| // Copyright 2015 The etcd Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| package raft |
| |
| import ( |
| "context" |
| "errors" |
| |
| pb "go.etcd.io/etcd/raft/raftpb" |
| ) |
| |
| type SnapshotStatus int |
| |
| const ( |
| SnapshotFinish SnapshotStatus = 1 |
| SnapshotFailure SnapshotStatus = 2 |
| ) |
| |
| var ( |
| emptyState = pb.HardState{} |
| |
| // ErrStopped is returned by methods on Nodes that have been stopped. |
| ErrStopped = errors.New("raft: stopped") |
| ) |
| |
| // SoftState provides state that is useful for logging and debugging. |
| // The state is volatile and does not need to be persisted to the WAL. |
| type SoftState struct { |
| Lead uint64 // must use atomic operations to access; keep 64-bit aligned. |
| RaftState StateType |
| } |
| |
| func (a *SoftState) equal(b *SoftState) bool { |
| return a.Lead == b.Lead && a.RaftState == b.RaftState |
| } |
| |
| // Ready encapsulates the entries and messages that are ready to read, |
| // be saved to stable storage, committed or sent to other peers. |
| // All fields in Ready are read-only. |
| type Ready struct { |
| // The current volatile state of a Node. |
| // SoftState will be nil if there is no update. |
| // It is not required to consume or store SoftState. |
| *SoftState |
| |
| // The current state of a Node to be saved to stable storage BEFORE |
| // Messages are sent. |
| // HardState will be equal to empty state if there is no update. |
| pb.HardState |
| |
| // ReadStates can be used for node to serve linearizable read requests locally |
| // when its applied index is greater than the index in ReadState. |
| // Note that the readState will be returned when raft receives msgReadIndex. |
| // The returned is only valid for the request that requested to read. |
| ReadStates []ReadState |
| |
| // Entries specifies entries to be saved to stable storage BEFORE |
| // Messages are sent. |
| Entries []pb.Entry |
| |
| // Snapshot specifies the snapshot to be saved to stable storage. |
| Snapshot pb.Snapshot |
| |
| // CommittedEntries specifies entries to be committed to a |
| // store/state-machine. These have previously been committed to stable |
| // store. |
| CommittedEntries []pb.Entry |
| |
| // Messages specifies outbound messages to be sent AFTER Entries are |
| // committed to stable storage. |
| // If it contains a MsgSnap message, the application MUST report back to raft |
| // when the snapshot has been received or has failed by calling ReportSnapshot. |
| Messages []pb.Message |
| |
| // MustSync indicates whether the HardState and Entries must be synchronously |
| // written to disk or if an asynchronous write is permissible. |
| MustSync bool |
| } |
| |
| func isHardStateEqual(a, b pb.HardState) bool { |
| return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit |
| } |
| |
| // IsEmptyHardState returns true if the given HardState is empty. |
| func IsEmptyHardState(st pb.HardState) bool { |
| return isHardStateEqual(st, emptyState) |
| } |
| |
| // IsEmptySnap returns true if the given Snapshot is empty. |
| func IsEmptySnap(sp pb.Snapshot) bool { |
| return sp.Metadata.Index == 0 |
| } |
| |
| func (rd Ready) containsUpdates() bool { |
| return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) || |
| !IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 || |
| len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0 |
| } |
| |
| // appliedCursor extracts from the Ready the highest index the client has |
| // applied (once the Ready is confirmed via Advance). If no information is |
| // contained in the Ready, returns zero. |
| func (rd Ready) appliedCursor() uint64 { |
| if n := len(rd.CommittedEntries); n > 0 { |
| return rd.CommittedEntries[n-1].Index |
| } |
| if index := rd.Snapshot.Metadata.Index; index > 0 { |
| return index |
| } |
| return 0 |
| } |
| |
| // Node represents a node in a raft cluster. |
| type Node interface { |
| // Tick increments the internal logical clock for the Node by a single tick. Election |
| // timeouts and heartbeat timeouts are in units of ticks. |
| Tick() |
| // Campaign causes the Node to transition to candidate state and start campaigning to become leader. |
| Campaign(ctx context.Context) error |
| // Propose proposes that data be appended to the log. Note that proposals can be lost without |
| // notice, therefore it is user's job to ensure proposal retries. |
| Propose(ctx context.Context, data []byte) error |
| // ProposeConfChange proposes a configuration change. Like any proposal, the |
| // configuration change may be dropped with or without an error being |
| // returned. In particular, configuration changes are dropped unless the |
| // leader has certainty that there is no prior unapplied configuration |
| // change in its log. |
| // |
| // The method accepts either a pb.ConfChange (deprecated) or pb.ConfChangeV2 |
| // message. The latter allows arbitrary configuration changes via joint |
| // consensus, notably including replacing a voter. Passing a ConfChangeV2 |
| // message is only allowed if all Nodes participating in the cluster run a |
| // version of this library aware of the V2 API. See pb.ConfChangeV2 for |
| // usage details and semantics. |
| ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error |
| |
| // Step advances the state machine using the given message. ctx.Err() will be returned, if any. |
| Step(ctx context.Context, msg pb.Message) error |
| |
| // Ready returns a channel that returns the current point-in-time state. |
| // Users of the Node must call Advance after retrieving the state returned by Ready. |
| // |
| // NOTE: No committed entries from the next Ready may be applied until all committed entries |
| // and snapshots from the previous one have finished. |
| Ready() <-chan Ready |
| |
| // Advance notifies the Node that the application has saved progress up to the last Ready. |
| // It prepares the node to return the next available Ready. |
| // |
| // The application should generally call Advance after it applies the entries in last Ready. |
| // |
| // However, as an optimization, the application may call Advance while it is applying the |
| // commands. For example. when the last Ready contains a snapshot, the application might take |
| // a long time to apply the snapshot data. To continue receiving Ready without blocking raft |
| // progress, it can call Advance before finishing applying the last ready. |
| Advance() |
| // ApplyConfChange applies a config change (previously passed to |
| // ProposeConfChange) to the node. This must be called whenever a config |
| // change is observed in Ready.CommittedEntries. |
| // |
| // Returns an opaque non-nil ConfState protobuf which must be recorded in |
| // snapshots. |
| ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState |
| |
| // TransferLeadership attempts to transfer leadership to the given transferee. |
| TransferLeadership(ctx context.Context, lead, transferee uint64) |
| |
| // ReadIndex request a read state. The read state will be set in the ready. |
| // Read state has a read index. Once the application advances further than the read |
| // index, any linearizable read requests issued before the read request can be |
| // processed safely. The read state will have the same rctx attached. |
| ReadIndex(ctx context.Context, rctx []byte) error |
| |
| // Status returns the current status of the raft state machine. |
| Status() Status |
| // ReportUnreachable reports the given node is not reachable for the last send. |
| ReportUnreachable(id uint64) |
| // ReportSnapshot reports the status of the sent snapshot. The id is the raft ID of the follower |
| // who is meant to receive the snapshot, and the status is SnapshotFinish or SnapshotFailure. |
| // Calling ReportSnapshot with SnapshotFinish is a no-op. But, any failure in applying a |
| // snapshot (for e.g., while streaming it from leader to follower), should be reported to the |
| // leader with SnapshotFailure. When leader sends a snapshot to a follower, it pauses any raft |
| // log probes until the follower can apply the snapshot and advance its state. If the follower |
| // can't do that, for e.g., due to a crash, it could end up in a limbo, never getting any |
| // updates from the leader. Therefore, it is crucial that the application ensures that any |
| // failure in snapshot sending is caught and reported back to the leader; so it can resume raft |
| // log probing in the follower. |
| ReportSnapshot(id uint64, status SnapshotStatus) |
| // Stop performs any necessary termination of the Node. |
| Stop() |
| } |
| |
| type Peer struct { |
| ID uint64 |
| Context []byte |
| } |
| |
| // StartNode returns a new Node given configuration and a list of raft peers. |
| // It appends a ConfChangeAddNode entry for each given peer to the initial log. |
| // |
| // Peers must not be zero length; call RestartNode in that case. |
| func StartNode(c *Config, peers []Peer) Node { |
| if len(peers) == 0 { |
| panic("no peers given; use RestartNode instead") |
| } |
| rn, err := NewRawNode(c) |
| if err != nil { |
| panic(err) |
| } |
| rn.Bootstrap(peers) |
| |
| n := newNode(rn) |
| |
| go n.run() |
| return &n |
| } |
| |
| // RestartNode is similar to StartNode but does not take a list of peers. |
| // The current membership of the cluster will be restored from the Storage. |
| // If the caller has an existing state machine, pass in the last log index that |
| // has been applied to it; otherwise use zero. |
| func RestartNode(c *Config) Node { |
| rn, err := NewRawNode(c) |
| if err != nil { |
| panic(err) |
| } |
| n := newNode(rn) |
| go n.run() |
| return &n |
| } |
| |
| type msgWithResult struct { |
| m pb.Message |
| result chan error |
| } |
| |
| // node is the canonical implementation of the Node interface |
| type node struct { |
| propc chan msgWithResult |
| recvc chan pb.Message |
| confc chan pb.ConfChangeV2 |
| confstatec chan pb.ConfState |
| readyc chan Ready |
| advancec chan struct{} |
| tickc chan struct{} |
| done chan struct{} |
| stop chan struct{} |
| status chan chan Status |
| |
| rn *RawNode |
| } |
| |
| func newNode(rn *RawNode) node { |
| return node{ |
| propc: make(chan msgWithResult), |
| recvc: make(chan pb.Message), |
| confc: make(chan pb.ConfChangeV2), |
| confstatec: make(chan pb.ConfState), |
| readyc: make(chan Ready), |
| advancec: make(chan struct{}), |
| // make tickc a buffered chan, so raft node can buffer some ticks when the node |
| // is busy processing raft messages. Raft node will resume process buffered |
| // ticks when it becomes idle. |
| tickc: make(chan struct{}, 128), |
| done: make(chan struct{}), |
| stop: make(chan struct{}), |
| status: make(chan chan Status), |
| rn: rn, |
| } |
| } |
| |
| func (n *node) Stop() { |
| select { |
| case n.stop <- struct{}{}: |
| // Not already stopped, so trigger it |
| case <-n.done: |
| // Node has already been stopped - no need to do anything |
| return |
| } |
| // Block until the stop has been acknowledged by run() |
| <-n.done |
| } |
| |
| func (n *node) run() { |
| var propc chan msgWithResult |
| var readyc chan Ready |
| var advancec chan struct{} |
| var rd Ready |
| |
| r := n.rn.raft |
| |
| lead := None |
| |
| for { |
| if advancec != nil { |
| readyc = nil |
| } else if n.rn.HasReady() { |
| // Populate a Ready. Note that this Ready is not guaranteed to |
| // actually be handled. We will arm readyc, but there's no guarantee |
| // that we will actually send on it. It's possible that we will |
| // service another channel instead, loop around, and then populate |
| // the Ready again. We could instead force the previous Ready to be |
| // handled first, but it's generally good to emit larger Readys plus |
| // it simplifies testing (by emitting less frequently and more |
| // predictably). |
| rd = n.rn.readyWithoutAccept() |
| readyc = n.readyc |
| } |
| |
| if lead != r.lead { |
| if r.hasLeader() { |
| if lead == None { |
| r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term) |
| } else { |
| r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term) |
| } |
| propc = n.propc |
| } else { |
| r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term) |
| propc = nil |
| } |
| lead = r.lead |
| } |
| |
| select { |
| // TODO: maybe buffer the config propose if there exists one (the way |
| // described in raft dissertation) |
| // Currently it is dropped in Step silently. |
| case pm := <-propc: |
| m := pm.m |
| m.From = r.id |
| err := r.Step(m) |
| if pm.result != nil { |
| pm.result <- err |
| close(pm.result) |
| } |
| case m := <-n.recvc: |
| // filter out response message from unknown From. |
| if pr := r.prs.Progress[m.From]; pr != nil || !IsResponseMsg(m.Type) { |
| r.Step(m) |
| } |
| case cc := <-n.confc: |
| _, okBefore := r.prs.Progress[r.id] |
| cs := r.applyConfChange(cc) |
| // If the node was removed, block incoming proposals. Note that we |
| // only do this if the node was in the config before. Nodes may be |
| // a member of the group without knowing this (when they're catching |
| // up on the log and don't have the latest config) and we don't want |
| // to block the proposal channel in that case. |
| // |
| // NB: propc is reset when the leader changes, which, if we learn |
| // about it, sort of implies that we got readded, maybe? This isn't |
| // very sound and likely has bugs. |
| if _, okAfter := r.prs.Progress[r.id]; okBefore && !okAfter { |
| var found bool |
| for _, sl := range [][]uint64{cs.Voters, cs.VotersOutgoing} { |
| for _, id := range sl { |
| if id == r.id { |
| found = true |
| } |
| } |
| } |
| if !found { |
| propc = nil |
| } |
| } |
| select { |
| case n.confstatec <- cs: |
| case <-n.done: |
| } |
| case <-n.tickc: |
| n.rn.Tick() |
| case readyc <- rd: |
| n.rn.acceptReady(rd) |
| advancec = n.advancec |
| case <-advancec: |
| n.rn.Advance(rd) |
| rd = Ready{} |
| advancec = nil |
| case c := <-n.status: |
| c <- getStatus(r) |
| case <-n.stop: |
| close(n.done) |
| return |
| } |
| } |
| } |
| |
| // Tick increments the internal logical clock for this Node. Election timeouts |
| // and heartbeat timeouts are in units of ticks. |
| func (n *node) Tick() { |
| select { |
| case n.tickc <- struct{}{}: |
| case <-n.done: |
| default: |
| n.rn.raft.logger.Warningf("%x (leader %v) A tick missed to fire. Node blocks too long!", n.rn.raft.id, n.rn.raft.id == n.rn.raft.lead) |
| } |
| } |
| |
| func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) } |
| |
| func (n *node) Propose(ctx context.Context, data []byte) error { |
| return n.stepWait(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}}) |
| } |
| |
| func (n *node) Step(ctx context.Context, m pb.Message) error { |
| // ignore unexpected local messages receiving over network |
| if IsLocalMsg(m.Type) { |
| // TODO: return an error? |
| return nil |
| } |
| return n.step(ctx, m) |
| } |
| |
| func confChangeToMsg(c pb.ConfChangeI) (pb.Message, error) { |
| typ, data, err := pb.MarshalConfChange(c) |
| if err != nil { |
| return pb.Message{}, err |
| } |
| return pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: typ, Data: data}}}, nil |
| } |
| |
| func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error { |
| msg, err := confChangeToMsg(cc) |
| if err != nil { |
| return err |
| } |
| return n.Step(ctx, msg) |
| } |
| |
| func (n *node) step(ctx context.Context, m pb.Message) error { |
| return n.stepWithWaitOption(ctx, m, false) |
| } |
| |
| func (n *node) stepWait(ctx context.Context, m pb.Message) error { |
| return n.stepWithWaitOption(ctx, m, true) |
| } |
| |
| // Step advances the state machine using msgs. The ctx.Err() will be returned, |
| // if any. |
| func (n *node) stepWithWaitOption(ctx context.Context, m pb.Message, wait bool) error { |
| if m.Type != pb.MsgProp { |
| select { |
| case n.recvc <- m: |
| return nil |
| case <-ctx.Done(): |
| return ctx.Err() |
| case <-n.done: |
| return ErrStopped |
| } |
| } |
| ch := n.propc |
| pm := msgWithResult{m: m} |
| if wait { |
| pm.result = make(chan error, 1) |
| } |
| select { |
| case ch <- pm: |
| if !wait { |
| return nil |
| } |
| case <-ctx.Done(): |
| return ctx.Err() |
| case <-n.done: |
| return ErrStopped |
| } |
| select { |
| case err := <-pm.result: |
| if err != nil { |
| return err |
| } |
| case <-ctx.Done(): |
| return ctx.Err() |
| case <-n.done: |
| return ErrStopped |
| } |
| return nil |
| } |
| |
| func (n *node) Ready() <-chan Ready { return n.readyc } |
| |
| func (n *node) Advance() { |
| select { |
| case n.advancec <- struct{}{}: |
| case <-n.done: |
| } |
| } |
| |
| func (n *node) ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState { |
| var cs pb.ConfState |
| select { |
| case n.confc <- cc.AsV2(): |
| case <-n.done: |
| } |
| select { |
| case cs = <-n.confstatec: |
| case <-n.done: |
| } |
| return &cs |
| } |
| |
| func (n *node) Status() Status { |
| c := make(chan Status) |
| select { |
| case n.status <- c: |
| return <-c |
| case <-n.done: |
| return Status{} |
| } |
| } |
| |
| func (n *node) ReportUnreachable(id uint64) { |
| select { |
| case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}: |
| case <-n.done: |
| } |
| } |
| |
| func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) { |
| rej := status == SnapshotFailure |
| |
| select { |
| case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}: |
| case <-n.done: |
| } |
| } |
| |
| func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) { |
| select { |
| // manually set 'from' and 'to', so that leader can voluntarily transfers its leadership |
| case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}: |
| case <-n.done: |
| case <-ctx.Done(): |
| } |
| } |
| |
| func (n *node) ReadIndex(ctx context.Context, rctx []byte) error { |
| return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}}) |
| } |
| |
| func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready { |
| rd := Ready{ |
| Entries: r.raftLog.unstableEntries(), |
| CommittedEntries: r.raftLog.nextEnts(), |
| Messages: r.msgs, |
| } |
| if softSt := r.softState(); !softSt.equal(prevSoftSt) { |
| rd.SoftState = softSt |
| } |
| if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) { |
| rd.HardState = hardSt |
| } |
| if r.raftLog.unstable.snapshot != nil { |
| rd.Snapshot = *r.raftLog.unstable.snapshot |
| } |
| if len(r.readStates) != 0 { |
| rd.ReadStates = r.readStates |
| } |
| rd.MustSync = MustSync(r.hardState(), prevHardSt, len(rd.Entries)) |
| return rd |
| } |
| |
| // MustSync returns true if the hard state and count of Raft entries indicate |
| // that a synchronous write to persistent storage is required. |
| func MustSync(st, prevst pb.HardState, entsnum int) bool { |
| // Persistent state on all servers: |
| // (Updated on stable storage before responding to RPCs) |
| // currentTerm |
| // votedFor |
| // log entries[] |
| return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term |
| } |