(err.Error())
}
client := pb.NewConfigurationClient(conn)
// Get the voltha rw-core podes
rwPods := getRwPods(clientset, coreFltr)
// Fetch the devices held by each running core
queryDevices(rwPods)
// For debugging... comment out l8r
for _,v := range rwPods {
log.Debugf("Pod list %v", *v)
}
coreGroups := groupPods1(rwPods)
// Assign the groupings to the the backends and connections
for k,_ := range coreGroups {
for k1,_ := range coreGroups[k] {
coreGroups[k][k1].backend = "vcore"+strconv.Itoa(k+1)
coreGroups[k][k1].connection = "vcore"+strconv.Itoa(k+1)+strconv.Itoa(k1+1)
}
}
log.Debug("Core gouping completed")
// TODO: Debugging code, comment out for production
for k,v := range coreGroups {
for k2,v2 := range v {
log.Debugf("Core group %d,%d: %v", k, k2, v2)
}
}
log.Debug("Setting affinities")
// Now set the affinities for exising devices in the cores
for _,v := range coreGroups {
setAffinity(client, v[0].devIds, v[0].backend)
setAffinity(client, v[1].devIds, v[1].backend)
}
log.Debug("Setting connections")
// Configure the backeds based on the calculated core groups
for _,v := range coreGroups {
setConnection(client, v[0].backend, v[0].connection, v[0].ipAddr, 50057)
setConnection(client, v[1].backend, v[1].connection, v[1].ipAddr, 50057)
}
log.Debug("Starting discovery monitoring")
startDiscoveryMonitor(client, coreGroups)
log.Debugf("Starting core monitoring")
startCoreMonitor(client, clientset, coreFltr, coreGroups) // Never returns
return
// The main loop needs to do the following:
// 1) Periodically query the pods and filter out
// the vcore ones
// 2) Validate that the pods running are the same
// as the previous check
// 3) Validate that the IP addresses are the same
// as the last check.
// If the pod name(s) ha(s/ve) changed then remove
// the unused pod names and add in the new pod names
// maintaining the cluster/backend information.
// If an IP address has changed (which shouldn't
// happen unless a pod is re-started) it should get
// caught by the pod name change.
for {
var rwCorePods map[string]rwPod = make(map[string]rwPod)
var rwCoreNodes map[string][]rwPod = make(map[string][]rwPod)
pods, err := clientset.CoreV1().Pods("").List(metav1.ListOptions{})
if err != nil {
panic(err.Error())
}
log.Debugf("There are %d pods in the cluster\n", len(pods.Items))
/*
for k,v := range pods.Items {
if v.Namespace == "voltha" && coreFltr.MatchString(v.Name) {
fmt.Printf("Namespace: %s, PodName: %s, PodIP: %s, Host: %s\n", v.Namespace, v.Name,
v.Status.PodIP, v.Spec.NodeName)
//fmt.Printf("Pod %v,%v\n\n\n",k,v)
_ = k
// Add this pod to the core structure.
if firstTime == true {
rwCorePodsPrev[v.Name] = rwPod{name:v.Name,node:v.Spec.NodeName}
rwCoreNodesPrev[v.Spec.NodeName] =
append(rwCoreNodesPrev[v.Spec.NodeName], rwPod{name:v.Name,node:v.Spec.NodeName})
}
rwCorePods[v.Name] = rwPod{v.Name,v.Status.PodIP,v.Spec.NodeName, "", ""}
rwCoreNodes[v.Spec.NodeName] =
append(rwCoreNodes[v.Spec.NodeName], rwPod{v.Name,v.Status.PodIP,v.Spec.NodeName,"",""})
}
}
*/
if len(rwCorePods) != 6 {
continue
}
//fmt.Printf("Pod map: %v\n", rwCorePods)
//fmt.Printf("Pod map2: %v\n", rwCoreNodes)
// Examples for error handling:
// - Use helper functions like e.g. errors.IsNotFound()
// - And/or cast to StatusError and use its properties like e.g. ErrStatus.Message
/*
_, err = clientset.CoreV1().Pods("default").Get("example-xxxxx", metav1.GetOptions{})
if errors.IsNotFound(err) {
fmt.Printf("Pod not found\n")
} else if statusError, isStatus := err.(*errors.StatusError); isStatus {
fmt.Printf("Error getting pod %v\n", statusError.ErrStatus.Message)
} else if err != nil {
panic(err.Error())
} else {
fmt.Printf("Found pod\n")
}
*/
// Set the association to backends and connections only once.
// TODO: This needs to be reworked for when a pod crashes
// and it's name changes.
if firstTime == true {
be := 1
for k,_ := range rwCoreNodesPrev { // Each node has 2 cores running on it
// Use a pretty dumb distribution algorithm.
log.Debugf("Processing core node %s:%d\n", k,be)
rwCoreNodesPrev[k][0].backend = "vcore"+strconv.Itoa(be)
rwCoreNodesPrev[k][0].connection = "vcore"+strconv.Itoa(be)+strconv.Itoa(1)
rwCoreNodesPrev[k][1].backend = "vcore"+strconv.Itoa(be%3+1)
rwCoreNodesPrev[k][1].connection = "vcore"+strconv.Itoa(be%3+1)+strconv.Itoa(2)
be++
}
}
log.Debugf("Backend Allocation: %v",rwCoreNodesPrev)
// Compare the current node IPs with the previous node IPs and if they differ
// then set the new one and send the command to configure the router with the
// new backend connection.
for k,v := range rwCoreNodesPrev {
if rwCoreNodes[k][0].ipAddr != rwCoreNodesPrev[k][0].ipAddr {
log.Debugf("Configuring backend %s : connection %s\n\n", v[0].backend, v[0].connection)
cnf := &pb.Conn{Server:"grpc_command",Cluster:"vcore",Backend:rwCoreNodesPrev[k][0].backend,
Connection:rwCoreNodesPrev[k][0].connection,Addr:rwCoreNodes[k][0].ipAddr,
Port:50057}
if res, err := client.SetConnection(context.Background(), cnf); err != nil {
log.Debugf("failed SetConnection RPC call: %s", err)
} else {
log.Debugf("Result: %v", res)
rwCoreNodesPrev[k][0].ipAddr = rwCoreNodes[k][0].ipAddr
}
}
if rwCoreNodes[k][1].ipAddr != rwCoreNodesPrev[k][1].ipAddr {
log.Debugf("Configuring backend %s : connection %s\n\n", v[1].backend, v[1].connection)
cnf := &pb.Conn{Server:"grpc_command",Cluster:"vcore",Backend:rwCoreNodesPrev[k][1].backend,
Connection:rwCoreNodesPrev[k][1].connection,Addr:rwCoreNodes[k][1].ipAddr,
Port:50057}
if res, err := client.SetConnection(context.Background(), cnf); err != nil {
log.Debugf("failed SetConnection RPC call: %s", err)
} else {
log.Debugf("Result: %v", res)
rwCoreNodesPrev[k][1].ipAddr = rwCoreNodes[k][1].ipAddr
}
}
}
fmt.Printf("The structure for setting the connections is: %v\n", rwCoreNodesPrev)
firstTime = false
// Now make the API calls
time.Sleep(10 * time.Second)
}
conn.Close()
}