| /* |
| * Copyright 2018-present Open Networking Foundation |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package flowdecomposition |
| |
| import ( |
| "context" |
| "fmt" |
| |
| "github.com/gogo/protobuf/proto" |
| "github.com/opencord/voltha-go/rw_core/route" |
| fu "github.com/opencord/voltha-lib-go/v7/pkg/flows" |
| "github.com/opencord/voltha-lib-go/v7/pkg/log" |
| ofp "github.com/opencord/voltha-protos/v5/go/openflow_13" |
| "github.com/opencord/voltha-protos/v5/go/voltha" |
| "google.golang.org/grpc/codes" |
| "google.golang.org/grpc/status" |
| ) |
| |
| // FlowDecomposer represent flow decomposer attribute |
| type FlowDecomposer struct { |
| getDevice GetDeviceFunc |
| } |
| |
| // DeviceManager represents a generic device manager |
| type GetDeviceFunc func(context.Context, string) (*voltha.Device, error) |
| |
| type LogicalDeviceAgent interface { |
| GetDeviceRoutes() *route.DeviceRoutes |
| GetWildcardInputPorts(ctx context.Context, excludePort uint32) map[uint32]struct{} |
| GetRoute(ctx context.Context, ingressPortNo uint32, egressPortNo uint32) ([]route.Hop, error) |
| GetNNIPorts() map[uint32]struct{} |
| } |
| |
| // NewFlowDecomposer creates flow decomposer instance |
| func NewFlowDecomposer(getDevice GetDeviceFunc) *FlowDecomposer { |
| return &FlowDecomposer{getDevice: getDevice} |
| } |
| |
| //DecomposeRules decomposes per-device flows and flow-groups from the flows and groups defined on a logical device |
| func (fd *FlowDecomposer) DecomposeRules(ctx context.Context, agent LogicalDeviceAgent, flows map[uint64]*ofp.OfpFlowStats, groups map[uint32]*ofp.OfpGroupEntry) (*fu.DeviceRules, error) { |
| deviceRules := *fu.NewDeviceRules() |
| devicesToUpdate := make(map[string]string) |
| |
| for _, flow := range flows { |
| decomposedRules, err := fd.decomposeFlow(ctx, agent, flow, groups) |
| if err != nil { |
| return nil, err |
| } |
| for deviceID, flowAndGroups := range decomposedRules.Rules { |
| deviceRules.CreateEntryIfNotExist(deviceID) |
| deviceRules.Rules[deviceID].AddFrom(flowAndGroups) |
| devicesToUpdate[deviceID] = deviceID |
| } |
| } |
| return deviceRules.FilterRules(devicesToUpdate), nil |
| } |
| |
| // Handles special case of any controller-bound flow for a parent device |
| func (fd *FlowDecomposer) updateOutputPortForControllerBoundFlowForParentDevide(ctx context.Context, dr *fu.DeviceRules) (*fu.DeviceRules, error) { |
| EAPOL := fu.EthType(0x888e) |
| PPPoED := fu.EthType(0x8863) |
| IGMP := fu.IpProto(2) |
| UDP := fu.IpProto(17) |
| |
| newDeviceRules := dr.Copy() |
| // Check whether we are dealing with a parent device |
| for deviceID, fg := range dr.GetRules() { |
| if device, err := fd.getDevice(ctx, deviceID); err == nil && device.Root { |
| newDeviceRules.ClearFlows(deviceID) |
| for i := 0; i < fg.Flows.Len(); i++ { |
| f := fg.GetFlow(i) |
| UpdateOutPortNo := false |
| for _, field := range fu.GetOfbFields(f) { |
| UpdateOutPortNo = (field.String() == EAPOL.String()) |
| UpdateOutPortNo = UpdateOutPortNo || (field.String() == PPPoED.String()) |
| UpdateOutPortNo = UpdateOutPortNo || (field.String() == IGMP.String()) |
| UpdateOutPortNo = UpdateOutPortNo || (field.String() == UDP.String()) |
| if UpdateOutPortNo { |
| break |
| } |
| } |
| if UpdateOutPortNo { |
| f = fu.UpdateOutputPortByActionType(f, uint32(ofp.OfpInstructionType_OFPIT_APPLY_ACTIONS), |
| uint32(ofp.OfpPortNo_OFPP_CONTROLLER)) |
| } |
| // Update flow Id as a change in the instruction field will result in a new flow ID |
| //var err error |
| //if f.Id, err = fu.HashFlowStats(f); err != nil { |
| //return nil, err |
| //} |
| newDeviceRules.AddFlow(deviceID, (proto.Clone(f)).(*ofp.OfpFlowStats)) |
| } |
| } |
| } |
| |
| return newDeviceRules, nil |
| } |
| |
| //processControllerBoundFlow decomposes trap flows |
| func (fd *FlowDecomposer) processControllerBoundFlow(ctx context.Context, agent LogicalDeviceAgent, path []route.Hop, |
| inPortNo uint32, outPortNo uint32, flow *ofp.OfpFlowStats) (*fu.DeviceRules, error) { |
| |
| logger.Debugw(ctx, "trap-flow", log.Fields{"inPortNo": inPortNo, "outPortNo": outPortNo, "flow": flow}) |
| deviceRules := fu.NewDeviceRules() |
| meterID := fu.GetMeterIdFromFlow(flow) |
| metadataFromwriteMetadata := fu.GetMetadataFromWriteMetadataAction(ctx, flow) |
| |
| ingressHop := path[0] |
| egressHop := path[1] |
| |
| //case of packet_in from NNI port rule |
| if agent.GetDeviceRoutes().IsRootPort(inPortNo) { |
| // Trap flow for NNI port |
| logger.Debug(ctx, "trap-nni") |
| |
| fa := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(egressHop.Egress), |
| }, |
| Actions: fu.GetActions(flow), |
| } |
| // Augment the matchfields with the ofpfields from the flow |
| fg := fu.NewFlowsAndGroups() |
| fa.MatchFields = append(fa.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT)...) |
| fs, err := fu.MkFlowStat(fa) |
| if err != nil { |
| return nil, err |
| } |
| fg.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(egressHop.DeviceID, fg) |
| } else { |
| // Trap flow for UNI port |
| logger.Debug(ctx, "trap-uni") |
| var setVid, setPcp uint32 |
| var setVidOk, setPcpOk bool |
| //inPortNo is 0 for wildcard input case, do not include upstream port for controller bound flow in input |
| var inPorts = map[uint32]struct{}{inPortNo: {}} |
| if inPortNo == 0 { |
| inPorts = agent.GetWildcardInputPorts(ctx, egressHop.Egress) // exclude egress_hop.egress_port.port_no |
| } |
| for inputPort := range inPorts { |
| // Upstream flow on parent (olt) device |
| // Olt meters for upstream trap flows are carried on writeMetadata for Multi UNI |
| oltMeterId := fu.GetMeterIdFromWriteMetadata(ctx, flow) |
| if oltMeterId == 0 { |
| oltMeterId = meterID |
| } else { |
| fu.SetMeterIdToFlow(flow, oltMeterId) |
| } |
| faParent := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie, "meter_id": uint64(oltMeterId), "write_metadata": metadataFromwriteMetadata}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(egressHop.Ingress), |
| fu.TunnelId(uint64(inputPort)), |
| }, |
| Actions: []*ofp.OfpAction{ |
| fu.Output(egressHop.Egress), |
| }, |
| } |
| // Augment the parent device flow matchfields with the ofpfields from the flow |
| faParent.MatchFields = append(faParent.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT, fu.VLAN_VID, fu.VLAN_PCP)...) |
| // Augment the parent device flow matchfields with vlan vid and vlan pcp from action field. |
| // The child device is going to set the vlan and pcp and parent device has to match on them |
| if setVid, setVidOk = fu.GetSetActionField(ctx, flow, fu.VLAN_VID); setVidOk { |
| faParent.MatchFields = append(faParent.MatchFields, fu.VlanVid(setVid)) |
| if setPcp, setPcpOk = fu.GetSetActionField(ctx, flow, fu.VLAN_PCP); setPcpOk { |
| faParent.MatchFields = append(faParent.MatchFields, fu.VlanPcp(setPcp)) |
| } |
| } |
| |
| fgParent := fu.NewFlowsAndGroups() |
| fs, err := fu.MkFlowStat(faParent) |
| if err != nil { |
| return nil, err |
| } |
| fgParent.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(egressHop.DeviceID, fgParent) |
| logger.Debugw(ctx, "parent-trap-flow-set", log.Fields{"flow": faParent}) |
| |
| // Upstream flow on child (onu) device |
| var actions []*ofp.OfpAction |
| if setVidOk { |
| // have this child push the vlan the parent is matching/trapping on above |
| actions = []*ofp.OfpAction{ |
| fu.PushVlan(0x8100), |
| fu.SetField(fu.VlanVid(setVid)), |
| fu.Output(ingressHop.Egress), |
| } |
| if setPcpOk { |
| actions = append(actions, fu.SetField(fu.VlanPcp(setPcp))) |
| } |
| } else { |
| // otherwise just set the egress port |
| actions = []*ofp.OfpAction{ |
| fu.Output(ingressHop.Egress), |
| } |
| } |
| faChild := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie, "meter_id": uint64(meterID), "write_metadata": metadataFromwriteMetadata}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(ingressHop.Ingress), |
| fu.TunnelId(uint64(inputPort)), |
| }, |
| Actions: actions, |
| } |
| // Augment the matchfields with the ofpfields from the flow. |
| // If the parent has a match vid and the child is setting that match vid exclude the the match vlan |
| // for the child given it will be setting that vlan and the parent will be matching on it |
| faChild.MatchFields = append(faChild.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT)...) |
| fgChild := fu.NewFlowsAndGroups() |
| fs, err = fu.MkFlowStat(faChild) |
| if err != nil { |
| return nil, err |
| } |
| fgChild.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(ingressHop.DeviceID, fgChild) |
| logger.Debugw(ctx, "child-trap-flow-set", log.Fields{"flow": faChild}) |
| } |
| } |
| |
| return deviceRules, nil |
| } |
| |
| // processUpstreamNonControllerBoundFlow processes non-controller bound flow. We assume that anything that is |
| // upstream needs to get Q-in-Q treatment and that this is expressed via two flow rules, the first using the |
| // goto-statement. We also assume that the inner tag is applied at the ONU, while the outer tag is |
| // applied at the OLT |
| func (fd *FlowDecomposer) processUpstreamNonControllerBoundFlow(ctx context.Context, |
| path []route.Hop, inPortNo uint32, outPortNo uint32, flow *ofp.OfpFlowStats) (*fu.DeviceRules, error) { |
| |
| logger.Debugw(ctx, "upstream-non-controller-bound-flow", log.Fields{"inPortNo": inPortNo, "outPortNo": outPortNo}) |
| deviceRules := fu.NewDeviceRules() |
| |
| meterID := fu.GetMeterIdFromFlow(flow) |
| metadataFromwriteMetadata := fu.GetMetadataFromWriteMetadataAction(ctx, flow) |
| |
| ingressHop := path[0] |
| egressHop := path[1] |
| |
| if flow.TableId == 0 && fu.HasNextTable(flow) { |
| logger.Debugw(ctx, "decomposing-onu-flow-in-upstream-has-next-table", log.Fields{"table_id": flow.TableId}) |
| if outPortNo != 0 { |
| logger.Warnw(ctx, "outPort-should-not-be-specified", log.Fields{"outPortNo": outPortNo}) |
| return deviceRules, nil |
| } |
| fa := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie, "meter_id": uint64(meterID), "write_metadata": metadataFromwriteMetadata}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(ingressHop.Ingress), |
| fu.TunnelId(uint64(inPortNo)), |
| }, |
| Actions: fu.GetActions(flow), |
| } |
| // Augment the matchfields with the ofpfields from the flow |
| fa.MatchFields = append(fa.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT)...) |
| |
| // Augment the Actions |
| fa.Actions = append(fa.Actions, fu.Output(ingressHop.Egress)) |
| |
| fg := fu.NewFlowsAndGroups() |
| fs, err := fu.MkFlowStat(fa) |
| if err != nil { |
| return nil, err |
| } |
| fg.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(ingressHop.DeviceID, fg) |
| } else if flow.TableId == 1 && outPortNo != 0 { |
| logger.Debugw(ctx, "decomposing-olt-flow-in-upstream-has-next-table", log.Fields{"table_id": flow.TableId}) |
| fa := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie, "meter_id": uint64(meterID), "write_metadata": metadataFromwriteMetadata}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(egressHop.Ingress), |
| fu.TunnelId(uint64(inPortNo)), |
| }, |
| } |
| // Augment the matchfields with the ofpfields from the flow |
| fa.MatchFields = append(fa.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT)...) |
| |
| //Augment the actions |
| filteredAction := fu.GetActions(flow, fu.OUTPUT) |
| filteredAction = append(filteredAction, fu.Output(egressHop.Egress)) |
| fa.Actions = filteredAction |
| |
| fg := fu.NewFlowsAndGroups() |
| fs, err := fu.MkFlowStat(fa) |
| if err != nil { |
| return nil, err |
| } |
| fg.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(egressHop.DeviceID, fg) |
| } |
| return deviceRules, nil |
| } |
| |
| // processDownstreamFlowWithNextTable decomposes downstream flows containing next table ID instructions |
| func (fd *FlowDecomposer) processDownstreamFlowWithNextTable(ctx context.Context, agent LogicalDeviceAgent, path []route.Hop, |
| inPortNo uint32, outPortNo uint32, flow *ofp.OfpFlowStats) (*fu.DeviceRules, error) { |
| logger.Debugw(ctx, "decomposing-olt-flow-in-downstream-flow-with-next-table", log.Fields{"inPortNo": inPortNo, "outPortNo": outPortNo}) |
| deviceRules := fu.NewDeviceRules() |
| meterID := fu.GetMeterIdFromFlow(flow) |
| metadataFromwriteMetadata := fu.GetMetadataFromWriteMetadataAction(ctx, flow) |
| |
| if outPortNo != 0 { |
| logger.Warnw(ctx, "outPort-should-not-be-specified", log.Fields{"outPortNo": outPortNo}) |
| return deviceRules, nil |
| } |
| |
| ingressHop := path[0] |
| egressHop := path[1] |
| if metadataFromwriteMetadata != 0 { |
| logger.Debugw(ctx, "creating-metadata-flow", log.Fields{"flow": flow}) |
| portNumber := fu.GetEgressPortNumberFromWriteMetadata(ctx, flow) |
| if portNumber != 0 { |
| recalculatedRoute, err := agent.GetRoute(ctx, inPortNo, portNumber) |
| if err != nil { |
| logger.Errorw(ctx, "no-route-double-tag", log.Fields{"inPortNo": inPortNo, "outPortNo": outPortNo, "metadata": metadataFromwriteMetadata, "error": err}) |
| return deviceRules, nil |
| } |
| switch len(recalculatedRoute) { |
| case 0: |
| logger.Errorw(ctx, "no-route-double-tag", log.Fields{"inPortNo": inPortNo, "outPortNo": portNumber, "comment": "deleting-flow", "metadata": metadataFromwriteMetadata}) |
| //TODO: Delete flow |
| return deviceRules, nil |
| case 2: |
| logger.Debugw(ctx, "route-found", log.Fields{"ingressHop": ingressHop, "egressHop": egressHop}) |
| default: |
| logger.Errorw(ctx, "invalid-route-length", log.Fields{"routeLen": len(path)}) |
| return deviceRules, nil |
| } |
| ingressHop = recalculatedRoute[0] |
| } |
| innerTag := fu.GetInnerTagFromMetaData(ctx, flow) |
| if innerTag == 0 { |
| logger.Errorw(ctx, "no-inner-route-double-tag", log.Fields{"inPortNo": inPortNo, "outPortNo": portNumber, "comment": "deleting-flow", "metadata": metadataFromwriteMetadata}) |
| //TODO: Delete flow |
| return deviceRules, nil |
| } |
| fa := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie, "meter_id": uint64(meterID), "write_metadata": metadataFromwriteMetadata}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(ingressHop.Ingress), |
| fu.Metadata_ofp(uint64(innerTag)), |
| fu.TunnelId(uint64(portNumber)), |
| }, |
| Actions: fu.GetActions(flow), |
| } |
| // Augment the matchfields with the ofpfields from the flow |
| fa.MatchFields = append(fa.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT, fu.METADATA)...) |
| |
| // Augment the Actions |
| fa.Actions = append(fa.Actions, fu.Output(ingressHop.Egress)) |
| |
| fg := fu.NewFlowsAndGroups() |
| fs, err := fu.MkFlowStat(fa) |
| if err != nil { |
| return nil, err |
| } |
| fg.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(ingressHop.DeviceID, fg) |
| } else { // Create standard flow |
| logger.Debugw(ctx, "creating-standard-flow", log.Fields{"flow": flow}) |
| fa := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie, "meter_id": uint64(meterID), "write_metadata": metadataFromwriteMetadata}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(ingressHop.Ingress), |
| fu.TunnelId(uint64(inPortNo)), |
| }, |
| Actions: fu.GetActions(flow), |
| } |
| // Augment the matchfields with the ofpfields from the flow |
| fa.MatchFields = append(fa.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT)...) |
| |
| // Augment the Actions |
| fa.Actions = append(fa.Actions, fu.Output(ingressHop.Egress)) |
| |
| fg := fu.NewFlowsAndGroups() |
| fs, err := fu.MkFlowStat(fa) |
| if err != nil { |
| return nil, err |
| } |
| fg.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(ingressHop.DeviceID, fg) |
| } |
| |
| return deviceRules, nil |
| } |
| |
| // processUnicastFlow decomposes unicast flows |
| func (fd *FlowDecomposer) processUnicastFlow(ctx context.Context, path []route.Hop, |
| inPortNo uint32, outPortNo uint32, flow *ofp.OfpFlowStats) (*fu.DeviceRules, error) { |
| |
| logger.Debugw(ctx, "decomposing-onu-flow-in-downstream-unicast-flow", log.Fields{"inPortNo": inPortNo, "outPortNo": outPortNo}) |
| deviceRules := fu.NewDeviceRules() |
| |
| egressHop := path[1] |
| |
| meterID := fu.GetMeterIdFromFlow(flow) |
| metadataFromwriteMetadata := fu.GetMetadataFromWriteMetadataAction(ctx, flow) |
| fa := &fu.FlowArgs{ |
| KV: fu.OfpFlowModArgs{"priority": uint64(flow.Priority), "cookie": flow.Cookie, "meter_id": uint64(meterID), "write_metadata": metadataFromwriteMetadata}, |
| MatchFields: []*ofp.OfpOxmOfbField{ |
| fu.InPort(egressHop.Ingress), |
| }, |
| } |
| // Augment the matchfields with the ofpfields from the flow |
| fa.MatchFields = append(fa.MatchFields, fu.GetOfbFields(flow, fu.IN_PORT)...) |
| |
| // Augment the Actions |
| filteredAction := fu.GetActions(flow, fu.OUTPUT) |
| filteredAction = append(filteredAction, fu.Output(egressHop.Egress)) |
| fa.Actions = filteredAction |
| |
| fg := fu.NewFlowsAndGroups() |
| fs, err := fu.MkFlowStat(fa) |
| if err != nil { |
| return nil, err |
| } |
| fg.AddFlow(fs) |
| deviceRules.AddFlowsAndGroup(egressHop.DeviceID, fg) |
| return deviceRules, nil |
| } |
| |
| // processMulticastFlow decompose multicast flows |
| func (fd *FlowDecomposer) processMulticastFlow(ctx context.Context, path []route.Hop, |
| inPortNo uint32, outPortNo uint32, flow *ofp.OfpFlowStats, grpID uint32, |
| groupMap map[uint32]*ofp.OfpGroupEntry) *fu.DeviceRules { |
| |
| logger.Debugw(ctx, "multicast-flow", log.Fields{"inPortNo": inPortNo, "outPortNo": outPortNo}) |
| deviceRules := fu.NewDeviceRules() |
| |
| //having no Group yet is the same as having a Group with no buckets |
| var grp *ofp.OfpGroupEntry |
| var ok bool |
| if grp, ok = groupMap[grpID]; !ok { |
| logger.Warnw(ctx, "Group-id-not-present-in-map", log.Fields{"grpId": grpID, "groupMap": groupMap}) |
| return deviceRules |
| } |
| if grp == nil || grp.Desc == nil { |
| logger.Warnw(ctx, "Group-or-desc-nil", log.Fields{"grpId": grpID, "grp": grp}) |
| return deviceRules |
| } |
| |
| deviceRules.CreateEntryIfNotExist(path[0].DeviceID) |
| fg := fu.NewFlowsAndGroups() |
| fg.AddFlow(flow) |
| //return the multicast flow without decomposing it |
| deviceRules.AddFlowsAndGroup(path[0].DeviceID, fg) |
| return deviceRules |
| } |
| |
| // decomposeFlow decomposes a flow for a logical device into flows for each physical device |
| func (fd *FlowDecomposer) decomposeFlow(ctx context.Context, agent LogicalDeviceAgent, flow *ofp.OfpFlowStats, |
| groupMap map[uint32]*ofp.OfpGroupEntry) (*fu.DeviceRules, error) { |
| |
| inPortNo := fu.GetInPort(flow) |
| if fu.HasGroup(flow) && inPortNo == 0 { |
| //if no in-port specified for a multicast flow, put NNI port as in-port |
| //so that a valid path can be found for the flow |
| nniPorts := agent.GetNNIPorts() |
| if len(nniPorts) > 0 { |
| for port := range nniPorts { |
| inPortNo = port |
| break |
| } |
| logger.Debugw(ctx, "assigning-nni-port-as-in-port-for-multicast-flow", log.Fields{"nni": inPortNo, "flow:": flow}) |
| } |
| } |
| outPortNo := fu.GetOutPort(flow) |
| deviceRules := fu.NewDeviceRules() |
| path, err := agent.GetRoute(ctx, inPortNo, outPortNo) |
| if err != nil { |
| return deviceRules, err |
| } |
| |
| switch len(path) { |
| case 0: |
| return deviceRules, fmt.Errorf("no route from:%d to:%d :%w", inPortNo, outPortNo, route.ErrNoRoute) |
| case 2: |
| logger.Debugw(ctx, "route-found", log.Fields{"ingressHop": path[0], "egressHop": path[1]}) |
| default: |
| return deviceRules, fmt.Errorf("invalid route length %d :%w", len(path), route.ErrNoRoute) |
| } |
| |
| // Process controller bound flow |
| if outPortNo != 0 && (outPortNo&0x7fffffff) == uint32(ofp.OfpPortNo_OFPP_CONTROLLER) { |
| deviceRules, err = fd.processControllerBoundFlow(ctx, agent, path, inPortNo, outPortNo, flow) |
| if err != nil { |
| return nil, err |
| } |
| } else { |
| var ingressDevice *voltha.Device |
| var err error |
| if ingressDevice, err = fd.getDevice(ctx, path[0].DeviceID); err != nil { |
| // This can happen in a race condition where a device is deleted right after we obtain a |
| // route involving the device (GetRoute() above). Handle it as a no route event as well. |
| return deviceRules, fmt.Errorf("get-device-error :%v :%w", err, route.ErrNoRoute) |
| } |
| isUpstream := !ingressDevice.Root |
| if isUpstream { // Unicast OLT and ONU UL |
| logger.Debug(ctx, "process-olt-and-onu-upstream-non-controller-bound-uni-cast-flows", log.Fields{"flows": flow}) |
| deviceRules, err = fd.processUpstreamNonControllerBoundFlow(ctx, path, inPortNo, outPortNo, flow) |
| if err != nil { |
| return nil, err |
| } |
| } else if fu.HasNextTable(flow) && (flow.GetTableId() == 0 || flow.GetTableId() == 1) { // Unicast OLT Flow |
| // For 'Non-MPLS' flows, this condition will only be true for table-id 0 as only table-id 0 will have the |
| // 'go-to-next-table' instruction |
| // For 'MPLS' flows, this condition will be true for table-id 0 and table-id 1. |
| // So the flow here shall always be an OLT flow |
| logger.Debugw(ctx, "process-olt-downstream-non-controller-bound-flow-with-next-table", log.Fields{"flows": flow}) |
| deviceRules, err = fd.processDownstreamFlowWithNextTable(ctx, agent, path, inPortNo, outPortNo, flow) |
| if err != nil { |
| return nil, err |
| } |
| } else if (flow.GetTableId() == 1 || flow.GetTableId() == 2) && outPortNo != 0 { // Unicast ONU flow DL |
| // If this is an MPLS OLT flow (table-id 1, transition-to-table 2), the condition above will already be hit. |
| // So if we are reaching this point, the flow shall always be an ONU flow |
| logger.Debugw(ctx, "process-onu-downstream-uni-cast-flow", log.Fields{"flows": flow}) |
| deviceRules, err = fd.processUnicastFlow(ctx, path, inPortNo, outPortNo, flow) |
| if err != nil { |
| return nil, err |
| } |
| } else if grpID := fu.GetGroup(flow); grpID != 0 && flow.TableId == 0 { //Multicast |
| logger.Debugw(ctx, "process-multicast-flow", log.Fields{"flows": flow}) |
| deviceRules = fd.processMulticastFlow(ctx, path, inPortNo, outPortNo, flow, grpID, groupMap) |
| } else { |
| return deviceRules, status.Errorf(codes.Aborted, "unknown downstream flow %v", *flow) |
| } |
| } |
| deviceRules, err = fd.updateOutputPortForControllerBoundFlowForParentDevide(ctx, deviceRules) |
| return deviceRules, err |
| } |