| package lz4 |
| |
| import ( |
| "encoding/binary" |
| "errors" |
| ) |
| |
| var ( |
| // ErrInvalidSourceShortBuffer is returned by UncompressBlock or CompressBLock when a compressed |
| // block is corrupted or the destination buffer is not large enough for the uncompressed data. |
| ErrInvalidSourceShortBuffer = errors.New("lz4: invalid source or destination buffer too short") |
| // ErrInvalid is returned when reading an invalid LZ4 archive. |
| ErrInvalid = errors.New("lz4: bad magic number") |
| ) |
| |
| // blockHash hashes 4 bytes into a value < winSize. |
| func blockHash(x uint32) uint32 { |
| const hasher uint32 = 2654435761 // Knuth multiplicative hash. |
| return x * hasher >> hashShift |
| } |
| |
| // CompressBlockBound returns the maximum size of a given buffer of size n, when not compressible. |
| func CompressBlockBound(n int) int { |
| return n + n/255 + 16 |
| } |
| |
| // UncompressBlock uncompresses the source buffer into the destination one, |
| // and returns the uncompressed size. |
| // |
| // The destination buffer must be sized appropriately. |
| // |
| // An error is returned if the source data is invalid or the destination buffer is too small. |
| func UncompressBlock(src, dst []byte) (si int, err error) { |
| defer func() { |
| // It is now faster to let the runtime panic and recover on out of bound slice access |
| // than checking indices as we go along. |
| if recover() != nil { |
| err = ErrInvalidSourceShortBuffer |
| } |
| }() |
| sn := len(src) |
| if sn == 0 { |
| return 0, nil |
| } |
| var di int |
| |
| for { |
| // Literals and match lengths (token). |
| b := int(src[si]) |
| si++ |
| |
| // Literals. |
| if lLen := b >> 4; lLen > 0 { |
| if lLen == 0xF { |
| for src[si] == 0xFF { |
| lLen += 0xFF |
| si++ |
| } |
| lLen += int(src[si]) |
| si++ |
| } |
| i := si |
| si += lLen |
| di += copy(dst[di:di+si-i], src[i:si]) |
| |
| if si >= sn { |
| return di, nil |
| } |
| } |
| |
| si++ |
| _ = src[si] // Bound check elimination. |
| offset := int(src[si-1]) | int(src[si])<<8 |
| si++ |
| |
| // Match. |
| mLen := b & 0xF |
| if mLen == 0xF { |
| for src[si] == 0xFF { |
| mLen += 0xFF |
| si++ |
| } |
| mLen += int(src[si]) |
| si++ |
| } |
| mLen += minMatch |
| |
| // Copy the match. |
| i := di - offset |
| if offset > 0 && mLen >= offset { |
| // Efficiently copy the match dst[di-offset:di] into the dst slice. |
| bytesToCopy := offset * (mLen / offset) |
| expanded := dst[i:] |
| for n := offset; n <= bytesToCopy+offset; n *= 2 { |
| copy(expanded[n:], expanded[:n]) |
| } |
| di += bytesToCopy |
| mLen -= bytesToCopy |
| } |
| di += copy(dst[di:di+mLen], dst[i:i+mLen]) |
| } |
| } |
| |
| // CompressBlock compresses the source buffer into the destination one. |
| // This is the fast version of LZ4 compression and also the default one. |
| // The size of hashTable must be at least 64Kb. |
| // |
| // The size of the compressed data is returned. If it is 0 and no error, then the data is incompressible. |
| // |
| // An error is returned if the destination buffer is too small. |
| func CompressBlock(src, dst []byte, hashTable []int) (di int, err error) { |
| defer func() { |
| if recover() != nil { |
| err = ErrInvalidSourceShortBuffer |
| } |
| }() |
| |
| sn, dn := len(src)-mfLimit, len(dst) |
| if sn <= 0 || dn == 0 { |
| return 0, nil |
| } |
| var si int |
| |
| // Fast scan strategy: the hash table only stores the last 4 bytes sequences. |
| // const accInit = 1 << skipStrength |
| |
| anchor := si // Position of the current literals. |
| // acc := accInit // Variable step: improves performance on non-compressible data. |
| |
| for si < sn { |
| // Hash the next 4 bytes (sequence)... |
| match := binary.LittleEndian.Uint32(src[si:]) |
| h := blockHash(match) |
| |
| ref := hashTable[h] |
| hashTable[h] = si |
| if ref >= sn { // Invalid reference (dirty hashtable). |
| si++ |
| continue |
| } |
| offset := si - ref |
| if offset <= 0 || offset >= winSize || // Out of window. |
| match != binary.LittleEndian.Uint32(src[ref:]) { // Hash collision on different matches. |
| // si += acc >> skipStrength |
| // acc++ |
| si++ |
| continue |
| } |
| |
| // Match found. |
| // acc = accInit |
| lLen := si - anchor // Literal length. |
| |
| // Encode match length part 1. |
| si += minMatch |
| mLen := si // Match length has minMatch already. |
| // Find the longest match, first looking by batches of 8 bytes. |
| for si < sn && binary.LittleEndian.Uint64(src[si:]) == binary.LittleEndian.Uint64(src[si-offset:]) { |
| si += 8 |
| } |
| // Then byte by byte. |
| for si < sn && src[si] == src[si-offset] { |
| si++ |
| } |
| |
| mLen = si - mLen |
| if mLen < 0xF { |
| dst[di] = byte(mLen) |
| } else { |
| dst[di] = 0xF |
| } |
| |
| // Encode literals length. |
| if lLen < 0xF { |
| dst[di] |= byte(lLen << 4) |
| } else { |
| dst[di] |= 0xF0 |
| di++ |
| l := lLen - 0xF |
| for ; l >= 0xFF; l -= 0xFF { |
| dst[di] = 0xFF |
| di++ |
| } |
| dst[di] = byte(l) |
| } |
| di++ |
| |
| // Literals. |
| copy(dst[di:di+lLen], src[anchor:anchor+lLen]) |
| di += lLen + 2 |
| anchor = si |
| |
| // Encode offset. |
| _ = dst[di] // Bound check elimination. |
| dst[di-2], dst[di-1] = byte(offset), byte(offset>>8) |
| |
| // Encode match length part 2. |
| if mLen >= 0xF { |
| for mLen -= 0xF; mLen >= 0xFF; mLen -= 0xFF { |
| dst[di] = 0xFF |
| di++ |
| } |
| dst[di] = byte(mLen) |
| di++ |
| } |
| } |
| |
| if anchor == 0 { |
| // Incompressible. |
| return 0, nil |
| } |
| |
| // Last literals. |
| lLen := len(src) - anchor |
| if lLen < 0xF { |
| dst[di] = byte(lLen << 4) |
| } else { |
| dst[di] = 0xF0 |
| di++ |
| for lLen -= 0xF; lLen >= 0xFF; lLen -= 0xFF { |
| dst[di] = 0xFF |
| di++ |
| } |
| dst[di] = byte(lLen) |
| } |
| di++ |
| |
| // Write the last literals. |
| if di >= anchor { |
| // Incompressible. |
| return 0, nil |
| } |
| di += copy(dst[di:di+len(src)-anchor], src[anchor:]) |
| return di, nil |
| } |
| |
| // CompressBlockHC compresses the source buffer src into the destination dst |
| // with max search depth (use 0 or negative value for no max). |
| // |
| // CompressBlockHC compression ratio is better than CompressBlock but it is also slower. |
| // |
| // The size of the compressed data is returned. If it is 0 and no error, then the data is not compressible. |
| // |
| // An error is returned if the destination buffer is too small. |
| func CompressBlockHC(src, dst []byte, depth int) (di int, err error) { |
| defer func() { |
| if recover() != nil { |
| err = ErrInvalidSourceShortBuffer |
| } |
| }() |
| |
| sn, dn := len(src)-mfLimit, len(dst) |
| if sn <= 0 || dn == 0 { |
| return 0, nil |
| } |
| var si int |
| |
| // hashTable: stores the last position found for a given hash |
| // chaingTable: stores previous positions for a given hash |
| var hashTable, chainTable [winSize]int |
| |
| if depth <= 0 { |
| depth = winSize |
| } |
| |
| anchor := si |
| for si < sn { |
| // Hash the next 4 bytes (sequence). |
| match := binary.LittleEndian.Uint32(src[si:]) |
| h := blockHash(match) |
| |
| // Follow the chain until out of window and give the longest match. |
| mLen := 0 |
| offset := 0 |
| for next, try := hashTable[h], depth; try > 0 && next > 0 && si-next < winSize; next = chainTable[next&winMask] { |
| // The first (mLen==0) or next byte (mLen>=minMatch) at current match length |
| // must match to improve on the match length. |
| if src[next+mLen] != src[si+mLen] { |
| continue |
| } |
| ml := 0 |
| // Compare the current position with a previous with the same hash. |
| for ml < sn-si && binary.LittleEndian.Uint64(src[next+ml:]) == binary.LittleEndian.Uint64(src[si+ml:]) { |
| ml += 8 |
| } |
| for ml < sn-si && src[next+ml] == src[si+ml] { |
| ml++ |
| } |
| if ml < minMatch || ml <= mLen { |
| // Match too small (<minMath) or smaller than the current match. |
| continue |
| } |
| // Found a longer match, keep its position and length. |
| mLen = ml |
| offset = si - next |
| // Try another previous position with the same hash. |
| try-- |
| } |
| chainTable[si&winMask] = hashTable[h] |
| hashTable[h] = si |
| |
| // No match found. |
| if mLen == 0 { |
| si++ |
| continue |
| } |
| |
| // Match found. |
| // Update hash/chain tables with overlapping bytes: |
| // si already hashed, add everything from si+1 up to the match length. |
| winStart := si + 1 |
| if ws := si + mLen - winSize; ws > winStart { |
| winStart = ws |
| } |
| for si, ml := winStart, si+mLen; si < ml; { |
| match >>= 8 |
| match |= uint32(src[si+3]) << 24 |
| h := blockHash(match) |
| chainTable[si&winMask] = hashTable[h] |
| hashTable[h] = si |
| si++ |
| } |
| |
| lLen := si - anchor |
| si += mLen |
| mLen -= minMatch // Match length does not include minMatch. |
| |
| if mLen < 0xF { |
| dst[di] = byte(mLen) |
| } else { |
| dst[di] = 0xF |
| } |
| |
| // Encode literals length. |
| if lLen < 0xF { |
| dst[di] |= byte(lLen << 4) |
| } else { |
| dst[di] |= 0xF0 |
| di++ |
| l := lLen - 0xF |
| for ; l >= 0xFF; l -= 0xFF { |
| dst[di] = 0xFF |
| di++ |
| } |
| dst[di] = byte(l) |
| } |
| di++ |
| |
| // Literals. |
| copy(dst[di:di+lLen], src[anchor:anchor+lLen]) |
| di += lLen |
| anchor = si |
| |
| // Encode offset. |
| di += 2 |
| dst[di-2], dst[di-1] = byte(offset), byte(offset>>8) |
| |
| // Encode match length part 2. |
| if mLen >= 0xF { |
| for mLen -= 0xF; mLen >= 0xFF; mLen -= 0xFF { |
| dst[di] = 0xFF |
| di++ |
| } |
| dst[di] = byte(mLen) |
| di++ |
| } |
| } |
| |
| if anchor == 0 { |
| // Incompressible. |
| return 0, nil |
| } |
| |
| // Last literals. |
| lLen := len(src) - anchor |
| if lLen < 0xF { |
| dst[di] = byte(lLen << 4) |
| } else { |
| dst[di] = 0xF0 |
| di++ |
| lLen -= 0xF |
| for ; lLen >= 0xFF; lLen -= 0xFF { |
| dst[di] = 0xFF |
| di++ |
| } |
| dst[di] = byte(lLen) |
| } |
| di++ |
| |
| // Write the last literals. |
| if di >= anchor { |
| // Incompressible. |
| return 0, nil |
| } |
| di += copy(dst[di:di+len(src)-anchor], src[anchor:]) |
| return di, nil |
| } |