blob: b9299f2fa13c7822cb58a6a4432836caf8d5f473 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package thrift
import (
"encoding/binary"
"fmt"
"io"
"math"
)
const (
COMPACT_PROTOCOL_ID = 0x082
COMPACT_VERSION = 1
COMPACT_VERSION_MASK = 0x1f
COMPACT_TYPE_MASK = 0x0E0
COMPACT_TYPE_BITS = 0x07
COMPACT_TYPE_SHIFT_AMOUNT = 5
)
type tCompactType byte
const (
COMPACT_BOOLEAN_TRUE = 0x01
COMPACT_BOOLEAN_FALSE = 0x02
COMPACT_BYTE = 0x03
COMPACT_I16 = 0x04
COMPACT_I32 = 0x05
COMPACT_I64 = 0x06
COMPACT_DOUBLE = 0x07
COMPACT_BINARY = 0x08
COMPACT_LIST = 0x09
COMPACT_SET = 0x0A
COMPACT_MAP = 0x0B
COMPACT_STRUCT = 0x0C
)
var (
ttypeToCompactType map[TType]tCompactType
)
func init() {
ttypeToCompactType = map[TType]tCompactType{
STOP: STOP,
BOOL: COMPACT_BOOLEAN_TRUE,
BYTE: COMPACT_BYTE,
I16: COMPACT_I16,
I32: COMPACT_I32,
I64: COMPACT_I64,
DOUBLE: COMPACT_DOUBLE,
STRING: COMPACT_BINARY,
LIST: COMPACT_LIST,
SET: COMPACT_SET,
MAP: COMPACT_MAP,
STRUCT: COMPACT_STRUCT,
}
}
type TCompactProtocolFactory struct{}
func NewTCompactProtocolFactory() *TCompactProtocolFactory {
return &TCompactProtocolFactory{}
}
func (p *TCompactProtocolFactory) GetProtocol(trans TTransport) TProtocol {
return NewTCompactProtocol(trans)
}
type TCompactProtocol struct {
trans TRichTransport
origTransport TTransport
// Used to keep track of the last field for the current and previous structs,
// so we can do the delta stuff.
lastField []int
lastFieldId int
// If we encounter a boolean field begin, save the TField here so it can
// have the value incorporated.
booleanFieldName string
booleanFieldId int16
booleanFieldPending bool
// If we read a field header, and it's a boolean field, save the boolean
// value here so that readBool can use it.
boolValue bool
boolValueIsNotNull bool
buffer [64]byte
}
// Create a TCompactProtocol given a TTransport
func NewTCompactProtocol(trans TTransport) *TCompactProtocol {
p := &TCompactProtocol{origTransport: trans, lastField: []int{}}
if et, ok := trans.(TRichTransport); ok {
p.trans = et
} else {
p.trans = NewTRichTransport(trans)
}
return p
}
//
// Public Writing methods.
//
// Write a message header to the wire. Compact Protocol messages contain the
// protocol version so we can migrate forwards in the future if need be.
func (p *TCompactProtocol) WriteMessageBegin(name string, typeId TMessageType, seqid int32) error {
err := p.writeByteDirect(COMPACT_PROTOCOL_ID)
if err != nil {
return NewTProtocolException(err)
}
err = p.writeByteDirect((COMPACT_VERSION & COMPACT_VERSION_MASK) | ((byte(typeId) << COMPACT_TYPE_SHIFT_AMOUNT) & COMPACT_TYPE_MASK))
if err != nil {
return NewTProtocolException(err)
}
_, err = p.writeVarint32(seqid)
if err != nil {
return NewTProtocolException(err)
}
e := p.WriteString(name)
return e
}
func (p *TCompactProtocol) WriteMessageEnd() error { return nil }
// Write a struct begin. This doesn't actually put anything on the wire. We
// use it as an opportunity to put special placeholder markers on the field
// stack so we can get the field id deltas correct.
func (p *TCompactProtocol) WriteStructBegin(name string) error {
p.lastField = append(p.lastField, p.lastFieldId)
p.lastFieldId = 0
return nil
}
// Write a struct end. This doesn't actually put anything on the wire. We use
// this as an opportunity to pop the last field from the current struct off
// of the field stack.
func (p *TCompactProtocol) WriteStructEnd() error {
p.lastFieldId = p.lastField[len(p.lastField)-1]
p.lastField = p.lastField[:len(p.lastField)-1]
return nil
}
func (p *TCompactProtocol) WriteFieldBegin(name string, typeId TType, id int16) error {
if typeId == BOOL {
// we want to possibly include the value, so we'll wait.
p.booleanFieldName, p.booleanFieldId, p.booleanFieldPending = name, id, true
return nil
}
_, err := p.writeFieldBeginInternal(name, typeId, id, 0xFF)
return NewTProtocolException(err)
}
// The workhorse of writeFieldBegin. It has the option of doing a
// 'type override' of the type header. This is used specifically in the
// boolean field case.
func (p *TCompactProtocol) writeFieldBeginInternal(name string, typeId TType, id int16, typeOverride byte) (int, error) {
// short lastField = lastField_.pop();
// if there's a type override, use that.
var typeToWrite byte
if typeOverride == 0xFF {
typeToWrite = byte(p.getCompactType(typeId))
} else {
typeToWrite = typeOverride
}
// check if we can use delta encoding for the field id
fieldId := int(id)
written := 0
if fieldId > p.lastFieldId && fieldId-p.lastFieldId <= 15 {
// write them together
err := p.writeByteDirect(byte((fieldId-p.lastFieldId)<<4) | typeToWrite)
if err != nil {
return 0, err
}
} else {
// write them separate
err := p.writeByteDirect(typeToWrite)
if err != nil {
return 0, err
}
err = p.WriteI16(id)
written = 1 + 2
if err != nil {
return 0, err
}
}
p.lastFieldId = fieldId
// p.lastField.Push(field.id);
return written, nil
}
func (p *TCompactProtocol) WriteFieldEnd() error { return nil }
func (p *TCompactProtocol) WriteFieldStop() error {
err := p.writeByteDirect(STOP)
return NewTProtocolException(err)
}
func (p *TCompactProtocol) WriteMapBegin(keyType TType, valueType TType, size int) error {
if size == 0 {
err := p.writeByteDirect(0)
return NewTProtocolException(err)
}
_, err := p.writeVarint32(int32(size))
if err != nil {
return NewTProtocolException(err)
}
err = p.writeByteDirect(byte(p.getCompactType(keyType))<<4 | byte(p.getCompactType(valueType)))
return NewTProtocolException(err)
}
func (p *TCompactProtocol) WriteMapEnd() error { return nil }
// Write a list header.
func (p *TCompactProtocol) WriteListBegin(elemType TType, size int) error {
_, err := p.writeCollectionBegin(elemType, size)
return NewTProtocolException(err)
}
func (p *TCompactProtocol) WriteListEnd() error { return nil }
// Write a set header.
func (p *TCompactProtocol) WriteSetBegin(elemType TType, size int) error {
_, err := p.writeCollectionBegin(elemType, size)
return NewTProtocolException(err)
}
func (p *TCompactProtocol) WriteSetEnd() error { return nil }
func (p *TCompactProtocol) WriteBool(value bool) error {
v := byte(COMPACT_BOOLEAN_FALSE)
if value {
v = byte(COMPACT_BOOLEAN_TRUE)
}
if p.booleanFieldPending {
// we haven't written the field header yet
_, err := p.writeFieldBeginInternal(p.booleanFieldName, BOOL, p.booleanFieldId, v)
p.booleanFieldPending = false
return NewTProtocolException(err)
}
// we're not part of a field, so just write the value.
err := p.writeByteDirect(v)
return NewTProtocolException(err)
}
// Write a byte. Nothing to see here!
func (p *TCompactProtocol) WriteByte(value int8) error {
err := p.writeByteDirect(byte(value))
return NewTProtocolException(err)
}
// Write an I16 as a zigzag varint.
func (p *TCompactProtocol) WriteI16(value int16) error {
_, err := p.writeVarint32(p.int32ToZigzag(int32(value)))
return NewTProtocolException(err)
}
// Write an i32 as a zigzag varint.
func (p *TCompactProtocol) WriteI32(value int32) error {
_, err := p.writeVarint32(p.int32ToZigzag(value))
return NewTProtocolException(err)
}
// Write an i64 as a zigzag varint.
func (p *TCompactProtocol) WriteI64(value int64) error {
_, err := p.writeVarint64(p.int64ToZigzag(value))
return NewTProtocolException(err)
}
// Write a double to the wire as 8 bytes.
func (p *TCompactProtocol) WriteDouble(value float64) error {
buf := p.buffer[0:8]
binary.LittleEndian.PutUint64(buf, math.Float64bits(value))
_, err := p.trans.Write(buf)
return NewTProtocolException(err)
}
// Write a string to the wire with a varint size preceding.
func (p *TCompactProtocol) WriteString(value string) error {
_, e := p.writeVarint32(int32(len(value)))
if e != nil {
return NewTProtocolException(e)
}
if len(value) > 0 {
}
_, e = p.trans.WriteString(value)
return e
}
// Write a byte array, using a varint for the size.
func (p *TCompactProtocol) WriteBinary(bin []byte) error {
_, e := p.writeVarint32(int32(len(bin)))
if e != nil {
return NewTProtocolException(e)
}
if len(bin) > 0 {
_, e = p.trans.Write(bin)
return NewTProtocolException(e)
}
return nil
}
//
// Reading methods.
//
// Read a message header.
func (p *TCompactProtocol) ReadMessageBegin() (name string, typeId TMessageType, seqId int32, err error) {
protocolId, err := p.readByteDirect()
if err != nil {
return
}
if protocolId != COMPACT_PROTOCOL_ID {
e := fmt.Errorf("Expected protocol id %02x but got %02x", COMPACT_PROTOCOL_ID, protocolId)
return "", typeId, seqId, NewTProtocolExceptionWithType(BAD_VERSION, e)
}
versionAndType, err := p.readByteDirect()
if err != nil {
return
}
version := versionAndType & COMPACT_VERSION_MASK
typeId = TMessageType((versionAndType >> COMPACT_TYPE_SHIFT_AMOUNT) & COMPACT_TYPE_BITS)
if version != COMPACT_VERSION {
e := fmt.Errorf("Expected version %02x but got %02x", COMPACT_VERSION, version)
err = NewTProtocolExceptionWithType(BAD_VERSION, e)
return
}
seqId, e := p.readVarint32()
if e != nil {
err = NewTProtocolException(e)
return
}
name, err = p.ReadString()
return
}
func (p *TCompactProtocol) ReadMessageEnd() error { return nil }
// Read a struct begin. There's nothing on the wire for this, but it is our
// opportunity to push a new struct begin marker onto the field stack.
func (p *TCompactProtocol) ReadStructBegin() (name string, err error) {
p.lastField = append(p.lastField, p.lastFieldId)
p.lastFieldId = 0
return
}
// Doesn't actually consume any wire data, just removes the last field for
// this struct from the field stack.
func (p *TCompactProtocol) ReadStructEnd() error {
// consume the last field we read off the wire.
p.lastFieldId = p.lastField[len(p.lastField)-1]
p.lastField = p.lastField[:len(p.lastField)-1]
return nil
}
// Read a field header off the wire.
func (p *TCompactProtocol) ReadFieldBegin() (name string, typeId TType, id int16, err error) {
t, err := p.readByteDirect()
if err != nil {
return
}
// if it's a stop, then we can return immediately, as the struct is over.
if (t & 0x0f) == STOP {
return "", STOP, 0, nil
}
// mask off the 4 MSB of the type header. it could contain a field id delta.
modifier := int16((t & 0xf0) >> 4)
if modifier == 0 {
// not a delta. look ahead for the zigzag varint field id.
id, err = p.ReadI16()
if err != nil {
return
}
} else {
// has a delta. add the delta to the last read field id.
id = int16(p.lastFieldId) + modifier
}
typeId, e := p.getTType(tCompactType(t & 0x0f))
if e != nil {
err = NewTProtocolException(e)
return
}
// if this happens to be a boolean field, the value is encoded in the type
if p.isBoolType(t) {
// save the boolean value in a special instance variable.
p.boolValue = (byte(t)&0x0f == COMPACT_BOOLEAN_TRUE)
p.boolValueIsNotNull = true
}
// push the new field onto the field stack so we can keep the deltas going.
p.lastFieldId = int(id)
return
}
func (p *TCompactProtocol) ReadFieldEnd() error { return nil }
// Read a map header off the wire. If the size is zero, skip reading the key
// and value type. This means that 0-length maps will yield TMaps without the
// "correct" types.
func (p *TCompactProtocol) ReadMapBegin() (keyType TType, valueType TType, size int, err error) {
size32, e := p.readVarint32()
if e != nil {
err = NewTProtocolException(e)
return
}
if size32 < 0 {
err = invalidDataLength
return
}
size = int(size32)
keyAndValueType := byte(STOP)
if size != 0 {
keyAndValueType, err = p.readByteDirect()
if err != nil {
return
}
}
keyType, _ = p.getTType(tCompactType(keyAndValueType >> 4))
valueType, _ = p.getTType(tCompactType(keyAndValueType & 0xf))
return
}
func (p *TCompactProtocol) ReadMapEnd() error { return nil }
// Read a list header off the wire. If the list size is 0-14, the size will
// be packed into the element type header. If it's a longer list, the 4 MSB
// of the element type header will be 0xF, and a varint will follow with the
// true size.
func (p *TCompactProtocol) ReadListBegin() (elemType TType, size int, err error) {
size_and_type, err := p.readByteDirect()
if err != nil {
return
}
size = int((size_and_type >> 4) & 0x0f)
if size == 15 {
size2, e := p.readVarint32()
if e != nil {
err = NewTProtocolException(e)
return
}
if size2 < 0 {
err = invalidDataLength
return
}
size = int(size2)
}
elemType, e := p.getTType(tCompactType(size_and_type))
if e != nil {
err = NewTProtocolException(e)
return
}
return
}
func (p *TCompactProtocol) ReadListEnd() error { return nil }
// Read a set header off the wire. If the set size is 0-14, the size will
// be packed into the element type header. If it's a longer set, the 4 MSB
// of the element type header will be 0xF, and a varint will follow with the
// true size.
func (p *TCompactProtocol) ReadSetBegin() (elemType TType, size int, err error) {
return p.ReadListBegin()
}
func (p *TCompactProtocol) ReadSetEnd() error { return nil }
// Read a boolean off the wire. If this is a boolean field, the value should
// already have been read during readFieldBegin, so we'll just consume the
// pre-stored value. Otherwise, read a byte.
func (p *TCompactProtocol) ReadBool() (value bool, err error) {
if p.boolValueIsNotNull {
p.boolValueIsNotNull = false
return p.boolValue, nil
}
v, err := p.readByteDirect()
return v == COMPACT_BOOLEAN_TRUE, err
}
// Read a single byte off the wire. Nothing interesting here.
func (p *TCompactProtocol) ReadByte() (int8, error) {
v, err := p.readByteDirect()
if err != nil {
return 0, NewTProtocolException(err)
}
return int8(v), err
}
// Read an i16 from the wire as a zigzag varint.
func (p *TCompactProtocol) ReadI16() (value int16, err error) {
v, err := p.ReadI32()
return int16(v), err
}
// Read an i32 from the wire as a zigzag varint.
func (p *TCompactProtocol) ReadI32() (value int32, err error) {
v, e := p.readVarint32()
if e != nil {
return 0, NewTProtocolException(e)
}
value = p.zigzagToInt32(v)
return value, nil
}
// Read an i64 from the wire as a zigzag varint.
func (p *TCompactProtocol) ReadI64() (value int64, err error) {
v, e := p.readVarint64()
if e != nil {
return 0, NewTProtocolException(e)
}
value = p.zigzagToInt64(v)
return value, nil
}
// No magic here - just read a double off the wire.
func (p *TCompactProtocol) ReadDouble() (value float64, err error) {
longBits := p.buffer[0:8]
_, e := io.ReadFull(p.trans, longBits)
if e != nil {
return 0.0, NewTProtocolException(e)
}
return math.Float64frombits(p.bytesToUint64(longBits)), nil
}
// Reads a []byte (via readBinary), and then UTF-8 decodes it.
func (p *TCompactProtocol) ReadString() (value string, err error) {
length, e := p.readVarint32()
if e != nil {
return "", NewTProtocolException(e)
}
if length < 0 {
return "", invalidDataLength
}
if uint64(length) > p.trans.RemainingBytes() {
return "", invalidDataLength
}
if length == 0 {
return "", nil
}
var buf []byte
if length <= int32(len(p.buffer)) {
buf = p.buffer[0:length]
} else {
buf = make([]byte, length)
}
_, e = io.ReadFull(p.trans, buf)
return string(buf), NewTProtocolException(e)
}
// Read a []byte from the wire.
func (p *TCompactProtocol) ReadBinary() (value []byte, err error) {
length, e := p.readVarint32()
if e != nil {
return nil, NewTProtocolException(e)
}
if length == 0 {
return []byte{}, nil
}
if length < 0 {
return nil, invalidDataLength
}
if uint64(length) > p.trans.RemainingBytes() {
return nil, invalidDataLength
}
buf := make([]byte, length)
_, e = io.ReadFull(p.trans, buf)
return buf, NewTProtocolException(e)
}
func (p *TCompactProtocol) Flush() (err error) {
return NewTProtocolException(p.trans.Flush())
}
func (p *TCompactProtocol) Skip(fieldType TType) (err error) {
return SkipDefaultDepth(p, fieldType)
}
func (p *TCompactProtocol) Transport() TTransport {
return p.origTransport
}
//
// Internal writing methods
//
// Abstract method for writing the start of lists and sets. List and sets on
// the wire differ only by the type indicator.
func (p *TCompactProtocol) writeCollectionBegin(elemType TType, size int) (int, error) {
if size <= 14 {
return 1, p.writeByteDirect(byte(int32(size<<4) | int32(p.getCompactType(elemType))))
}
err := p.writeByteDirect(0xf0 | byte(p.getCompactType(elemType)))
if err != nil {
return 0, err
}
m, err := p.writeVarint32(int32(size))
return 1 + m, err
}
// Write an i32 as a varint. Results in 1-5 bytes on the wire.
// TODO(pomack): make a permanent buffer like writeVarint64?
func (p *TCompactProtocol) writeVarint32(n int32) (int, error) {
i32buf := p.buffer[0:5]
idx := 0
for {
if (n & ^0x7F) == 0 {
i32buf[idx] = byte(n)
idx++
// p.writeByteDirect(byte(n));
break
// return;
} else {
i32buf[idx] = byte((n & 0x7F) | 0x80)
idx++
// p.writeByteDirect(byte(((n & 0x7F) | 0x80)));
u := uint32(n)
n = int32(u >> 7)
}
}
return p.trans.Write(i32buf[0:idx])
}
// Write an i64 as a varint. Results in 1-10 bytes on the wire.
func (p *TCompactProtocol) writeVarint64(n int64) (int, error) {
varint64out := p.buffer[0:10]
idx := 0
for {
if (n & ^0x7F) == 0 {
varint64out[idx] = byte(n)
idx++
break
} else {
varint64out[idx] = byte((n & 0x7F) | 0x80)
idx++
u := uint64(n)
n = int64(u >> 7)
}
}
return p.trans.Write(varint64out[0:idx])
}
// Convert l into a zigzag long. This allows negative numbers to be
// represented compactly as a varint.
func (p *TCompactProtocol) int64ToZigzag(l int64) int64 {
return (l << 1) ^ (l >> 63)
}
// Convert l into a zigzag long. This allows negative numbers to be
// represented compactly as a varint.
func (p *TCompactProtocol) int32ToZigzag(n int32) int32 {
return (n << 1) ^ (n >> 31)
}
func (p *TCompactProtocol) fixedUint64ToBytes(n uint64, buf []byte) {
binary.LittleEndian.PutUint64(buf, n)
}
func (p *TCompactProtocol) fixedInt64ToBytes(n int64, buf []byte) {
binary.LittleEndian.PutUint64(buf, uint64(n))
}
// Writes a byte without any possibility of all that field header nonsense.
// Used internally by other writing methods that know they need to write a byte.
func (p *TCompactProtocol) writeByteDirect(b byte) error {
return p.trans.WriteByte(b)
}
// Writes a byte without any possibility of all that field header nonsense.
func (p *TCompactProtocol) writeIntAsByteDirect(n int) (int, error) {
return 1, p.writeByteDirect(byte(n))
}
//
// Internal reading methods
//
// Read an i32 from the wire as a varint. The MSB of each byte is set
// if there is another byte to follow. This can read up to 5 bytes.
func (p *TCompactProtocol) readVarint32() (int32, error) {
// if the wire contains the right stuff, this will just truncate the i64 we
// read and get us the right sign.
v, err := p.readVarint64()
return int32(v), err
}
// Read an i64 from the wire as a proper varint. The MSB of each byte is set
// if there is another byte to follow. This can read up to 10 bytes.
func (p *TCompactProtocol) readVarint64() (int64, error) {
shift := uint(0)
result := int64(0)
for {
b, err := p.readByteDirect()
if err != nil {
return 0, err
}
result |= int64(b&0x7f) << shift
if (b & 0x80) != 0x80 {
break
}
shift += 7
}
return result, nil
}
// Read a byte, unlike ReadByte that reads Thrift-byte that is i8.
func (p *TCompactProtocol) readByteDirect() (byte, error) {
return p.trans.ReadByte()
}
//
// encoding helpers
//
// Convert from zigzag int to int.
func (p *TCompactProtocol) zigzagToInt32(n int32) int32 {
u := uint32(n)
return int32(u>>1) ^ -(n & 1)
}
// Convert from zigzag long to long.
func (p *TCompactProtocol) zigzagToInt64(n int64) int64 {
u := uint64(n)
return int64(u>>1) ^ -(n & 1)
}
// Note that it's important that the mask bytes are long literals,
// otherwise they'll default to ints, and when you shift an int left 56 bits,
// you just get a messed up int.
func (p *TCompactProtocol) bytesToInt64(b []byte) int64 {
return int64(binary.LittleEndian.Uint64(b))
}
// Note that it's important that the mask bytes are long literals,
// otherwise they'll default to ints, and when you shift an int left 56 bits,
// you just get a messed up int.
func (p *TCompactProtocol) bytesToUint64(b []byte) uint64 {
return binary.LittleEndian.Uint64(b)
}
//
// type testing and converting
//
func (p *TCompactProtocol) isBoolType(b byte) bool {
return (b&0x0f) == COMPACT_BOOLEAN_TRUE || (b&0x0f) == COMPACT_BOOLEAN_FALSE
}
// Given a tCompactType constant, convert it to its corresponding
// TType value.
func (p *TCompactProtocol) getTType(t tCompactType) (TType, error) {
switch byte(t) & 0x0f {
case STOP:
return STOP, nil
case COMPACT_BOOLEAN_FALSE, COMPACT_BOOLEAN_TRUE:
return BOOL, nil
case COMPACT_BYTE:
return BYTE, nil
case COMPACT_I16:
return I16, nil
case COMPACT_I32:
return I32, nil
case COMPACT_I64:
return I64, nil
case COMPACT_DOUBLE:
return DOUBLE, nil
case COMPACT_BINARY:
return STRING, nil
case COMPACT_LIST:
return LIST, nil
case COMPACT_SET:
return SET, nil
case COMPACT_MAP:
return MAP, nil
case COMPACT_STRUCT:
return STRUCT, nil
}
return STOP, TException(fmt.Errorf("don't know what type: %d", t&0x0f))
}
// Given a TType value, find the appropriate TCompactProtocol.Types constant.
func (p *TCompactProtocol) getCompactType(t TType) tCompactType {
return ttypeToCompactType[t]
}