blob: 4bb86aa0fe5123ba07ae6ac239ad0c9db3b209b0 [file] [log] [blame]
khenaidooac637102019-01-14 15:44:34 -05001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15 "encoding/binary"
16 "net"
Stephane Barbarie260a5632019-02-26 16:12:49 -050017 "runtime"
khenaidooac637102019-01-14 15:44:34 -050018 "syscall"
19 "unsafe"
20)
21
22/*
23 * Wrapped
24 */
25
26func Access(path string, mode uint32) (err error) {
27 return Faccessat(AT_FDCWD, path, mode, 0)
28}
29
30func Chmod(path string, mode uint32) (err error) {
31 return Fchmodat(AT_FDCWD, path, mode, 0)
32}
33
34func Chown(path string, uid int, gid int) (err error) {
35 return Fchownat(AT_FDCWD, path, uid, gid, 0)
36}
37
38func Creat(path string, mode uint32) (fd int, err error) {
39 return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
40}
41
42//sys fchmodat(dirfd int, path string, mode uint32) (err error)
43
44func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
45 // Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
46 // and check the flags. Otherwise the mode would be applied to the symlink
47 // destination which is not what the user expects.
48 if flags&^AT_SYMLINK_NOFOLLOW != 0 {
49 return EINVAL
50 } else if flags&AT_SYMLINK_NOFOLLOW != 0 {
51 return EOPNOTSUPP
52 }
53 return fchmodat(dirfd, path, mode)
54}
55
56//sys ioctl(fd int, req uint, arg uintptr) (err error)
57
58// ioctl itself should not be exposed directly, but additional get/set
59// functions for specific types are permissible.
60
61// IoctlSetPointerInt performs an ioctl operation which sets an
62// integer value on fd, using the specified request number. The ioctl
63// argument is called with a pointer to the integer value, rather than
64// passing the integer value directly.
65func IoctlSetPointerInt(fd int, req uint, value int) error {
66 v := int32(value)
67 return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
68}
69
70// IoctlSetInt performs an ioctl operation which sets an integer value
71// on fd, using the specified request number.
72func IoctlSetInt(fd int, req uint, value int) error {
73 return ioctl(fd, req, uintptr(value))
74}
75
76func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
77 return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
78}
79
80func ioctlSetTermios(fd int, req uint, value *Termios) error {
81 return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
82}
83
Stephane Barbarie260a5632019-02-26 16:12:49 -050084func IoctlSetRTCTime(fd int, value *RTCTime) error {
85 err := ioctl(fd, RTC_SET_TIME, uintptr(unsafe.Pointer(value)))
86 runtime.KeepAlive(value)
87 return err
88}
89
khenaidooac637102019-01-14 15:44:34 -050090// IoctlGetInt performs an ioctl operation which gets an integer value
91// from fd, using the specified request number.
92func IoctlGetInt(fd int, req uint) (int, error) {
93 var value int
94 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
95 return value, err
96}
97
98func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
99 var value Winsize
100 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
101 return &value, err
102}
103
104func IoctlGetTermios(fd int, req uint) (*Termios, error) {
105 var value Termios
106 err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
107 return &value, err
108}
109
Stephane Barbarie260a5632019-02-26 16:12:49 -0500110func IoctlGetRTCTime(fd int) (*RTCTime, error) {
111 var value RTCTime
112 err := ioctl(fd, RTC_RD_TIME, uintptr(unsafe.Pointer(&value)))
113 return &value, err
114}
115
khenaidooac637102019-01-14 15:44:34 -0500116//sys Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
117
118func Link(oldpath string, newpath string) (err error) {
119 return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
120}
121
122func Mkdir(path string, mode uint32) (err error) {
123 return Mkdirat(AT_FDCWD, path, mode)
124}
125
126func Mknod(path string, mode uint32, dev int) (err error) {
127 return Mknodat(AT_FDCWD, path, mode, dev)
128}
129
130func Open(path string, mode int, perm uint32) (fd int, err error) {
131 return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
132}
133
134//sys openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
135
136func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
137 return openat(dirfd, path, flags|O_LARGEFILE, mode)
138}
139
140//sys ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
141
142func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
143 if len(fds) == 0 {
144 return ppoll(nil, 0, timeout, sigmask)
145 }
146 return ppoll(&fds[0], len(fds), timeout, sigmask)
147}
148
149//sys Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
150
151func Readlink(path string, buf []byte) (n int, err error) {
152 return Readlinkat(AT_FDCWD, path, buf)
153}
154
155func Rename(oldpath string, newpath string) (err error) {
156 return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
157}
158
159func Rmdir(path string) error {
160 return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
161}
162
163//sys Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
164
165func Symlink(oldpath string, newpath string) (err error) {
166 return Symlinkat(oldpath, AT_FDCWD, newpath)
167}
168
169func Unlink(path string) error {
170 return Unlinkat(AT_FDCWD, path, 0)
171}
172
173//sys Unlinkat(dirfd int, path string, flags int) (err error)
174
175func Utimes(path string, tv []Timeval) error {
176 if tv == nil {
177 err := utimensat(AT_FDCWD, path, nil, 0)
178 if err != ENOSYS {
179 return err
180 }
181 return utimes(path, nil)
182 }
183 if len(tv) != 2 {
184 return EINVAL
185 }
186 var ts [2]Timespec
187 ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
188 ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
189 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
190 if err != ENOSYS {
191 return err
192 }
193 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
194}
195
196//sys utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
197
198func UtimesNano(path string, ts []Timespec) error {
199 if ts == nil {
200 err := utimensat(AT_FDCWD, path, nil, 0)
201 if err != ENOSYS {
202 return err
203 }
204 return utimes(path, nil)
205 }
206 if len(ts) != 2 {
207 return EINVAL
208 }
209 err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
210 if err != ENOSYS {
211 return err
212 }
213 // If the utimensat syscall isn't available (utimensat was added to Linux
214 // in 2.6.22, Released, 8 July 2007) then fall back to utimes
215 var tv [2]Timeval
216 for i := 0; i < 2; i++ {
217 tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
218 }
219 return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
220}
221
222func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
223 if ts == nil {
224 return utimensat(dirfd, path, nil, flags)
225 }
226 if len(ts) != 2 {
227 return EINVAL
228 }
229 return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
230}
231
232func Futimesat(dirfd int, path string, tv []Timeval) error {
233 if tv == nil {
234 return futimesat(dirfd, path, nil)
235 }
236 if len(tv) != 2 {
237 return EINVAL
238 }
239 return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
240}
241
242func Futimes(fd int, tv []Timeval) (err error) {
243 // Believe it or not, this is the best we can do on Linux
244 // (and is what glibc does).
245 return Utimes("/proc/self/fd/"+itoa(fd), tv)
246}
247
248const ImplementsGetwd = true
249
250//sys Getcwd(buf []byte) (n int, err error)
251
252func Getwd() (wd string, err error) {
253 var buf [PathMax]byte
254 n, err := Getcwd(buf[0:])
255 if err != nil {
256 return "", err
257 }
258 // Getcwd returns the number of bytes written to buf, including the NUL.
259 if n < 1 || n > len(buf) || buf[n-1] != 0 {
260 return "", EINVAL
261 }
262 return string(buf[0 : n-1]), nil
263}
264
265func Getgroups() (gids []int, err error) {
266 n, err := getgroups(0, nil)
267 if err != nil {
268 return nil, err
269 }
270 if n == 0 {
271 return nil, nil
272 }
273
274 // Sanity check group count. Max is 1<<16 on Linux.
275 if n < 0 || n > 1<<20 {
276 return nil, EINVAL
277 }
278
279 a := make([]_Gid_t, n)
280 n, err = getgroups(n, &a[0])
281 if err != nil {
282 return nil, err
283 }
284 gids = make([]int, n)
285 for i, v := range a[0:n] {
286 gids[i] = int(v)
287 }
288 return
289}
290
291func Setgroups(gids []int) (err error) {
292 if len(gids) == 0 {
293 return setgroups(0, nil)
294 }
295
296 a := make([]_Gid_t, len(gids))
297 for i, v := range gids {
298 a[i] = _Gid_t(v)
299 }
300 return setgroups(len(a), &a[0])
301}
302
303type WaitStatus uint32
304
305// Wait status is 7 bits at bottom, either 0 (exited),
306// 0x7F (stopped), or a signal number that caused an exit.
307// The 0x80 bit is whether there was a core dump.
308// An extra number (exit code, signal causing a stop)
309// is in the high bits. At least that's the idea.
310// There are various irregularities. For example, the
311// "continued" status is 0xFFFF, distinguishing itself
312// from stopped via the core dump bit.
313
314const (
315 mask = 0x7F
316 core = 0x80
317 exited = 0x00
318 stopped = 0x7F
319 shift = 8
320)
321
322func (w WaitStatus) Exited() bool { return w&mask == exited }
323
324func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
325
326func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
327
328func (w WaitStatus) Continued() bool { return w == 0xFFFF }
329
330func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
331
332func (w WaitStatus) ExitStatus() int {
333 if !w.Exited() {
334 return -1
335 }
336 return int(w>>shift) & 0xFF
337}
338
339func (w WaitStatus) Signal() syscall.Signal {
340 if !w.Signaled() {
341 return -1
342 }
343 return syscall.Signal(w & mask)
344}
345
346func (w WaitStatus) StopSignal() syscall.Signal {
347 if !w.Stopped() {
348 return -1
349 }
350 return syscall.Signal(w>>shift) & 0xFF
351}
352
353func (w WaitStatus) TrapCause() int {
354 if w.StopSignal() != SIGTRAP {
355 return -1
356 }
357 return int(w>>shift) >> 8
358}
359
360//sys wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
361
362func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
363 var status _C_int
364 wpid, err = wait4(pid, &status, options, rusage)
365 if wstatus != nil {
366 *wstatus = WaitStatus(status)
367 }
368 return
369}
370
371func Mkfifo(path string, mode uint32) error {
372 return Mknod(path, mode|S_IFIFO, 0)
373}
374
375func Mkfifoat(dirfd int, path string, mode uint32) error {
376 return Mknodat(dirfd, path, mode|S_IFIFO, 0)
377}
378
379func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
380 if sa.Port < 0 || sa.Port > 0xFFFF {
381 return nil, 0, EINVAL
382 }
383 sa.raw.Family = AF_INET
384 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
385 p[0] = byte(sa.Port >> 8)
386 p[1] = byte(sa.Port)
387 for i := 0; i < len(sa.Addr); i++ {
388 sa.raw.Addr[i] = sa.Addr[i]
389 }
390 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
391}
392
393func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
394 if sa.Port < 0 || sa.Port > 0xFFFF {
395 return nil, 0, EINVAL
396 }
397 sa.raw.Family = AF_INET6
398 p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
399 p[0] = byte(sa.Port >> 8)
400 p[1] = byte(sa.Port)
401 sa.raw.Scope_id = sa.ZoneId
402 for i := 0; i < len(sa.Addr); i++ {
403 sa.raw.Addr[i] = sa.Addr[i]
404 }
405 return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
406}
407
408func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
409 name := sa.Name
410 n := len(name)
411 if n >= len(sa.raw.Path) {
412 return nil, 0, EINVAL
413 }
414 sa.raw.Family = AF_UNIX
415 for i := 0; i < n; i++ {
416 sa.raw.Path[i] = int8(name[i])
417 }
418 // length is family (uint16), name, NUL.
419 sl := _Socklen(2)
420 if n > 0 {
421 sl += _Socklen(n) + 1
422 }
423 if sa.raw.Path[0] == '@' {
424 sa.raw.Path[0] = 0
425 // Don't count trailing NUL for abstract address.
426 sl--
427 }
428
429 return unsafe.Pointer(&sa.raw), sl, nil
430}
431
432// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
433type SockaddrLinklayer struct {
434 Protocol uint16
435 Ifindex int
436 Hatype uint16
437 Pkttype uint8
438 Halen uint8
439 Addr [8]byte
440 raw RawSockaddrLinklayer
441}
442
443func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
444 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
445 return nil, 0, EINVAL
446 }
447 sa.raw.Family = AF_PACKET
448 sa.raw.Protocol = sa.Protocol
449 sa.raw.Ifindex = int32(sa.Ifindex)
450 sa.raw.Hatype = sa.Hatype
451 sa.raw.Pkttype = sa.Pkttype
452 sa.raw.Halen = sa.Halen
453 for i := 0; i < len(sa.Addr); i++ {
454 sa.raw.Addr[i] = sa.Addr[i]
455 }
456 return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
457}
458
459// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
460type SockaddrNetlink struct {
461 Family uint16
462 Pad uint16
463 Pid uint32
464 Groups uint32
465 raw RawSockaddrNetlink
466}
467
468func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
469 sa.raw.Family = AF_NETLINK
470 sa.raw.Pad = sa.Pad
471 sa.raw.Pid = sa.Pid
472 sa.raw.Groups = sa.Groups
473 return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
474}
475
476// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
477// using the HCI protocol.
478type SockaddrHCI struct {
479 Dev uint16
480 Channel uint16
481 raw RawSockaddrHCI
482}
483
484func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
485 sa.raw.Family = AF_BLUETOOTH
486 sa.raw.Dev = sa.Dev
487 sa.raw.Channel = sa.Channel
488 return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
489}
490
491// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
492// using the L2CAP protocol.
493type SockaddrL2 struct {
494 PSM uint16
495 CID uint16
496 Addr [6]uint8
497 AddrType uint8
498 raw RawSockaddrL2
499}
500
501func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
502 sa.raw.Family = AF_BLUETOOTH
503 psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
504 psm[0] = byte(sa.PSM)
505 psm[1] = byte(sa.PSM >> 8)
506 for i := 0; i < len(sa.Addr); i++ {
507 sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
508 }
509 cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
510 cid[0] = byte(sa.CID)
511 cid[1] = byte(sa.CID >> 8)
512 sa.raw.Bdaddr_type = sa.AddrType
513 return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
514}
515
516// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
517// using the RFCOMM protocol.
518//
519// Server example:
520//
521// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
522// _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
523// Channel: 1,
524// Addr: [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
525// })
526// _ = Listen(fd, 1)
527// nfd, sa, _ := Accept(fd)
528// fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
529// Read(nfd, buf)
530//
531// Client example:
532//
533// fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
534// _ = Connect(fd, &SockaddrRFCOMM{
535// Channel: 1,
536// Addr: [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
537// })
538// Write(fd, []byte(`hello`))
539type SockaddrRFCOMM struct {
540 // Addr represents a bluetooth address, byte ordering is little-endian.
541 Addr [6]uint8
542
543 // Channel is a designated bluetooth channel, only 1-30 are available for use.
544 // Since Linux 2.6.7 and further zero value is the first available channel.
545 Channel uint8
546
547 raw RawSockaddrRFCOMM
548}
549
550func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
551 sa.raw.Family = AF_BLUETOOTH
552 sa.raw.Channel = sa.Channel
553 sa.raw.Bdaddr = sa.Addr
554 return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
555}
556
557// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
558// The RxID and TxID fields are used for transport protocol addressing in
559// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
560// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
561//
562// The SockaddrCAN struct must be bound to the socket file descriptor
563// using Bind before the CAN socket can be used.
564//
565// // Read one raw CAN frame
566// fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
567// addr := &SockaddrCAN{Ifindex: index}
568// Bind(fd, addr)
569// frame := make([]byte, 16)
570// Read(fd, frame)
571//
572// The full SocketCAN documentation can be found in the linux kernel
573// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
574type SockaddrCAN struct {
575 Ifindex int
576 RxID uint32
577 TxID uint32
578 raw RawSockaddrCAN
579}
580
581func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
582 if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
583 return nil, 0, EINVAL
584 }
585 sa.raw.Family = AF_CAN
586 sa.raw.Ifindex = int32(sa.Ifindex)
587 rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
588 for i := 0; i < 4; i++ {
589 sa.raw.Addr[i] = rx[i]
590 }
591 tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
592 for i := 0; i < 4; i++ {
593 sa.raw.Addr[i+4] = tx[i]
594 }
595 return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
596}
597
598// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
599// SockaddrALG enables userspace access to the Linux kernel's cryptography
600// subsystem. The Type and Name fields specify which type of hash or cipher
601// should be used with a given socket.
602//
603// To create a file descriptor that provides access to a hash or cipher, both
604// Bind and Accept must be used. Once the setup process is complete, input
605// data can be written to the socket, processed by the kernel, and then read
606// back as hash output or ciphertext.
607//
608// Here is an example of using an AF_ALG socket with SHA1 hashing.
609// The initial socket setup process is as follows:
610//
611// // Open a socket to perform SHA1 hashing.
612// fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
613// addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
614// unix.Bind(fd, addr)
615// // Note: unix.Accept does not work at this time; must invoke accept()
616// // manually using unix.Syscall.
617// hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
618//
619// Once a file descriptor has been returned from Accept, it may be used to
620// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
621// may be re-used repeatedly with subsequent Write and Read operations.
622//
623// When hashing a small byte slice or string, a single Write and Read may
624// be used:
625//
626// // Assume hashfd is already configured using the setup process.
627// hash := os.NewFile(hashfd, "sha1")
628// // Hash an input string and read the results. Each Write discards
629// // previous hash state. Read always reads the current state.
630// b := make([]byte, 20)
631// for i := 0; i < 2; i++ {
632// io.WriteString(hash, "Hello, world.")
633// hash.Read(b)
634// fmt.Println(hex.EncodeToString(b))
635// }
636// // Output:
637// // 2ae01472317d1935a84797ec1983ae243fc6aa28
638// // 2ae01472317d1935a84797ec1983ae243fc6aa28
639//
640// For hashing larger byte slices, or byte streams such as those read from
641// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
642// the hash digest instead of creating a new one for a given chunk and finalizing it.
643//
644// // Assume hashfd and addr are already configured using the setup process.
645// hash := os.NewFile(hashfd, "sha1")
646// // Hash the contents of a file.
647// f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
648// b := make([]byte, 4096)
649// for {
650// n, err := f.Read(b)
651// if err == io.EOF {
652// break
653// }
654// unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
655// }
656// hash.Read(b)
657// fmt.Println(hex.EncodeToString(b))
658// // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
659//
660// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
661type SockaddrALG struct {
662 Type string
663 Name string
664 Feature uint32
665 Mask uint32
666 raw RawSockaddrALG
667}
668
669func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
670 // Leave room for NUL byte terminator.
671 if len(sa.Type) > 13 {
672 return nil, 0, EINVAL
673 }
674 if len(sa.Name) > 63 {
675 return nil, 0, EINVAL
676 }
677
678 sa.raw.Family = AF_ALG
679 sa.raw.Feat = sa.Feature
680 sa.raw.Mask = sa.Mask
681
682 typ, err := ByteSliceFromString(sa.Type)
683 if err != nil {
684 return nil, 0, err
685 }
686 name, err := ByteSliceFromString(sa.Name)
687 if err != nil {
688 return nil, 0, err
689 }
690
691 copy(sa.raw.Type[:], typ)
692 copy(sa.raw.Name[:], name)
693
694 return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
695}
696
697// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
698// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
699// bidirectional communication between a hypervisor and its guest virtual
700// machines.
701type SockaddrVM struct {
702 // CID and Port specify a context ID and port address for a VM socket.
703 // Guests have a unique CID, and hosts may have a well-known CID of:
704 // - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
705 // - VMADDR_CID_HOST: refers to other processes on the host.
706 CID uint32
707 Port uint32
708 raw RawSockaddrVM
709}
710
711func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
712 sa.raw.Family = AF_VSOCK
713 sa.raw.Port = sa.Port
714 sa.raw.Cid = sa.CID
715
716 return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
717}
718
719type SockaddrXDP struct {
720 Flags uint16
721 Ifindex uint32
722 QueueID uint32
723 SharedUmemFD uint32
724 raw RawSockaddrXDP
725}
726
727func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
728 sa.raw.Family = AF_XDP
729 sa.raw.Flags = sa.Flags
730 sa.raw.Ifindex = sa.Ifindex
731 sa.raw.Queue_id = sa.QueueID
732 sa.raw.Shared_umem_fd = sa.SharedUmemFD
733
734 return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
735}
736
737// This constant mirrors the #define of PX_PROTO_OE in
738// linux/if_pppox.h. We're defining this by hand here instead of
739// autogenerating through mkerrors.sh because including
740// linux/if_pppox.h causes some declaration conflicts with other
741// includes (linux/if_pppox.h includes linux/in.h, which conflicts
742// with netinet/in.h). Given that we only need a single zero constant
743// out of that file, it's cleaner to just define it by hand here.
744const px_proto_oe = 0
745
746type SockaddrPPPoE struct {
747 SID uint16
748 Remote net.HardwareAddr
749 Dev string
750 raw RawSockaddrPPPoX
751}
752
753func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
754 if len(sa.Remote) != 6 {
755 return nil, 0, EINVAL
756 }
757 if len(sa.Dev) > IFNAMSIZ-1 {
758 return nil, 0, EINVAL
759 }
760
761 *(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
762 // This next field is in host-endian byte order. We can't use the
763 // same unsafe pointer cast as above, because this value is not
764 // 32-bit aligned and some architectures don't allow unaligned
765 // access.
766 //
767 // However, the value of px_proto_oe is 0, so we can use
768 // encoding/binary helpers to write the bytes without worrying
769 // about the ordering.
770 binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
771 // This field is deliberately big-endian, unlike the previous
772 // one. The kernel expects SID to be in network byte order.
773 binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
774 copy(sa.raw[8:14], sa.Remote)
775 for i := 14; i < 14+IFNAMSIZ; i++ {
776 sa.raw[i] = 0
777 }
778 copy(sa.raw[14:], sa.Dev)
779 return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
780}
781
782func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
783 switch rsa.Addr.Family {
784 case AF_NETLINK:
785 pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
786 sa := new(SockaddrNetlink)
787 sa.Family = pp.Family
788 sa.Pad = pp.Pad
789 sa.Pid = pp.Pid
790 sa.Groups = pp.Groups
791 return sa, nil
792
793 case AF_PACKET:
794 pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
795 sa := new(SockaddrLinklayer)
796 sa.Protocol = pp.Protocol
797 sa.Ifindex = int(pp.Ifindex)
798 sa.Hatype = pp.Hatype
799 sa.Pkttype = pp.Pkttype
800 sa.Halen = pp.Halen
801 for i := 0; i < len(sa.Addr); i++ {
802 sa.Addr[i] = pp.Addr[i]
803 }
804 return sa, nil
805
806 case AF_UNIX:
807 pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
808 sa := new(SockaddrUnix)
809 if pp.Path[0] == 0 {
810 // "Abstract" Unix domain socket.
811 // Rewrite leading NUL as @ for textual display.
812 // (This is the standard convention.)
813 // Not friendly to overwrite in place,
814 // but the callers below don't care.
815 pp.Path[0] = '@'
816 }
817
818 // Assume path ends at NUL.
819 // This is not technically the Linux semantics for
820 // abstract Unix domain sockets--they are supposed
821 // to be uninterpreted fixed-size binary blobs--but
822 // everyone uses this convention.
823 n := 0
824 for n < len(pp.Path) && pp.Path[n] != 0 {
825 n++
826 }
827 bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
828 sa.Name = string(bytes)
829 return sa, nil
830
831 case AF_INET:
832 pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
833 sa := new(SockaddrInet4)
834 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
835 sa.Port = int(p[0])<<8 + int(p[1])
836 for i := 0; i < len(sa.Addr); i++ {
837 sa.Addr[i] = pp.Addr[i]
838 }
839 return sa, nil
840
841 case AF_INET6:
842 pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
843 sa := new(SockaddrInet6)
844 p := (*[2]byte)(unsafe.Pointer(&pp.Port))
845 sa.Port = int(p[0])<<8 + int(p[1])
846 sa.ZoneId = pp.Scope_id
847 for i := 0; i < len(sa.Addr); i++ {
848 sa.Addr[i] = pp.Addr[i]
849 }
850 return sa, nil
851
852 case AF_VSOCK:
853 pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
854 sa := &SockaddrVM{
855 CID: pp.Cid,
856 Port: pp.Port,
857 }
858 return sa, nil
859 case AF_BLUETOOTH:
860 proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
861 if err != nil {
862 return nil, err
863 }
864 // only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
865 switch proto {
866 case BTPROTO_L2CAP:
867 pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
868 sa := &SockaddrL2{
869 PSM: pp.Psm,
870 CID: pp.Cid,
871 Addr: pp.Bdaddr,
872 AddrType: pp.Bdaddr_type,
873 }
874 return sa, nil
875 case BTPROTO_RFCOMM:
876 pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
877 sa := &SockaddrRFCOMM{
878 Channel: pp.Channel,
879 Addr: pp.Bdaddr,
880 }
881 return sa, nil
882 }
883 case AF_XDP:
884 pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
885 sa := &SockaddrXDP{
886 Flags: pp.Flags,
887 Ifindex: pp.Ifindex,
888 QueueID: pp.Queue_id,
889 SharedUmemFD: pp.Shared_umem_fd,
890 }
891 return sa, nil
892 case AF_PPPOX:
893 pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
894 if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
895 return nil, EINVAL
896 }
897 sa := &SockaddrPPPoE{
898 SID: binary.BigEndian.Uint16(pp[6:8]),
899 Remote: net.HardwareAddr(pp[8:14]),
900 }
901 for i := 14; i < 14+IFNAMSIZ; i++ {
902 if pp[i] == 0 {
903 sa.Dev = string(pp[14:i])
904 break
905 }
906 }
907 return sa, nil
908 }
909 return nil, EAFNOSUPPORT
910}
911
912func Accept(fd int) (nfd int, sa Sockaddr, err error) {
913 var rsa RawSockaddrAny
914 var len _Socklen = SizeofSockaddrAny
915 nfd, err = accept(fd, &rsa, &len)
916 if err != nil {
917 return
918 }
919 sa, err = anyToSockaddr(fd, &rsa)
920 if err != nil {
921 Close(nfd)
922 nfd = 0
923 }
924 return
925}
926
927func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
928 var rsa RawSockaddrAny
929 var len _Socklen = SizeofSockaddrAny
930 nfd, err = accept4(fd, &rsa, &len, flags)
931 if err != nil {
932 return
933 }
934 if len > SizeofSockaddrAny {
935 panic("RawSockaddrAny too small")
936 }
937 sa, err = anyToSockaddr(fd, &rsa)
938 if err != nil {
939 Close(nfd)
940 nfd = 0
941 }
942 return
943}
944
945func Getsockname(fd int) (sa Sockaddr, err error) {
946 var rsa RawSockaddrAny
947 var len _Socklen = SizeofSockaddrAny
948 if err = getsockname(fd, &rsa, &len); err != nil {
949 return
950 }
951 return anyToSockaddr(fd, &rsa)
952}
953
954func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
955 var value IPMreqn
956 vallen := _Socklen(SizeofIPMreqn)
957 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
958 return &value, err
959}
960
961func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
962 var value Ucred
963 vallen := _Socklen(SizeofUcred)
964 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
965 return &value, err
966}
967
968func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
969 var value TCPInfo
970 vallen := _Socklen(SizeofTCPInfo)
971 err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
972 return &value, err
973}
974
975// GetsockoptString returns the string value of the socket option opt for the
976// socket associated with fd at the given socket level.
977func GetsockoptString(fd, level, opt int) (string, error) {
978 buf := make([]byte, 256)
979 vallen := _Socklen(len(buf))
980 err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
981 if err != nil {
982 if err == ERANGE {
983 buf = make([]byte, vallen)
984 err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
985 }
986 if err != nil {
987 return "", err
988 }
989 }
990 return string(buf[:vallen-1]), nil
991}
992
993func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
994 return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
995}
996
Stephane Barbarie260a5632019-02-26 16:12:49 -0500997// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
998// socket to filter incoming packets. See 'man 7 socket' for usage information.
999func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1000 return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1001}
1002
1003func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1004 var p unsafe.Pointer
1005 if len(filter) > 0 {
1006 p = unsafe.Pointer(&filter[0])
1007 }
1008 return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1009}
1010
khenaidooac637102019-01-14 15:44:34 -05001011// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1012
1013// KeyctlInt calls keyctl commands in which each argument is an int.
1014// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1015// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1016// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1017// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1018//sys KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1019
1020// KeyctlBuffer calls keyctl commands in which the third and fourth
1021// arguments are a buffer and its length, respectively.
1022// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1023//sys KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1024
1025// KeyctlString calls keyctl commands which return a string.
1026// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1027func KeyctlString(cmd int, id int) (string, error) {
1028 // We must loop as the string data may change in between the syscalls.
1029 // We could allocate a large buffer here to reduce the chance that the
1030 // syscall needs to be called twice; however, this is unnecessary as
1031 // the performance loss is negligible.
1032 var buffer []byte
1033 for {
1034 // Try to fill the buffer with data
1035 length, err := KeyctlBuffer(cmd, id, buffer, 0)
1036 if err != nil {
1037 return "", err
1038 }
1039
1040 // Check if the data was written
1041 if length <= len(buffer) {
1042 // Exclude the null terminator
1043 return string(buffer[:length-1]), nil
1044 }
1045
1046 // Make a bigger buffer if needed
1047 buffer = make([]byte, length)
1048 }
1049}
1050
1051// Keyctl commands with special signatures.
1052
1053// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1054// See the full documentation at:
1055// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1056func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1057 createInt := 0
1058 if create {
1059 createInt = 1
1060 }
1061 return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1062}
1063
1064// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1065// key handle permission mask as described in the "keyctl setperm" section of
1066// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1067// See the full documentation at:
1068// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1069func KeyctlSetperm(id int, perm uint32) error {
1070 _, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1071 return err
1072}
1073
1074//sys keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1075
1076// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1077// See the full documentation at:
1078// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1079func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1080 return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1081}
1082
1083//sys keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1084
1085// KeyctlSearch implements the KEYCTL_SEARCH command.
1086// See the full documentation at:
1087// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1088func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1089 return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1090}
1091
1092//sys keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1093
1094// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1095// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1096// of Iovec (each of which represents a buffer) instead of a single buffer.
1097// See the full documentation at:
1098// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1099func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1100 return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1101}
1102
1103//sys keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1104
1105// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1106// computes a Diffie-Hellman shared secret based on the provide params. The
1107// secret is written to the provided buffer and the returned size is the number
1108// of bytes written (returning an error if there is insufficient space in the
1109// buffer). If a nil buffer is passed in, this function returns the minimum
1110// buffer length needed to store the appropriate data. Note that this differs
1111// from KEYCTL_READ's behavior which always returns the requested payload size.
1112// See the full documentation at:
1113// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1114func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1115 return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1116}
1117
1118func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1119 var msg Msghdr
1120 var rsa RawSockaddrAny
1121 msg.Name = (*byte)(unsafe.Pointer(&rsa))
1122 msg.Namelen = uint32(SizeofSockaddrAny)
1123 var iov Iovec
1124 if len(p) > 0 {
1125 iov.Base = &p[0]
1126 iov.SetLen(len(p))
1127 }
1128 var dummy byte
1129 if len(oob) > 0 {
1130 if len(p) == 0 {
1131 var sockType int
1132 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1133 if err != nil {
1134 return
1135 }
1136 // receive at least one normal byte
1137 if sockType != SOCK_DGRAM {
1138 iov.Base = &dummy
1139 iov.SetLen(1)
1140 }
1141 }
1142 msg.Control = &oob[0]
1143 msg.SetControllen(len(oob))
1144 }
1145 msg.Iov = &iov
1146 msg.Iovlen = 1
1147 if n, err = recvmsg(fd, &msg, flags); err != nil {
1148 return
1149 }
1150 oobn = int(msg.Controllen)
1151 recvflags = int(msg.Flags)
1152 // source address is only specified if the socket is unconnected
1153 if rsa.Addr.Family != AF_UNSPEC {
1154 from, err = anyToSockaddr(fd, &rsa)
1155 }
1156 return
1157}
1158
1159func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1160 _, err = SendmsgN(fd, p, oob, to, flags)
1161 return
1162}
1163
1164func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1165 var ptr unsafe.Pointer
1166 var salen _Socklen
1167 if to != nil {
1168 var err error
1169 ptr, salen, err = to.sockaddr()
1170 if err != nil {
1171 return 0, err
1172 }
1173 }
1174 var msg Msghdr
1175 msg.Name = (*byte)(ptr)
1176 msg.Namelen = uint32(salen)
1177 var iov Iovec
1178 if len(p) > 0 {
1179 iov.Base = &p[0]
1180 iov.SetLen(len(p))
1181 }
1182 var dummy byte
1183 if len(oob) > 0 {
1184 if len(p) == 0 {
1185 var sockType int
1186 sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1187 if err != nil {
1188 return 0, err
1189 }
1190 // send at least one normal byte
1191 if sockType != SOCK_DGRAM {
1192 iov.Base = &dummy
1193 iov.SetLen(1)
1194 }
1195 }
1196 msg.Control = &oob[0]
1197 msg.SetControllen(len(oob))
1198 }
1199 msg.Iov = &iov
1200 msg.Iovlen = 1
1201 if n, err = sendmsg(fd, &msg, flags); err != nil {
1202 return 0, err
1203 }
1204 if len(oob) > 0 && len(p) == 0 {
1205 n = 0
1206 }
1207 return n, nil
1208}
1209
1210// BindToDevice binds the socket associated with fd to device.
1211func BindToDevice(fd int, device string) (err error) {
1212 return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1213}
1214
1215//sys ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1216
1217func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1218 // The peek requests are machine-size oriented, so we wrap it
1219 // to retrieve arbitrary-length data.
1220
1221 // The ptrace syscall differs from glibc's ptrace.
1222 // Peeks returns the word in *data, not as the return value.
1223
1224 var buf [SizeofPtr]byte
1225
1226 // Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1227 // access (PEEKUSER warns that it might), but if we don't
1228 // align our reads, we might straddle an unmapped page
1229 // boundary and not get the bytes leading up to the page
1230 // boundary.
1231 n := 0
1232 if addr%SizeofPtr != 0 {
1233 err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1234 if err != nil {
1235 return 0, err
1236 }
1237 n += copy(out, buf[addr%SizeofPtr:])
1238 out = out[n:]
1239 }
1240
1241 // Remainder.
1242 for len(out) > 0 {
1243 // We use an internal buffer to guarantee alignment.
1244 // It's not documented if this is necessary, but we're paranoid.
1245 err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1246 if err != nil {
1247 return n, err
1248 }
1249 copied := copy(out, buf[0:])
1250 n += copied
1251 out = out[copied:]
1252 }
1253
1254 return n, nil
1255}
1256
1257func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1258 return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1259}
1260
1261func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1262 return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1263}
1264
1265func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1266 return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1267}
1268
1269func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1270 // As for ptracePeek, we need to align our accesses to deal
1271 // with the possibility of straddling an invalid page.
1272
1273 // Leading edge.
1274 n := 0
1275 if addr%SizeofPtr != 0 {
1276 var buf [SizeofPtr]byte
1277 err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1278 if err != nil {
1279 return 0, err
1280 }
1281 n += copy(buf[addr%SizeofPtr:], data)
1282 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1283 err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1284 if err != nil {
1285 return 0, err
1286 }
1287 data = data[n:]
1288 }
1289
1290 // Interior.
1291 for len(data) > SizeofPtr {
1292 word := *((*uintptr)(unsafe.Pointer(&data[0])))
1293 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1294 if err != nil {
1295 return n, err
1296 }
1297 n += SizeofPtr
1298 data = data[SizeofPtr:]
1299 }
1300
1301 // Trailing edge.
1302 if len(data) > 0 {
1303 var buf [SizeofPtr]byte
1304 err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1305 if err != nil {
1306 return n, err
1307 }
1308 copy(buf[0:], data)
1309 word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1310 err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1311 if err != nil {
1312 return n, err
1313 }
1314 n += len(data)
1315 }
1316
1317 return n, nil
1318}
1319
1320func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1321 return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1322}
1323
1324func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1325 return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1326}
1327
1328func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1329 return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1330}
1331
1332func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1333 return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1334}
1335
1336func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1337 return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1338}
1339
1340func PtraceSetOptions(pid int, options int) (err error) {
1341 return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1342}
1343
1344func PtraceGetEventMsg(pid int) (msg uint, err error) {
1345 var data _C_long
1346 err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1347 msg = uint(data)
1348 return
1349}
1350
1351func PtraceCont(pid int, signal int) (err error) {
1352 return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1353}
1354
1355func PtraceSyscall(pid int, signal int) (err error) {
1356 return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1357}
1358
1359func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1360
1361func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1362
1363func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1364
1365//sys reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1366
1367func Reboot(cmd int) (err error) {
1368 return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1369}
1370
1371func ReadDirent(fd int, buf []byte) (n int, err error) {
1372 return Getdents(fd, buf)
1373}
1374
1375//sys mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1376
1377func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1378 // Certain file systems get rather angry and EINVAL if you give
1379 // them an empty string of data, rather than NULL.
1380 if data == "" {
1381 return mount(source, target, fstype, flags, nil)
1382 }
1383 datap, err := BytePtrFromString(data)
1384 if err != nil {
1385 return err
1386 }
1387 return mount(source, target, fstype, flags, datap)
1388}
1389
1390func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1391 if raceenabled {
1392 raceReleaseMerge(unsafe.Pointer(&ioSync))
1393 }
1394 return sendfile(outfd, infd, offset, count)
1395}
1396
1397// Sendto
1398// Recvfrom
1399// Socketpair
1400
1401/*
1402 * Direct access
1403 */
1404//sys Acct(path string) (err error)
1405//sys AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1406//sys Adjtimex(buf *Timex) (state int, err error)
1407//sys Chdir(path string) (err error)
1408//sys Chroot(path string) (err error)
1409//sys ClockGetres(clockid int32, res *Timespec) (err error)
1410//sys ClockGettime(clockid int32, time *Timespec) (err error)
1411//sys ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1412//sys Close(fd int) (err error)
1413//sys CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1414//sys DeleteModule(name string, flags int) (err error)
1415//sys Dup(oldfd int) (fd int, err error)
1416//sys Dup3(oldfd int, newfd int, flags int) (err error)
1417//sysnb EpollCreate1(flag int) (fd int, err error)
1418//sysnb EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1419//sys Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1420//sys Exit(code int) = SYS_EXIT_GROUP
1421//sys Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1422//sys Fchdir(fd int) (err error)
1423//sys Fchmod(fd int, mode uint32) (err error)
1424//sys Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1425//sys fcntl(fd int, cmd int, arg int) (val int, err error)
1426//sys Fdatasync(fd int) (err error)
1427//sys Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1428//sys FinitModule(fd int, params string, flags int) (err error)
1429//sys Flistxattr(fd int, dest []byte) (sz int, err error)
1430//sys Flock(fd int, how int) (err error)
1431//sys Fremovexattr(fd int, attr string) (err error)
1432//sys Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1433//sys Fsync(fd int) (err error)
1434//sys Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1435//sysnb Getpgid(pid int) (pgid int, err error)
1436
1437func Getpgrp() (pid int) {
1438 pid, _ = Getpgid(0)
1439 return
1440}
1441
1442//sysnb Getpid() (pid int)
1443//sysnb Getppid() (ppid int)
1444//sys Getpriority(which int, who int) (prio int, err error)
1445//sys Getrandom(buf []byte, flags int) (n int, err error)
1446//sysnb Getrusage(who int, rusage *Rusage) (err error)
1447//sysnb Getsid(pid int) (sid int, err error)
1448//sysnb Gettid() (tid int)
1449//sys Getxattr(path string, attr string, dest []byte) (sz int, err error)
1450//sys InitModule(moduleImage []byte, params string) (err error)
1451//sys InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1452//sysnb InotifyInit1(flags int) (fd int, err error)
1453//sysnb InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1454//sysnb Kill(pid int, sig syscall.Signal) (err error)
1455//sys Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1456//sys Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1457//sys Listxattr(path string, dest []byte) (sz int, err error)
1458//sys Llistxattr(path string, dest []byte) (sz int, err error)
1459//sys Lremovexattr(path string, attr string) (err error)
1460//sys Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1461//sys MemfdCreate(name string, flags int) (fd int, err error)
1462//sys Mkdirat(dirfd int, path string, mode uint32) (err error)
1463//sys Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1464//sys Nanosleep(time *Timespec, leftover *Timespec) (err error)
1465//sys PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1466//sys PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1467//sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1468//sys Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1469//sys Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1470//sys read(fd int, p []byte) (n int, err error)
1471//sys Removexattr(path string, attr string) (err error)
khenaidooac637102019-01-14 15:44:34 -05001472//sys Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1473//sys RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1474//sys Setdomainname(p []byte) (err error)
1475//sys Sethostname(p []byte) (err error)
1476//sysnb Setpgid(pid int, pgid int) (err error)
1477//sysnb Setsid() (pid int, err error)
1478//sysnb Settimeofday(tv *Timeval) (err error)
1479//sys Setns(fd int, nstype int) (err error)
1480
1481// issue 1435.
1482// On linux Setuid and Setgid only affects the current thread, not the process.
1483// This does not match what most callers expect so we must return an error
1484// here rather than letting the caller think that the call succeeded.
1485
1486func Setuid(uid int) (err error) {
1487 return EOPNOTSUPP
1488}
1489
1490func Setgid(uid int) (err error) {
1491 return EOPNOTSUPP
1492}
1493
1494//sys Setpriority(which int, who int, prio int) (err error)
1495//sys Setxattr(path string, attr string, data []byte, flags int) (err error)
Stephane Barbarie260a5632019-02-26 16:12:49 -05001496//sys Signalfd(fd int, mask *Sigset_t, flags int) = SYS_SIGNALFD4
khenaidooac637102019-01-14 15:44:34 -05001497//sys Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1498//sys Sync()
1499//sys Syncfs(fd int) (err error)
1500//sysnb Sysinfo(info *Sysinfo_t) (err error)
1501//sys Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1502//sysnb Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1503//sysnb Times(tms *Tms) (ticks uintptr, err error)
1504//sysnb Umask(mask int) (oldmask int)
1505//sysnb Uname(buf *Utsname) (err error)
1506//sys Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1507//sys Unshare(flags int) (err error)
1508//sys write(fd int, p []byte) (n int, err error)
1509//sys exitThread(code int) (err error) = SYS_EXIT
1510//sys readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1511//sys writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1512
1513// mmap varies by architecture; see syscall_linux_*.go.
1514//sys munmap(addr uintptr, length uintptr) (err error)
1515
1516var mapper = &mmapper{
1517 active: make(map[*byte][]byte),
1518 mmap: mmap,
1519 munmap: munmap,
1520}
1521
1522func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
1523 return mapper.Mmap(fd, offset, length, prot, flags)
1524}
1525
1526func Munmap(b []byte) (err error) {
1527 return mapper.Munmap(b)
1528}
1529
1530//sys Madvise(b []byte, advice int) (err error)
1531//sys Mprotect(b []byte, prot int) (err error)
1532//sys Mlock(b []byte) (err error)
1533//sys Mlockall(flags int) (err error)
1534//sys Msync(b []byte, flags int) (err error)
1535//sys Munlock(b []byte) (err error)
1536//sys Munlockall() (err error)
1537
1538// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
1539// using the specified flags.
1540func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
1541 var p unsafe.Pointer
1542 if len(iovs) > 0 {
1543 p = unsafe.Pointer(&iovs[0])
1544 }
1545
1546 n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
1547 if errno != 0 {
1548 return 0, syscall.Errno(errno)
1549 }
1550
1551 return int(n), nil
1552}
1553
1554//sys faccessat(dirfd int, path string, mode uint32) (err error)
1555
1556func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
1557 if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
1558 return EINVAL
1559 }
1560
1561 // The Linux kernel faccessat system call does not take any flags.
1562 // The glibc faccessat implements the flags itself; see
1563 // https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
1564 // Because people naturally expect syscall.Faccessat to act
1565 // like C faccessat, we do the same.
1566
1567 if flags == 0 {
1568 return faccessat(dirfd, path, mode)
1569 }
1570
1571 var st Stat_t
1572 if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
1573 return err
1574 }
1575
1576 mode &= 7
1577 if mode == 0 {
1578 return nil
1579 }
1580
1581 var uid int
1582 if flags&AT_EACCESS != 0 {
1583 uid = Geteuid()
1584 } else {
1585 uid = Getuid()
1586 }
1587
1588 if uid == 0 {
1589 if mode&1 == 0 {
1590 // Root can read and write any file.
1591 return nil
1592 }
1593 if st.Mode&0111 != 0 {
1594 // Root can execute any file that anybody can execute.
1595 return nil
1596 }
1597 return EACCES
1598 }
1599
1600 var fmode uint32
1601 if uint32(uid) == st.Uid {
1602 fmode = (st.Mode >> 6) & 7
1603 } else {
1604 var gid int
1605 if flags&AT_EACCESS != 0 {
1606 gid = Getegid()
1607 } else {
1608 gid = Getgid()
1609 }
1610
1611 if uint32(gid) == st.Gid {
1612 fmode = (st.Mode >> 3) & 7
1613 } else {
1614 fmode = st.Mode & 7
1615 }
1616 }
1617
1618 if fmode&mode == mode {
1619 return nil
1620 }
1621
1622 return EACCES
1623}
1624
1625/*
1626 * Unimplemented
1627 */
1628// AfsSyscall
1629// Alarm
1630// ArchPrctl
1631// Brk
1632// Capget
1633// Capset
1634// ClockNanosleep
1635// ClockSettime
1636// Clone
1637// EpollCtlOld
1638// EpollPwait
1639// EpollWaitOld
1640// Execve
1641// Fork
1642// Futex
1643// GetKernelSyms
1644// GetMempolicy
1645// GetRobustList
1646// GetThreadArea
1647// Getitimer
1648// Getpmsg
1649// IoCancel
1650// IoDestroy
1651// IoGetevents
1652// IoSetup
1653// IoSubmit
1654// IoprioGet
1655// IoprioSet
1656// KexecLoad
1657// LookupDcookie
1658// Mbind
1659// MigratePages
1660// Mincore
1661// ModifyLdt
1662// Mount
1663// MovePages
1664// MqGetsetattr
1665// MqNotify
1666// MqOpen
1667// MqTimedreceive
1668// MqTimedsend
1669// MqUnlink
1670// Mremap
1671// Msgctl
1672// Msgget
1673// Msgrcv
1674// Msgsnd
1675// Nfsservctl
1676// Personality
1677// Pselect6
1678// Ptrace
1679// Putpmsg
1680// Quotactl
1681// Readahead
1682// Readv
1683// RemapFilePages
1684// RestartSyscall
1685// RtSigaction
1686// RtSigpending
1687// RtSigprocmask
1688// RtSigqueueinfo
1689// RtSigreturn
1690// RtSigsuspend
1691// RtSigtimedwait
1692// SchedGetPriorityMax
1693// SchedGetPriorityMin
1694// SchedGetparam
1695// SchedGetscheduler
1696// SchedRrGetInterval
1697// SchedSetparam
1698// SchedYield
1699// Security
1700// Semctl
1701// Semget
1702// Semop
1703// Semtimedop
1704// SetMempolicy
1705// SetRobustList
1706// SetThreadArea
1707// SetTidAddress
1708// Shmat
1709// Shmctl
1710// Shmdt
1711// Shmget
1712// Sigaltstack
khenaidooac637102019-01-14 15:44:34 -05001713// Swapoff
1714// Swapon
1715// Sysfs
1716// TimerCreate
1717// TimerDelete
1718// TimerGetoverrun
1719// TimerGettime
1720// TimerSettime
1721// Timerfd
1722// Tkill (obsolete)
1723// Tuxcall
1724// Umount2
1725// Uselib
1726// Utimensat
1727// Vfork
1728// Vhangup
1729// Vserver
1730// Waitid
1731// _Sysctl