blob: 0c7fc382034f88934a8a614a33136784a3e32bfc [file] [log] [blame]
Scott Baker8461e152019-10-01 14:44:30 -07001// Package keytab implements Kerberos keytabs: https://web.mit.edu/kerberos/krb5-devel/doc/formats/keytab_file_format.html.
2package keytab
3
4import (
5 "bytes"
6 "encoding/binary"
7 "errors"
8 "fmt"
9 "io"
10 "io/ioutil"
11 "time"
12 "unsafe"
13
14 "gopkg.in/jcmturner/gokrb5.v7/types"
15)
16
17const (
18 keytabFirstByte byte = 05
19)
20
21// Keytab struct.
22type Keytab struct {
23 version uint8
24 Entries []entry
25}
26
27// Keytab entry struct.
28type entry struct {
29 Principal principal
30 Timestamp time.Time
31 KVNO8 uint8
32 Key types.EncryptionKey
33 KVNO uint32
34}
35
36// Keytab entry principal struct.
37type principal struct {
38 NumComponents int16
39 Realm string
40 Components []string
41 NameType int32
42}
43
44// New creates new, empty Keytab type.
45func New() *Keytab {
46 var e []entry
47 return &Keytab{
48 version: 0,
49 Entries: e,
50 }
51}
52
53// GetEncryptionKey returns the EncryptionKey from the Keytab for the newest entry with the required kvno, etype and matching principal.
54func (kt *Keytab) GetEncryptionKey(princName types.PrincipalName, realm string, kvno int, etype int32) (types.EncryptionKey, error) {
55 //TODO (theme: KVNO from keytab) this function should return the kvno too
56 var key types.EncryptionKey
57 var t time.Time
58 for _, k := range kt.Entries {
59 if k.Principal.Realm == realm && len(k.Principal.Components) == len(princName.NameString) &&
60 k.Key.KeyType == etype &&
61 (k.KVNO == uint32(kvno) || kvno == 0) &&
62 k.Timestamp.After(t) {
63 p := true
64 for i, n := range k.Principal.Components {
65 if princName.NameString[i] != n {
66 p = false
67 break
68 }
69 }
70 if p {
71 key = k.Key
72 t = k.Timestamp
73 }
74 }
75 }
76 if len(key.KeyValue) < 1 {
77 return key, fmt.Errorf("matching key not found in keytab. Looking for %v realm: %v kvno: %v etype: %v", princName.NameString, realm, kvno, etype)
78 }
79 return key, nil
80}
81
82// Create a new Keytab entry.
83func newKeytabEntry() entry {
84 var b []byte
85 return entry{
86 Principal: newPrincipal(),
87 Timestamp: time.Time{},
88 KVNO8: 0,
89 Key: types.EncryptionKey{
90 KeyType: 0,
91 KeyValue: b,
92 },
93 KVNO: 0,
94 }
95}
96
97// Create a new principal.
98func newPrincipal() principal {
99 var c []string
100 return principal{
101 NumComponents: 0,
102 Realm: "",
103 Components: c,
104 NameType: 0,
105 }
106}
107
108// Load a Keytab file into a Keytab type.
109func Load(ktPath string) (*Keytab, error) {
110 kt := new(Keytab)
111 b, err := ioutil.ReadFile(ktPath)
112 if err != nil {
113 return kt, err
114 }
115 err = kt.Unmarshal(b)
116 return kt, err
117}
118
119// Marshal keytab into byte slice
120func (kt *Keytab) Marshal() ([]byte, error) {
121 b := []byte{keytabFirstByte, kt.version}
122 for _, e := range kt.Entries {
123 eb, err := e.marshal(int(kt.version))
124 if err != nil {
125 return b, err
126 }
127 b = append(b, eb...)
128 }
129 return b, nil
130}
131
132// Write the keytab bytes to io.Writer.
133// Returns the number of bytes written
134func (kt *Keytab) Write(w io.Writer) (int, error) {
135 b, err := kt.Marshal()
136 if err != nil {
137 return 0, fmt.Errorf("error marshaling keytab: %v", err)
138 }
139 return w.Write(b)
140}
141
142// Unmarshal byte slice of Keytab data into Keytab type.
143func (kt *Keytab) Unmarshal(b []byte) error {
144 //The first byte of the file always has the value 5
145 if b[0] != keytabFirstByte {
146 return errors.New("invalid keytab data. First byte does not equal 5")
147 }
148 //Get keytab version
149 //The 2nd byte contains the version number (1 or 2)
150 kt.version = b[1]
151 if kt.version != 1 && kt.version != 2 {
152 return errors.New("invalid keytab data. Keytab version is neither 1 nor 2")
153 }
154 //Version 1 of the file format uses native byte order for integer representations. Version 2 always uses big-endian byte order
155 var endian binary.ByteOrder
156 endian = binary.BigEndian
157 if kt.version == 1 && isNativeEndianLittle() {
158 endian = binary.LittleEndian
159 }
160 /*
161 After the two-byte version indicator, the file contains a sequence of signed 32-bit record lengths followed by key records or holes.
162 A positive record length indicates a valid key entry whose size is equal to or less than the record length.
163 A negative length indicates a zero-filled hole whose size is the inverse of the length.
164 A length of 0 indicates the end of the file.
165 */
166 // n tracks position in the byte array
167 n := 2
168 l := readInt32(b, &n, &endian)
169 for l != 0 {
170 if l < 0 {
171 //Zero padded so skip over
172 l = l * -1
173 n = n + int(l)
174 } else {
175 //fmt.Printf("Bytes for entry: %v\n", b[n:n+int(l)])
176 eb := b[n : n+int(l)]
177 n = n + int(l)
178 ke := newKeytabEntry()
179 // p keeps track as to where we are in the byte stream
180 var p int
181 parsePrincipal(eb, &p, kt, &ke, &endian)
182 ke.Timestamp = readTimestamp(eb, &p, &endian)
183 ke.KVNO8 = uint8(readInt8(eb, &p, &endian))
184 ke.Key.KeyType = int32(readInt16(eb, &p, &endian))
185 kl := int(readInt16(eb, &p, &endian))
186 ke.Key.KeyValue = readBytes(eb, &p, kl, &endian)
187 //The 32-bit key version overrides the 8-bit key version.
188 // To determine if it is present, the implementation must check that at least 4 bytes remain in the record after the other fields are read,
189 // and that the value of the 32-bit integer contained in those bytes is non-zero.
190 if len(eb)-p >= 4 {
191 // The 32-bit key may be present
192 ke.KVNO = uint32(readInt32(eb, &p, &endian))
193 }
194 if ke.KVNO == 0 {
195 // Handles if the value from the last 4 bytes was zero and also if there are not the 4 bytes present. Makes sense to put the same value here as KVNO8
196 ke.KVNO = uint32(ke.KVNO8)
197 }
198 // Add the entry to the keytab
199 kt.Entries = append(kt.Entries, ke)
200 }
201 // Check if there are still 4 bytes left to read
202 if n > len(b) || len(b[n:]) < 4 {
203 break
204 }
205 // Read the size of the next entry
206 l = readInt32(b, &n, &endian)
207 }
208 return nil
209}
210
211func (e entry) marshal(v int) ([]byte, error) {
212 var b []byte
213 pb, err := e.Principal.marshal(v)
214 if err != nil {
215 return b, err
216 }
217 b = append(b, pb...)
218
219 var endian binary.ByteOrder
220 endian = binary.BigEndian
221 if v == 1 && isNativeEndianLittle() {
222 endian = binary.LittleEndian
223 }
224
225 t := make([]byte, 9)
226 endian.PutUint32(t[0:4], uint32(e.Timestamp.Unix()))
227 t[4] = e.KVNO8
228 endian.PutUint16(t[5:7], uint16(e.Key.KeyType))
229 endian.PutUint16(t[7:9], uint16(len(e.Key.KeyValue)))
230 b = append(b, t...)
231
232 buf := new(bytes.Buffer)
233 err = binary.Write(buf, endian, e.Key.KeyValue)
234 if err != nil {
235 return b, err
236 }
237 b = append(b, buf.Bytes()...)
238
239 t = make([]byte, 4)
240 endian.PutUint32(t, e.KVNO)
241 b = append(b, t...)
242
243 // Add the length header
244 t = make([]byte, 4)
245 endian.PutUint32(t, uint32(len(b)))
246 b = append(t, b...)
247 return b, nil
248}
249
250// Parse the Keytab bytes of a principal into a Keytab entry's principal.
251func parsePrincipal(b []byte, p *int, kt *Keytab, ke *entry, e *binary.ByteOrder) error {
252 ke.Principal.NumComponents = readInt16(b, p, e)
253 if kt.version == 1 {
254 //In version 1 the number of components includes the realm. Minus 1 to make consistent with version 2
255 ke.Principal.NumComponents--
256 }
257 lenRealm := readInt16(b, p, e)
258 ke.Principal.Realm = string(readBytes(b, p, int(lenRealm), e))
259 for i := 0; i < int(ke.Principal.NumComponents); i++ {
260 l := readInt16(b, p, e)
261 ke.Principal.Components = append(ke.Principal.Components, string(readBytes(b, p, int(l), e)))
262 }
263 if kt.version != 1 {
264 //Name Type is omitted in version 1
265 ke.Principal.NameType = readInt32(b, p, e)
266 }
267 return nil
268}
269
270func (p principal) marshal(v int) ([]byte, error) {
271 //var b []byte
272 b := make([]byte, 2)
273 var endian binary.ByteOrder
274 endian = binary.BigEndian
275 if v == 1 && isNativeEndianLittle() {
276 endian = binary.LittleEndian
277 }
278 endian.PutUint16(b[0:], uint16(p.NumComponents))
279 realm, err := marshalString(p.Realm, v)
280 if err != nil {
281 return b, err
282 }
283 b = append(b, realm...)
284 for _, c := range p.Components {
285 cb, err := marshalString(c, v)
286 if err != nil {
287 return b, err
288 }
289 b = append(b, cb...)
290 }
291 if v != 1 {
292 t := make([]byte, 4)
293 endian.PutUint32(t, uint32(p.NameType))
294 b = append(b, t...)
295 }
296 return b, nil
297}
298
299func marshalString(s string, v int) ([]byte, error) {
300 sb := []byte(s)
301 b := make([]byte, 2)
302 var endian binary.ByteOrder
303 endian = binary.BigEndian
304 if v == 1 && isNativeEndianLittle() {
305 endian = binary.LittleEndian
306 }
307 endian.PutUint16(b[0:], uint16(len(sb)))
308 buf := new(bytes.Buffer)
309 err := binary.Write(buf, endian, sb)
310 if err != nil {
311 return b, err
312 }
313 b = append(b, buf.Bytes()...)
314 return b, err
315}
316
317// Read bytes representing a timestamp.
318func readTimestamp(b []byte, p *int, e *binary.ByteOrder) time.Time {
319 return time.Unix(int64(readInt32(b, p, e)), 0)
320}
321
322// Read bytes representing an eight bit integer.
323func readInt8(b []byte, p *int, e *binary.ByteOrder) (i int8) {
324 buf := bytes.NewBuffer(b[*p : *p+1])
325 binary.Read(buf, *e, &i)
326 *p++
327 return
328}
329
330// Read bytes representing a sixteen bit integer.
331func readInt16(b []byte, p *int, e *binary.ByteOrder) (i int16) {
332 buf := bytes.NewBuffer(b[*p : *p+2])
333 binary.Read(buf, *e, &i)
334 *p += 2
335 return
336}
337
338// Read bytes representing a thirty two bit integer.
339func readInt32(b []byte, p *int, e *binary.ByteOrder) (i int32) {
340 buf := bytes.NewBuffer(b[*p : *p+4])
341 binary.Read(buf, *e, &i)
342 *p += 4
343 return
344}
345
346func readBytes(b []byte, p *int, s int, e *binary.ByteOrder) []byte {
347 buf := bytes.NewBuffer(b[*p : *p+s])
348 r := make([]byte, s)
349 binary.Read(buf, *e, &r)
350 *p += s
351 return r
352}
353
354func isNativeEndianLittle() bool {
355 var x = 0x012345678
356 var p = unsafe.Pointer(&x)
357 var bp = (*[4]byte)(p)
358
359 var endian bool
360 if 0x01 == bp[0] {
361 endian = false
362 } else if (0x78 & 0xff) == (bp[0] & 0xff) {
363 endian = true
364 } else {
365 // Default to big endian
366 endian = false
367 }
368 return endian
369}