| // Package xxhash implements the 64-bit variant of xxHash (XXH64) as described |
| // at http://cyan4973.github.io/xxHash/. |
| package xxhash |
| |
| import ( |
| "encoding/binary" |
| "hash" |
| ) |
| |
| const ( |
| prime1 uint64 = 11400714785074694791 |
| prime2 uint64 = 14029467366897019727 |
| prime3 uint64 = 1609587929392839161 |
| prime4 uint64 = 9650029242287828579 |
| prime5 uint64 = 2870177450012600261 |
| ) |
| |
| // NOTE(caleb): I'm using both consts and vars of the primes. Using consts where |
| // possible in the Go code is worth a small (but measurable) performance boost |
| // by avoiding some MOVQs. Vars are needed for the asm and also are useful for |
| // convenience in the Go code in a few places where we need to intentionally |
| // avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the |
| // result overflows a uint64). |
| var ( |
| prime1v = prime1 |
| prime2v = prime2 |
| prime3v = prime3 |
| prime4v = prime4 |
| prime5v = prime5 |
| ) |
| |
| type xxh struct { |
| v1 uint64 |
| v2 uint64 |
| v3 uint64 |
| v4 uint64 |
| total int |
| mem [32]byte |
| n int // how much of mem is used |
| } |
| |
| // New creates a new hash.Hash64 that implements the 64-bit xxHash algorithm. |
| func New() hash.Hash64 { |
| var x xxh |
| x.Reset() |
| return &x |
| } |
| |
| func (x *xxh) Reset() { |
| x.n = 0 |
| x.total = 0 |
| x.v1 = prime1v + prime2 |
| x.v2 = prime2 |
| x.v3 = 0 |
| x.v4 = -prime1v |
| } |
| |
| func (x *xxh) Size() int { return 8 } |
| func (x *xxh) BlockSize() int { return 32 } |
| |
| // Write adds more data to x. It always returns len(b), nil. |
| func (x *xxh) Write(b []byte) (n int, err error) { |
| n = len(b) |
| x.total += len(b) |
| |
| if x.n+len(b) < 32 { |
| // This new data doesn't even fill the current block. |
| copy(x.mem[x.n:], b) |
| x.n += len(b) |
| return |
| } |
| |
| if x.n > 0 { |
| // Finish off the partial block. |
| copy(x.mem[x.n:], b) |
| x.v1 = round(x.v1, u64(x.mem[0:8])) |
| x.v2 = round(x.v2, u64(x.mem[8:16])) |
| x.v3 = round(x.v3, u64(x.mem[16:24])) |
| x.v4 = round(x.v4, u64(x.mem[24:32])) |
| b = b[32-x.n:] |
| x.n = 0 |
| } |
| |
| if len(b) >= 32 { |
| // One or more full blocks left. |
| b = writeBlocks(x, b) |
| } |
| |
| // Store any remaining partial block. |
| copy(x.mem[:], b) |
| x.n = len(b) |
| |
| return |
| } |
| |
| func (x *xxh) Sum(b []byte) []byte { |
| s := x.Sum64() |
| return append( |
| b, |
| byte(s>>56), |
| byte(s>>48), |
| byte(s>>40), |
| byte(s>>32), |
| byte(s>>24), |
| byte(s>>16), |
| byte(s>>8), |
| byte(s), |
| ) |
| } |
| |
| func (x *xxh) Sum64() uint64 { |
| var h uint64 |
| |
| if x.total >= 32 { |
| v1, v2, v3, v4 := x.v1, x.v2, x.v3, x.v4 |
| h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4) |
| h = mergeRound(h, v1) |
| h = mergeRound(h, v2) |
| h = mergeRound(h, v3) |
| h = mergeRound(h, v4) |
| } else { |
| h = x.v3 + prime5 |
| } |
| |
| h += uint64(x.total) |
| |
| i, end := 0, x.n |
| for ; i+8 <= end; i += 8 { |
| k1 := round(0, u64(x.mem[i:i+8])) |
| h ^= k1 |
| h = rol27(h)*prime1 + prime4 |
| } |
| if i+4 <= end { |
| h ^= uint64(u32(x.mem[i:i+4])) * prime1 |
| h = rol23(h)*prime2 + prime3 |
| i += 4 |
| } |
| for i < end { |
| h ^= uint64(x.mem[i]) * prime5 |
| h = rol11(h) * prime1 |
| i++ |
| } |
| |
| h ^= h >> 33 |
| h *= prime2 |
| h ^= h >> 29 |
| h *= prime3 |
| h ^= h >> 32 |
| |
| return h |
| } |
| |
| func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) } |
| func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) } |
| |
| func round(acc, input uint64) uint64 { |
| acc += input * prime2 |
| acc = rol31(acc) |
| acc *= prime1 |
| return acc |
| } |
| |
| func mergeRound(acc, val uint64) uint64 { |
| val = round(0, val) |
| acc ^= val |
| acc = acc*prime1 + prime4 |
| return acc |
| } |