| /* |
| * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. |
| * All rights reserved. |
| * |
| * This source code is licensed under both the BSD-style license (found in the |
| * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
| * in the COPYING file in the root directory of this source tree). |
| * You may select, at your option, one of the above-listed licenses. |
| */ |
| |
| |
| /*-************************************** |
| * Tuning parameters |
| ****************************************/ |
| #define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */ |
| #define ZDICT_MAX_SAMPLES_SIZE (2000U << 20) |
| #define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO) |
| |
| |
| /*-************************************** |
| * Compiler Options |
| ****************************************/ |
| /* Unix Large Files support (>4GB) */ |
| #define _FILE_OFFSET_BITS 64 |
| #if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */ |
| # define _LARGEFILE_SOURCE |
| #elif ! defined(__LP64__) /* No point defining Large file for 64 bit */ |
| # define _LARGEFILE64_SOURCE |
| #endif |
| |
| |
| /*-************************************* |
| * Dependencies |
| ***************************************/ |
| #include <stdlib.h> /* malloc, free */ |
| #include <string.h> /* memset */ |
| #include <stdio.h> /* fprintf, fopen, ftello64 */ |
| #include <time.h> /* clock */ |
| |
| #include "mem.h" /* read */ |
| #include "fse.h" /* FSE_normalizeCount, FSE_writeNCount */ |
| #define HUF_STATIC_LINKING_ONLY |
| #include "huf.h" /* HUF_buildCTable, HUF_writeCTable */ |
| #include "zstd_internal.h" /* includes zstd.h */ |
| #include "xxhash.h" /* XXH64 */ |
| #include "divsufsort.h" |
| #ifndef ZDICT_STATIC_LINKING_ONLY |
| # define ZDICT_STATIC_LINKING_ONLY |
| #endif |
| #include "zdict.h" |
| |
| |
| /*-************************************* |
| * Constants |
| ***************************************/ |
| #define KB *(1 <<10) |
| #define MB *(1 <<20) |
| #define GB *(1U<<30) |
| |
| #define DICTLISTSIZE_DEFAULT 10000 |
| |
| #define NOISELENGTH 32 |
| |
| static const int g_compressionLevel_default = 3; |
| static const U32 g_selectivity_default = 9; |
| |
| |
| /*-************************************* |
| * Console display |
| ***************************************/ |
| #define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); } |
| #define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ |
| |
| static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; } |
| |
| static void ZDICT_printHex(const void* ptr, size_t length) |
| { |
| const BYTE* const b = (const BYTE*)ptr; |
| size_t u; |
| for (u=0; u<length; u++) { |
| BYTE c = b[u]; |
| if (c<32 || c>126) c = '.'; /* non-printable char */ |
| DISPLAY("%c", c); |
| } |
| } |
| |
| |
| /*-******************************************************** |
| * Helper functions |
| **********************************************************/ |
| unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); } |
| |
| const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } |
| |
| unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize) |
| { |
| if (dictSize < 8) return 0; |
| if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0; |
| return MEM_readLE32((const char*)dictBuffer + 4); |
| } |
| |
| |
| /*-******************************************************** |
| * Dictionary training functions |
| **********************************************************/ |
| static unsigned ZDICT_NbCommonBytes (size_t val) |
| { |
| if (MEM_isLittleEndian()) { |
| if (MEM_64bits()) { |
| # if defined(_MSC_VER) && defined(_WIN64) |
| unsigned long r = 0; |
| _BitScanForward64( &r, (U64)val ); |
| return (unsigned)(r>>3); |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| return (__builtin_ctzll((U64)val) >> 3); |
| # else |
| static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 }; |
| return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58]; |
| # endif |
| } else { /* 32 bits */ |
| # if defined(_MSC_VER) |
| unsigned long r=0; |
| _BitScanForward( &r, (U32)val ); |
| return (unsigned)(r>>3); |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| return (__builtin_ctz((U32)val) >> 3); |
| # else |
| static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 }; |
| return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27]; |
| # endif |
| } |
| } else { /* Big Endian CPU */ |
| if (MEM_64bits()) { |
| # if defined(_MSC_VER) && defined(_WIN64) |
| unsigned long r = 0; |
| _BitScanReverse64( &r, val ); |
| return (unsigned)(r>>3); |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| return (__builtin_clzll(val) >> 3); |
| # else |
| unsigned r; |
| const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */ |
| if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; } |
| if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; } |
| r += (!val); |
| return r; |
| # endif |
| } else { /* 32 bits */ |
| # if defined(_MSC_VER) |
| unsigned long r = 0; |
| _BitScanReverse( &r, (unsigned long)val ); |
| return (unsigned)(r>>3); |
| # elif defined(__GNUC__) && (__GNUC__ >= 3) |
| return (__builtin_clz((U32)val) >> 3); |
| # else |
| unsigned r; |
| if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; } |
| r += (!val); |
| return r; |
| # endif |
| } } |
| } |
| |
| |
| /*! ZDICT_count() : |
| Count the nb of common bytes between 2 pointers. |
| Note : this function presumes end of buffer followed by noisy guard band. |
| */ |
| static size_t ZDICT_count(const void* pIn, const void* pMatch) |
| { |
| const char* const pStart = (const char*)pIn; |
| for (;;) { |
| size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn); |
| if (!diff) { |
| pIn = (const char*)pIn+sizeof(size_t); |
| pMatch = (const char*)pMatch+sizeof(size_t); |
| continue; |
| } |
| pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff); |
| return (size_t)((const char*)pIn - pStart); |
| } |
| } |
| |
| |
| typedef struct { |
| U32 pos; |
| U32 length; |
| U32 savings; |
| } dictItem; |
| |
| static void ZDICT_initDictItem(dictItem* d) |
| { |
| d->pos = 1; |
| d->length = 0; |
| d->savings = (U32)(-1); |
| } |
| |
| |
| #define LLIMIT 64 /* heuristic determined experimentally */ |
| #define MINMATCHLENGTH 7 /* heuristic determined experimentally */ |
| static dictItem ZDICT_analyzePos( |
| BYTE* doneMarks, |
| const int* suffix, U32 start, |
| const void* buffer, U32 minRatio, U32 notificationLevel) |
| { |
| U32 lengthList[LLIMIT] = {0}; |
| U32 cumulLength[LLIMIT] = {0}; |
| U32 savings[LLIMIT] = {0}; |
| const BYTE* b = (const BYTE*)buffer; |
| size_t maxLength = LLIMIT; |
| size_t pos = suffix[start]; |
| U32 end = start; |
| dictItem solution; |
| |
| /* init */ |
| memset(&solution, 0, sizeof(solution)); |
| doneMarks[pos] = 1; |
| |
| /* trivial repetition cases */ |
| if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2)) |
| ||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3)) |
| ||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) { |
| /* skip and mark segment */ |
| U16 const pattern16 = MEM_read16(b+pos+4); |
| U32 u, patternEnd = 6; |
| while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ; |
| if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++; |
| for (u=1; u<patternEnd; u++) |
| doneMarks[pos+u] = 1; |
| return solution; |
| } |
| |
| /* look forward */ |
| { size_t length; |
| do { |
| end++; |
| length = ZDICT_count(b + pos, b + suffix[end]); |
| } while (length >= MINMATCHLENGTH); |
| } |
| |
| /* look backward */ |
| { size_t length; |
| do { |
| length = ZDICT_count(b + pos, b + *(suffix+start-1)); |
| if (length >=MINMATCHLENGTH) start--; |
| } while(length >= MINMATCHLENGTH); |
| } |
| |
| /* exit if not found a minimum nb of repetitions */ |
| if (end-start < minRatio) { |
| U32 idx; |
| for(idx=start; idx<end; idx++) |
| doneMarks[suffix[idx]] = 1; |
| return solution; |
| } |
| |
| { int i; |
| U32 searchLength; |
| U32 refinedStart = start; |
| U32 refinedEnd = end; |
| |
| DISPLAYLEVEL(4, "\n"); |
| DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (U32)(end-start), MINMATCHLENGTH, (U32)pos); |
| DISPLAYLEVEL(4, "\n"); |
| |
| for (searchLength = MINMATCHLENGTH ; ; searchLength++) { |
| BYTE currentChar = 0; |
| U32 currentCount = 0; |
| U32 currentID = refinedStart; |
| U32 id; |
| U32 selectedCount = 0; |
| U32 selectedID = currentID; |
| for (id =refinedStart; id < refinedEnd; id++) { |
| if (b[suffix[id] + searchLength] != currentChar) { |
| if (currentCount > selectedCount) { |
| selectedCount = currentCount; |
| selectedID = currentID; |
| } |
| currentID = id; |
| currentChar = b[ suffix[id] + searchLength]; |
| currentCount = 0; |
| } |
| currentCount ++; |
| } |
| if (currentCount > selectedCount) { /* for last */ |
| selectedCount = currentCount; |
| selectedID = currentID; |
| } |
| |
| if (selectedCount < minRatio) |
| break; |
| refinedStart = selectedID; |
| refinedEnd = refinedStart + selectedCount; |
| } |
| |
| /* evaluate gain based on new ref */ |
| start = refinedStart; |
| pos = suffix[refinedStart]; |
| end = start; |
| memset(lengthList, 0, sizeof(lengthList)); |
| |
| /* look forward */ |
| { size_t length; |
| do { |
| end++; |
| length = ZDICT_count(b + pos, b + suffix[end]); |
| if (length >= LLIMIT) length = LLIMIT-1; |
| lengthList[length]++; |
| } while (length >=MINMATCHLENGTH); |
| } |
| |
| /* look backward */ |
| { size_t length = MINMATCHLENGTH; |
| while ((length >= MINMATCHLENGTH) & (start > 0)) { |
| length = ZDICT_count(b + pos, b + suffix[start - 1]); |
| if (length >= LLIMIT) length = LLIMIT - 1; |
| lengthList[length]++; |
| if (length >= MINMATCHLENGTH) start--; |
| } |
| } |
| |
| /* largest useful length */ |
| memset(cumulLength, 0, sizeof(cumulLength)); |
| cumulLength[maxLength-1] = lengthList[maxLength-1]; |
| for (i=(int)(maxLength-2); i>=0; i--) |
| cumulLength[i] = cumulLength[i+1] + lengthList[i]; |
| |
| for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break; |
| maxLength = i; |
| |
| /* reduce maxLength in case of final into repetitive data */ |
| { U32 l = (U32)maxLength; |
| BYTE const c = b[pos + maxLength-1]; |
| while (b[pos+l-2]==c) l--; |
| maxLength = l; |
| } |
| if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */ |
| |
| /* calculate savings */ |
| savings[5] = 0; |
| for (i=MINMATCHLENGTH; i<=(int)maxLength; i++) |
| savings[i] = savings[i-1] + (lengthList[i] * (i-3)); |
| |
| DISPLAYLEVEL(4, "Selected ref at position %u, of length %u : saves %u (ratio: %.2f) \n", |
| (U32)pos, (U32)maxLength, savings[maxLength], (double)savings[maxLength] / maxLength); |
| |
| solution.pos = (U32)pos; |
| solution.length = (U32)maxLength; |
| solution.savings = savings[maxLength]; |
| |
| /* mark positions done */ |
| { U32 id; |
| for (id=start; id<end; id++) { |
| U32 p, pEnd, length; |
| U32 const testedPos = suffix[id]; |
| if (testedPos == pos) |
| length = solution.length; |
| else { |
| length = (U32)ZDICT_count(b+pos, b+testedPos); |
| if (length > solution.length) length = solution.length; |
| } |
| pEnd = (U32)(testedPos + length); |
| for (p=testedPos; p<pEnd; p++) |
| doneMarks[p] = 1; |
| } } } |
| |
| return solution; |
| } |
| |
| |
| static int isIncluded(const void* in, const void* container, size_t length) |
| { |
| const char* const ip = (const char*) in; |
| const char* const into = (const char*) container; |
| size_t u; |
| |
| for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */ |
| if (ip[u] != into[u]) break; |
| } |
| |
| return u==length; |
| } |
| |
| /*! ZDICT_tryMerge() : |
| check if dictItem can be merged, do it if possible |
| @return : id of destination elt, 0 if not merged |
| */ |
| static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer) |
| { |
| const U32 tableSize = table->pos; |
| const U32 eltEnd = elt.pos + elt.length; |
| const char* const buf = (const char*) buffer; |
| |
| /* tail overlap */ |
| U32 u; for (u=1; u<tableSize; u++) { |
| if (u==eltNbToSkip) continue; |
| if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */ |
| /* append */ |
| U32 const addedLength = table[u].pos - elt.pos; |
| table[u].length += addedLength; |
| table[u].pos = elt.pos; |
| table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ |
| table[u].savings += elt.length / 8; /* rough approx bonus */ |
| elt = table[u]; |
| /* sort : improve rank */ |
| while ((u>1) && (table[u-1].savings < elt.savings)) |
| table[u] = table[u-1], u--; |
| table[u] = elt; |
| return u; |
| } } |
| |
| /* front overlap */ |
| for (u=1; u<tableSize; u++) { |
| if (u==eltNbToSkip) continue; |
| |
| if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */ |
| /* append */ |
| int const addedLength = (int)eltEnd - (table[u].pos + table[u].length); |
| table[u].savings += elt.length / 8; /* rough approx bonus */ |
| if (addedLength > 0) { /* otherwise, elt fully included into existing */ |
| table[u].length += addedLength; |
| table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */ |
| } |
| /* sort : improve rank */ |
| elt = table[u]; |
| while ((u>1) && (table[u-1].savings < elt.savings)) |
| table[u] = table[u-1], u--; |
| table[u] = elt; |
| return u; |
| } |
| |
| if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) { |
| if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) { |
| size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 ); |
| table[u].pos = elt.pos; |
| table[u].savings += (U32)(elt.savings * addedLength / elt.length); |
| table[u].length = MIN(elt.length, table[u].length + 1); |
| return u; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| static void ZDICT_removeDictItem(dictItem* table, U32 id) |
| { |
| /* convention : table[0].pos stores nb of elts */ |
| U32 const max = table[0].pos; |
| U32 u; |
| if (!id) return; /* protection, should never happen */ |
| for (u=id; u<max-1; u++) |
| table[u] = table[u+1]; |
| table->pos--; |
| } |
| |
| |
| static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer) |
| { |
| /* merge if possible */ |
| U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer); |
| if (mergeId) { |
| U32 newMerge = 1; |
| while (newMerge) { |
| newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer); |
| if (newMerge) ZDICT_removeDictItem(table, mergeId); |
| mergeId = newMerge; |
| } |
| return; |
| } |
| |
| /* insert */ |
| { U32 current; |
| U32 nextElt = table->pos; |
| if (nextElt >= maxSize) nextElt = maxSize-1; |
| current = nextElt-1; |
| while (table[current].savings < elt.savings) { |
| table[current+1] = table[current]; |
| current--; |
| } |
| table[current+1] = elt; |
| table->pos = nextElt+1; |
| } |
| } |
| |
| |
| static U32 ZDICT_dictSize(const dictItem* dictList) |
| { |
| U32 u, dictSize = 0; |
| for (u=1; u<dictList[0].pos; u++) |
| dictSize += dictList[u].length; |
| return dictSize; |
| } |
| |
| |
| static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize, |
| const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */ |
| const size_t* fileSizes, unsigned nbFiles, |
| U32 minRatio, U32 notificationLevel) |
| { |
| int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0)); |
| int* const suffix = suffix0+1; |
| U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix)); |
| BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */ |
| U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos)); |
| size_t result = 0; |
| clock_t displayClock = 0; |
| clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10; |
| |
| # define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \ |
| if (ZDICT_clockSpan(displayClock) > refreshRate) \ |
| { displayClock = clock(); DISPLAY(__VA_ARGS__); \ |
| if (notificationLevel>=4) fflush(stderr); } } |
| |
| /* init */ |
| DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ |
| if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) { |
| result = ERROR(memory_allocation); |
| goto _cleanup; |
| } |
| if (minRatio < MINRATIO) minRatio = MINRATIO; |
| memset(doneMarks, 0, bufferSize+16); |
| |
| /* limit sample set size (divsufsort limitation)*/ |
| if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (U32)(ZDICT_MAX_SAMPLES_SIZE>>20)); |
| while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles]; |
| |
| /* sort */ |
| DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (U32)(bufferSize>>20)); |
| { int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0); |
| if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; } |
| } |
| suffix[bufferSize] = (int)bufferSize; /* leads into noise */ |
| suffix0[0] = (int)bufferSize; /* leads into noise */ |
| /* build reverse suffix sort */ |
| { size_t pos; |
| for (pos=0; pos < bufferSize; pos++) |
| reverseSuffix[suffix[pos]] = (U32)pos; |
| /* note filePos tracks borders between samples. |
| It's not used at this stage, but planned to become useful in a later update */ |
| filePos[0] = 0; |
| for (pos=1; pos<nbFiles; pos++) |
| filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]); |
| } |
| |
| DISPLAYLEVEL(2, "finding patterns ... \n"); |
| DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio); |
| |
| { U32 cursor; for (cursor=0; cursor < bufferSize; ) { |
| dictItem solution; |
| if (doneMarks[cursor]) { cursor++; continue; } |
| solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel); |
| if (solution.length==0) { cursor++; continue; } |
| ZDICT_insertDictItem(dictList, dictListSize, solution, buffer); |
| cursor += solution.length; |
| DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100); |
| } } |
| |
| _cleanup: |
| free(suffix0); |
| free(reverseSuffix); |
| free(doneMarks); |
| free(filePos); |
| return result; |
| } |
| |
| |
| static void ZDICT_fillNoise(void* buffer, size_t length) |
| { |
| unsigned const prime1 = 2654435761U; |
| unsigned const prime2 = 2246822519U; |
| unsigned acc = prime1; |
| size_t p=0;; |
| for (p=0; p<length; p++) { |
| acc *= prime2; |
| ((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21); |
| } |
| } |
| |
| |
| typedef struct |
| { |
| ZSTD_CCtx* ref; /* contains reference to dictionary */ |
| ZSTD_CCtx* zc; /* working context */ |
| void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */ |
| } EStats_ress_t; |
| |
| #define MAXREPOFFSET 1024 |
| |
| static void ZDICT_countEStats(EStats_ress_t esr, ZSTD_parameters params, |
| U32* countLit, U32* offsetcodeCount, U32* matchlengthCount, U32* litlengthCount, U32* repOffsets, |
| const void* src, size_t srcSize, |
| U32 notificationLevel) |
| { |
| size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params.cParams.windowLog); |
| size_t cSize; |
| |
| if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */ |
| { size_t const errorCode = ZSTD_copyCCtx(esr.zc, esr.ref, 0); |
| if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_copyCCtx failed \n"); return; } |
| } |
| cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize); |
| if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (U32)srcSize); return; } |
| |
| if (cSize) { /* if == 0; block is not compressible */ |
| const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc); |
| |
| /* literals stats */ |
| { const BYTE* bytePtr; |
| for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++) |
| countLit[*bytePtr]++; |
| } |
| |
| /* seqStats */ |
| { U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart); |
| ZSTD_seqToCodes(seqStorePtr); |
| |
| { const BYTE* codePtr = seqStorePtr->ofCode; |
| U32 u; |
| for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++; |
| } |
| |
| { const BYTE* codePtr = seqStorePtr->mlCode; |
| U32 u; |
| for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++; |
| } |
| |
| { const BYTE* codePtr = seqStorePtr->llCode; |
| U32 u; |
| for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++; |
| } |
| |
| if (nbSeq >= 2) { /* rep offsets */ |
| const seqDef* const seq = seqStorePtr->sequencesStart; |
| U32 offset1 = seq[0].offset - 3; |
| U32 offset2 = seq[1].offset - 3; |
| if (offset1 >= MAXREPOFFSET) offset1 = 0; |
| if (offset2 >= MAXREPOFFSET) offset2 = 0; |
| repOffsets[offset1] += 3; |
| repOffsets[offset2] += 1; |
| } } } |
| } |
| |
| static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles) |
| { |
| size_t total=0; |
| unsigned u; |
| for (u=0; u<nbFiles; u++) total += fileSizes[u]; |
| return total; |
| } |
| |
| typedef struct { U32 offset; U32 count; } offsetCount_t; |
| |
| static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count) |
| { |
| U32 u; |
| table[ZSTD_REP_NUM].offset = val; |
| table[ZSTD_REP_NUM].count = count; |
| for (u=ZSTD_REP_NUM; u>0; u--) { |
| offsetCount_t tmp; |
| if (table[u-1].count >= table[u].count) break; |
| tmp = table[u-1]; |
| table[u-1] = table[u]; |
| table[u] = tmp; |
| } |
| } |
| |
| /* ZDICT_flatLit() : |
| * rewrite `countLit` to contain a mostly flat but still compressible distribution of literals. |
| * necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode. |
| */ |
| static void ZDICT_flatLit(U32* countLit) |
| { |
| int u; |
| for (u=1; u<256; u++) countLit[u] = 2; |
| countLit[0] = 4; |
| countLit[253] = 1; |
| countLit[254] = 1; |
| } |
| |
| #define OFFCODE_MAX 30 /* only applicable to first block */ |
| static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize, |
| unsigned compressionLevel, |
| const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles, |
| const void* dictBuffer, size_t dictBufferSize, |
| unsigned notificationLevel) |
| { |
| U32 countLit[256]; |
| HUF_CREATE_STATIC_CTABLE(hufTable, 255); |
| U32 offcodeCount[OFFCODE_MAX+1]; |
| short offcodeNCount[OFFCODE_MAX+1]; |
| U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB)); |
| U32 matchLengthCount[MaxML+1]; |
| short matchLengthNCount[MaxML+1]; |
| U32 litLengthCount[MaxLL+1]; |
| short litLengthNCount[MaxLL+1]; |
| U32 repOffset[MAXREPOFFSET]; |
| offsetCount_t bestRepOffset[ZSTD_REP_NUM+1]; |
| EStats_ress_t esr; |
| ZSTD_parameters params; |
| U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total; |
| size_t pos = 0, errorCode; |
| size_t eSize = 0; |
| size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles); |
| size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles); |
| BYTE* dstPtr = (BYTE*)dstBuffer; |
| |
| /* init */ |
| DEBUGLOG(4, "ZDICT_analyzeEntropy"); |
| esr.ref = ZSTD_createCCtx(); |
| esr.zc = ZSTD_createCCtx(); |
| esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX); |
| if (!esr.ref || !esr.zc || !esr.workPlace) { |
| eSize = ERROR(memory_allocation); |
| DISPLAYLEVEL(1, "Not enough memory \n"); |
| goto _cleanup; |
| } |
| if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */ |
| for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */ |
| for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1; |
| for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1; |
| for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1; |
| memset(repOffset, 0, sizeof(repOffset)); |
| repOffset[1] = repOffset[4] = repOffset[8] = 1; |
| memset(bestRepOffset, 0, sizeof(bestRepOffset)); |
| if (compressionLevel<=0) compressionLevel = g_compressionLevel_default; |
| params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize); |
| { size_t const beginResult = ZSTD_compressBegin_advanced(esr.ref, dictBuffer, dictBufferSize, params, 0); |
| if (ZSTD_isError(beginResult)) { |
| DISPLAYLEVEL(1, "error : ZSTD_compressBegin_advanced() failed : %s \n", ZSTD_getErrorName(beginResult)); |
| eSize = ERROR(GENERIC); |
| goto _cleanup; |
| } } |
| |
| /* collect stats on all samples */ |
| for (u=0; u<nbFiles; u++) { |
| ZDICT_countEStats(esr, params, |
| countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset, |
| (const char*)srcBuffer + pos, fileSizes[u], |
| notificationLevel); |
| pos += fileSizes[u]; |
| } |
| |
| /* analyze, build stats, starting with literals */ |
| { size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog); |
| if (HUF_isError(maxNbBits)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, " HUF_buildCTable error \n"); |
| goto _cleanup; |
| } |
| if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */ |
| DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n"); |
| ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */ |
| maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog); |
| assert(maxNbBits==9); |
| } |
| huffLog = (U32)maxNbBits; |
| } |
| |
| /* looking for most common first offsets */ |
| { U32 offset; |
| for (offset=1; offset<MAXREPOFFSET; offset++) |
| ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]); |
| } |
| /* note : the result of this phase should be used to better appreciate the impact on statistics */ |
| |
| total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u]; |
| errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax); |
| if (FSE_isError(errorCode)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n"); |
| goto _cleanup; |
| } |
| Offlog = (U32)errorCode; |
| |
| total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u]; |
| errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML); |
| if (FSE_isError(errorCode)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n"); |
| goto _cleanup; |
| } |
| mlLog = (U32)errorCode; |
| |
| total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u]; |
| errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL); |
| if (FSE_isError(errorCode)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n"); |
| goto _cleanup; |
| } |
| llLog = (U32)errorCode; |
| |
| /* write result to buffer */ |
| { size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog); |
| if (HUF_isError(hhSize)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "HUF_writeCTable error \n"); |
| goto _cleanup; |
| } |
| dstPtr += hhSize; |
| maxDstSize -= hhSize; |
| eSize += hhSize; |
| } |
| |
| { size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog); |
| if (FSE_isError(ohSize)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n"); |
| goto _cleanup; |
| } |
| dstPtr += ohSize; |
| maxDstSize -= ohSize; |
| eSize += ohSize; |
| } |
| |
| { size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog); |
| if (FSE_isError(mhSize)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n"); |
| goto _cleanup; |
| } |
| dstPtr += mhSize; |
| maxDstSize -= mhSize; |
| eSize += mhSize; |
| } |
| |
| { size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog); |
| if (FSE_isError(lhSize)) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n"); |
| goto _cleanup; |
| } |
| dstPtr += lhSize; |
| maxDstSize -= lhSize; |
| eSize += lhSize; |
| } |
| |
| if (maxDstSize<12) { |
| eSize = ERROR(GENERIC); |
| DISPLAYLEVEL(1, "not enough space to write RepOffsets \n"); |
| goto _cleanup; |
| } |
| # if 0 |
| MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset); |
| MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset); |
| MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset); |
| #else |
| /* at this stage, we don't use the result of "most common first offset", |
| as the impact of statistics is not properly evaluated */ |
| MEM_writeLE32(dstPtr+0, repStartValue[0]); |
| MEM_writeLE32(dstPtr+4, repStartValue[1]); |
| MEM_writeLE32(dstPtr+8, repStartValue[2]); |
| #endif |
| eSize += 12; |
| |
| _cleanup: |
| ZSTD_freeCCtx(esr.ref); |
| ZSTD_freeCCtx(esr.zc); |
| free(esr.workPlace); |
| |
| return eSize; |
| } |
| |
| |
| |
| size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity, |
| const void* customDictContent, size_t dictContentSize, |
| const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| ZDICT_params_t params) |
| { |
| size_t hSize; |
| #define HBUFFSIZE 256 /* should prove large enough for all entropy headers */ |
| BYTE header[HBUFFSIZE]; |
| int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel; |
| U32 const notificationLevel = params.notificationLevel; |
| |
| /* check conditions */ |
| DEBUGLOG(4, "ZDICT_finalizeDictionary"); |
| if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall); |
| if (dictContentSize < ZDICT_CONTENTSIZE_MIN) return ERROR(srcSize_wrong); |
| if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall); |
| |
| /* dictionary header */ |
| MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY); |
| { U64 const randomID = XXH64(customDictContent, dictContentSize, 0); |
| U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; |
| U32 const dictID = params.dictID ? params.dictID : compliantID; |
| MEM_writeLE32(header+4, dictID); |
| } |
| hSize = 8; |
| |
| /* entropy tables */ |
| DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ |
| DISPLAYLEVEL(2, "statistics ... \n"); |
| { size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize, |
| compressionLevel, |
| samplesBuffer, samplesSizes, nbSamples, |
| customDictContent, dictContentSize, |
| notificationLevel); |
| if (ZDICT_isError(eSize)) return eSize; |
| hSize += eSize; |
| } |
| |
| /* copy elements in final buffer ; note : src and dst buffer can overlap */ |
| if (hSize + dictContentSize > dictBufferCapacity) dictContentSize = dictBufferCapacity - hSize; |
| { size_t const dictSize = hSize + dictContentSize; |
| char* dictEnd = (char*)dictBuffer + dictSize; |
| memmove(dictEnd - dictContentSize, customDictContent, dictContentSize); |
| memcpy(dictBuffer, header, hSize); |
| return dictSize; |
| } |
| } |
| |
| |
| size_t ZDICT_addEntropyTablesFromBuffer_advanced(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, |
| const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| ZDICT_params_t params) |
| { |
| int const compressionLevel = (params.compressionLevel <= 0) ? g_compressionLevel_default : params.compressionLevel; |
| U32 const notificationLevel = params.notificationLevel; |
| size_t hSize = 8; |
| |
| /* calculate entropy tables */ |
| DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */ |
| DISPLAYLEVEL(2, "statistics ... \n"); |
| { size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize, |
| compressionLevel, |
| samplesBuffer, samplesSizes, nbSamples, |
| (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, |
| notificationLevel); |
| if (ZDICT_isError(eSize)) return eSize; |
| hSize += eSize; |
| } |
| |
| /* add dictionary header (after entropy tables) */ |
| MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY); |
| { U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0); |
| U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768; |
| U32 const dictID = params.dictID ? params.dictID : compliantID; |
| MEM_writeLE32((char*)dictBuffer+4, dictID); |
| } |
| |
| if (hSize + dictContentSize < dictBufferCapacity) |
| memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize); |
| return MIN(dictBufferCapacity, hSize+dictContentSize); |
| } |
| |
| |
| /*! ZDICT_trainFromBuffer_unsafe_legacy() : |
| * Warning : `samplesBuffer` must be followed by noisy guard band. |
| * @return : size of dictionary, or an error code which can be tested with ZDICT_isError() |
| */ |
| size_t ZDICT_trainFromBuffer_unsafe_legacy( |
| void* dictBuffer, size_t maxDictSize, |
| const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| ZDICT_legacy_params_t params) |
| { |
| U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16)); |
| dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList)); |
| unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel; |
| unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity; |
| size_t const targetDictSize = maxDictSize; |
| size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); |
| size_t dictSize = 0; |
| U32 const notificationLevel = params.zParams.notificationLevel; |
| |
| /* checks */ |
| if (!dictList) return ERROR(memory_allocation); |
| if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */ |
| if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */ |
| |
| /* init */ |
| ZDICT_initDictItem(dictList); |
| |
| /* build dictionary */ |
| ZDICT_trainBuffer_legacy(dictList, dictListSize, |
| samplesBuffer, samplesBuffSize, |
| samplesSizes, nbSamples, |
| minRep, notificationLevel); |
| |
| /* display best matches */ |
| if (params.zParams.notificationLevel>= 3) { |
| U32 const nb = MIN(25, dictList[0].pos); |
| U32 const dictContentSize = ZDICT_dictSize(dictList); |
| U32 u; |
| DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", dictList[0].pos-1, dictContentSize); |
| DISPLAYLEVEL(3, "list %u best segments \n", nb-1); |
| for (u=1; u<nb; u++) { |
| U32 const pos = dictList[u].pos; |
| U32 const length = dictList[u].length; |
| U32 const printedLength = MIN(40, length); |
| if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) |
| return ERROR(GENERIC); /* should never happen */ |
| DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |", |
| u, length, pos, dictList[u].savings); |
| ZDICT_printHex((const char*)samplesBuffer+pos, printedLength); |
| DISPLAYLEVEL(3, "| \n"); |
| } } |
| |
| |
| /* create dictionary */ |
| { U32 dictContentSize = ZDICT_dictSize(dictList); |
| if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */ |
| if (dictContentSize < targetDictSize/4) { |
| DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (U32)maxDictSize); |
| if (samplesBuffSize < 10 * targetDictSize) |
| DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (U32)(samplesBuffSize>>20)); |
| if (minRep > MINRATIO) { |
| DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1); |
| DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n"); |
| } |
| } |
| |
| if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) { |
| U32 proposedSelectivity = selectivity-1; |
| while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; } |
| DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (U32)maxDictSize); |
| DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity); |
| DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n"); |
| } |
| |
| /* limit dictionary size */ |
| { U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */ |
| U32 currentSize = 0; |
| U32 n; for (n=1; n<max; n++) { |
| currentSize += dictList[n].length; |
| if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; } |
| } |
| dictList->pos = n; |
| dictContentSize = currentSize; |
| } |
| |
| /* build dict content */ |
| { U32 u; |
| BYTE* ptr = (BYTE*)dictBuffer + maxDictSize; |
| for (u=1; u<dictList->pos; u++) { |
| U32 l = dictList[u].length; |
| ptr -= l; |
| if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */ |
| memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l); |
| } } |
| |
| dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize, |
| samplesBuffer, samplesSizes, nbSamples, |
| params.zParams); |
| } |
| |
| /* clean up */ |
| free(dictList); |
| return dictSize; |
| } |
| |
| |
| /* ZDICT_trainFromBuffer_legacy() : |
| * issue : samplesBuffer need to be followed by a noisy guard band. |
| * work around : duplicate the buffer, and add the noise */ |
| size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity, |
| const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples, |
| ZDICT_legacy_params_t params) |
| { |
| size_t result; |
| void* newBuff; |
| size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples); |
| if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */ |
| |
| newBuff = malloc(sBuffSize + NOISELENGTH); |
| if (!newBuff) return ERROR(memory_allocation); |
| |
| memcpy(newBuff, samplesBuffer, sBuffSize); |
| ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */ |
| |
| result = |
| ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff, |
| samplesSizes, nbSamples, params); |
| free(newBuff); |
| return result; |
| } |
| |
| |
| size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity, |
| const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) |
| { |
| ZDICT_cover_params_t params; |
| DEBUGLOG(3, "ZDICT_trainFromBuffer"); |
| memset(¶ms, 0, sizeof(params)); |
| params.d = 8; |
| params.steps = 4; |
| /* Default to level 6 since no compression level information is available */ |
| params.zParams.compressionLevel = 6; |
| #if defined(ZSTD_DEBUG) && (ZSTD_DEBUG>=1) |
| params.zParams.notificationLevel = ZSTD_DEBUG; |
| #endif |
| return ZDICT_optimizeTrainFromBuffer_cover(dictBuffer, dictBufferCapacity, |
| samplesBuffer, samplesSizes, nbSamples, |
| ¶ms); |
| } |
| |
| size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity, |
| const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples) |
| { |
| ZDICT_params_t params; |
| memset(¶ms, 0, sizeof(params)); |
| return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity, |
| samplesBuffer, samplesSizes, nbSamples, |
| params); |
| } |