blob: 9bd4a80e4847c014478d6e36e15c3c9bdf93a194 [file] [log] [blame]
khenaidooac637102019-01-14 15:44:34 -05001package assert
2
3import (
4 "bufio"
5 "bytes"
6 "encoding/json"
7 "errors"
8 "fmt"
9 "math"
10 "os"
11 "reflect"
12 "regexp"
13 "runtime"
14 "strings"
15 "time"
16 "unicode"
17 "unicode/utf8"
18
19 "github.com/davecgh/go-spew/spew"
20 "github.com/pmezard/go-difflib/difflib"
21)
22
23//go:generate go run ../_codegen/main.go -output-package=assert -template=assertion_format.go.tmpl
24
25// TestingT is an interface wrapper around *testing.T
26type TestingT interface {
27 Errorf(format string, args ...interface{})
28}
29
30// ComparisonAssertionFunc is a common function prototype when comparing two values. Can be useful
31// for table driven tests.
32type ComparisonAssertionFunc func(TestingT, interface{}, interface{}, ...interface{}) bool
33
34// ValueAssertionFunc is a common function prototype when validating a single value. Can be useful
35// for table driven tests.
36type ValueAssertionFunc func(TestingT, interface{}, ...interface{}) bool
37
38// BoolAssertionFunc is a common function prototype when validating a bool value. Can be useful
39// for table driven tests.
40type BoolAssertionFunc func(TestingT, bool, ...interface{}) bool
41
42// ErrorAssertionFunc is a common function prototype when validating an error value. Can be useful
43// for table driven tests.
44type ErrorAssertionFunc func(TestingT, error, ...interface{}) bool
45
46// Comparison a custom function that returns true on success and false on failure
47type Comparison func() (success bool)
48
49/*
50 Helper functions
51*/
52
53// ObjectsAreEqual determines if two objects are considered equal.
54//
55// This function does no assertion of any kind.
56func ObjectsAreEqual(expected, actual interface{}) bool {
57 if expected == nil || actual == nil {
58 return expected == actual
59 }
60
61 exp, ok := expected.([]byte)
62 if !ok {
63 return reflect.DeepEqual(expected, actual)
64 }
65
66 act, ok := actual.([]byte)
67 if !ok {
68 return false
69 }
70 if exp == nil || act == nil {
71 return exp == nil && act == nil
72 }
73 return bytes.Equal(exp, act)
74}
75
76// ObjectsAreEqualValues gets whether two objects are equal, or if their
77// values are equal.
78func ObjectsAreEqualValues(expected, actual interface{}) bool {
79 if ObjectsAreEqual(expected, actual) {
80 return true
81 }
82
83 actualType := reflect.TypeOf(actual)
84 if actualType == nil {
85 return false
86 }
87 expectedValue := reflect.ValueOf(expected)
88 if expectedValue.IsValid() && expectedValue.Type().ConvertibleTo(actualType) {
89 // Attempt comparison after type conversion
90 return reflect.DeepEqual(expectedValue.Convert(actualType).Interface(), actual)
91 }
92
93 return false
94}
95
96/* CallerInfo is necessary because the assert functions use the testing object
97internally, causing it to print the file:line of the assert method, rather than where
98the problem actually occurred in calling code.*/
99
100// CallerInfo returns an array of strings containing the file and line number
101// of each stack frame leading from the current test to the assert call that
102// failed.
103func CallerInfo() []string {
104
105 pc := uintptr(0)
106 file := ""
107 line := 0
108 ok := false
109 name := ""
110
111 callers := []string{}
112 for i := 0; ; i++ {
113 pc, file, line, ok = runtime.Caller(i)
114 if !ok {
115 // The breaks below failed to terminate the loop, and we ran off the
116 // end of the call stack.
117 break
118 }
119
120 // This is a huge edge case, but it will panic if this is the case, see #180
121 if file == "<autogenerated>" {
122 break
123 }
124
125 f := runtime.FuncForPC(pc)
126 if f == nil {
127 break
128 }
129 name = f.Name()
130
131 // testing.tRunner is the standard library function that calls
132 // tests. Subtests are called directly by tRunner, without going through
133 // the Test/Benchmark/Example function that contains the t.Run calls, so
134 // with subtests we should break when we hit tRunner, without adding it
135 // to the list of callers.
136 if name == "testing.tRunner" {
137 break
138 }
139
140 parts := strings.Split(file, "/")
141 file = parts[len(parts)-1]
142 if len(parts) > 1 {
143 dir := parts[len(parts)-2]
144 if (dir != "assert" && dir != "mock" && dir != "require") || file == "mock_test.go" {
145 callers = append(callers, fmt.Sprintf("%s:%d", file, line))
146 }
147 }
148
149 // Drop the package
150 segments := strings.Split(name, ".")
151 name = segments[len(segments)-1]
152 if isTest(name, "Test") ||
153 isTest(name, "Benchmark") ||
154 isTest(name, "Example") {
155 break
156 }
157 }
158
159 return callers
160}
161
162// Stolen from the `go test` tool.
163// isTest tells whether name looks like a test (or benchmark, according to prefix).
164// It is a Test (say) if there is a character after Test that is not a lower-case letter.
165// We don't want TesticularCancer.
166func isTest(name, prefix string) bool {
167 if !strings.HasPrefix(name, prefix) {
168 return false
169 }
170 if len(name) == len(prefix) { // "Test" is ok
171 return true
172 }
173 rune, _ := utf8.DecodeRuneInString(name[len(prefix):])
174 return !unicode.IsLower(rune)
175}
176
177func messageFromMsgAndArgs(msgAndArgs ...interface{}) string {
178 if len(msgAndArgs) == 0 || msgAndArgs == nil {
179 return ""
180 }
181 if len(msgAndArgs) == 1 {
182 msg := msgAndArgs[0]
183 if msgAsStr, ok := msg.(string); ok {
184 return msgAsStr
185 }
186 return fmt.Sprintf("%+v", msg)
187 }
188 if len(msgAndArgs) > 1 {
189 return fmt.Sprintf(msgAndArgs[0].(string), msgAndArgs[1:]...)
190 }
191 return ""
192}
193
194// Aligns the provided message so that all lines after the first line start at the same location as the first line.
195// Assumes that the first line starts at the correct location (after carriage return, tab, label, spacer and tab).
196// The longestLabelLen parameter specifies the length of the longest label in the output (required becaues this is the
197// basis on which the alignment occurs).
198func indentMessageLines(message string, longestLabelLen int) string {
199 outBuf := new(bytes.Buffer)
200
201 for i, scanner := 0, bufio.NewScanner(strings.NewReader(message)); scanner.Scan(); i++ {
202 // no need to align first line because it starts at the correct location (after the label)
203 if i != 0 {
204 // append alignLen+1 spaces to align with "{{longestLabel}}:" before adding tab
205 outBuf.WriteString("\n\t" + strings.Repeat(" ", longestLabelLen+1) + "\t")
206 }
207 outBuf.WriteString(scanner.Text())
208 }
209
210 return outBuf.String()
211}
212
213type failNower interface {
214 FailNow()
215}
216
217// FailNow fails test
218func FailNow(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
219 if h, ok := t.(tHelper); ok {
220 h.Helper()
221 }
222 Fail(t, failureMessage, msgAndArgs...)
223
224 // We cannot extend TestingT with FailNow() and
225 // maintain backwards compatibility, so we fallback
226 // to panicking when FailNow is not available in
227 // TestingT.
228 // See issue #263
229
230 if t, ok := t.(failNower); ok {
231 t.FailNow()
232 } else {
233 panic("test failed and t is missing `FailNow()`")
234 }
235 return false
236}
237
238// Fail reports a failure through
239func Fail(t TestingT, failureMessage string, msgAndArgs ...interface{}) bool {
240 if h, ok := t.(tHelper); ok {
241 h.Helper()
242 }
243 content := []labeledContent{
244 {"Error Trace", strings.Join(CallerInfo(), "\n\t\t\t")},
245 {"Error", failureMessage},
246 }
247
248 // Add test name if the Go version supports it
249 if n, ok := t.(interface {
250 Name() string
251 }); ok {
252 content = append(content, labeledContent{"Test", n.Name()})
253 }
254
255 message := messageFromMsgAndArgs(msgAndArgs...)
256 if len(message) > 0 {
257 content = append(content, labeledContent{"Messages", message})
258 }
259
260 t.Errorf("\n%s", ""+labeledOutput(content...))
261
262 return false
263}
264
265type labeledContent struct {
266 label string
267 content string
268}
269
270// labeledOutput returns a string consisting of the provided labeledContent. Each labeled output is appended in the following manner:
271//
272// \t{{label}}:{{align_spaces}}\t{{content}}\n
273//
274// The initial carriage return is required to undo/erase any padding added by testing.T.Errorf. The "\t{{label}}:" is for the label.
275// If a label is shorter than the longest label provided, padding spaces are added to make all the labels match in length. Once this
276// alignment is achieved, "\t{{content}}\n" is added for the output.
277//
278// If the content of the labeledOutput contains line breaks, the subsequent lines are aligned so that they start at the same location as the first line.
279func labeledOutput(content ...labeledContent) string {
280 longestLabel := 0
281 for _, v := range content {
282 if len(v.label) > longestLabel {
283 longestLabel = len(v.label)
284 }
285 }
286 var output string
287 for _, v := range content {
288 output += "\t" + v.label + ":" + strings.Repeat(" ", longestLabel-len(v.label)) + "\t" + indentMessageLines(v.content, longestLabel) + "\n"
289 }
290 return output
291}
292
293// Implements asserts that an object is implemented by the specified interface.
294//
295// assert.Implements(t, (*MyInterface)(nil), new(MyObject))
296func Implements(t TestingT, interfaceObject interface{}, object interface{}, msgAndArgs ...interface{}) bool {
297 if h, ok := t.(tHelper); ok {
298 h.Helper()
299 }
300 interfaceType := reflect.TypeOf(interfaceObject).Elem()
301
302 if object == nil {
303 return Fail(t, fmt.Sprintf("Cannot check if nil implements %v", interfaceType), msgAndArgs...)
304 }
305 if !reflect.TypeOf(object).Implements(interfaceType) {
306 return Fail(t, fmt.Sprintf("%T must implement %v", object, interfaceType), msgAndArgs...)
307 }
308
309 return true
310}
311
312// IsType asserts that the specified objects are of the same type.
313func IsType(t TestingT, expectedType interface{}, object interface{}, msgAndArgs ...interface{}) bool {
314 if h, ok := t.(tHelper); ok {
315 h.Helper()
316 }
317
318 if !ObjectsAreEqual(reflect.TypeOf(object), reflect.TypeOf(expectedType)) {
319 return Fail(t, fmt.Sprintf("Object expected to be of type %v, but was %v", reflect.TypeOf(expectedType), reflect.TypeOf(object)), msgAndArgs...)
320 }
321
322 return true
323}
324
325// Equal asserts that two objects are equal.
326//
327// assert.Equal(t, 123, 123)
328//
329// Pointer variable equality is determined based on the equality of the
330// referenced values (as opposed to the memory addresses). Function equality
331// cannot be determined and will always fail.
332func Equal(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
333 if h, ok := t.(tHelper); ok {
334 h.Helper()
335 }
336 if err := validateEqualArgs(expected, actual); err != nil {
337 return Fail(t, fmt.Sprintf("Invalid operation: %#v == %#v (%s)",
338 expected, actual, err), msgAndArgs...)
339 }
340
341 if !ObjectsAreEqual(expected, actual) {
342 diff := diff(expected, actual)
343 expected, actual = formatUnequalValues(expected, actual)
344 return Fail(t, fmt.Sprintf("Not equal: \n"+
345 "expected: %s\n"+
346 "actual : %s%s", expected, actual, diff), msgAndArgs...)
347 }
348
349 return true
350
351}
352
353// formatUnequalValues takes two values of arbitrary types and returns string
354// representations appropriate to be presented to the user.
355//
356// If the values are not of like type, the returned strings will be prefixed
357// with the type name, and the value will be enclosed in parenthesis similar
358// to a type conversion in the Go grammar.
359func formatUnequalValues(expected, actual interface{}) (e string, a string) {
360 if reflect.TypeOf(expected) != reflect.TypeOf(actual) {
361 return fmt.Sprintf("%T(%#v)", expected, expected),
362 fmt.Sprintf("%T(%#v)", actual, actual)
363 }
364
365 return fmt.Sprintf("%#v", expected),
366 fmt.Sprintf("%#v", actual)
367}
368
369// EqualValues asserts that two objects are equal or convertable to the same types
370// and equal.
371//
372// assert.EqualValues(t, uint32(123), int32(123))
373func EqualValues(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
374 if h, ok := t.(tHelper); ok {
375 h.Helper()
376 }
377
378 if !ObjectsAreEqualValues(expected, actual) {
379 diff := diff(expected, actual)
380 expected, actual = formatUnequalValues(expected, actual)
381 return Fail(t, fmt.Sprintf("Not equal: \n"+
382 "expected: %s\n"+
383 "actual : %s%s", expected, actual, diff), msgAndArgs...)
384 }
385
386 return true
387
388}
389
390// Exactly asserts that two objects are equal in value and type.
391//
392// assert.Exactly(t, int32(123), int64(123))
393func Exactly(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
394 if h, ok := t.(tHelper); ok {
395 h.Helper()
396 }
397
398 aType := reflect.TypeOf(expected)
399 bType := reflect.TypeOf(actual)
400
401 if aType != bType {
402 return Fail(t, fmt.Sprintf("Types expected to match exactly\n\t%v != %v", aType, bType), msgAndArgs...)
403 }
404
405 return Equal(t, expected, actual, msgAndArgs...)
406
407}
408
409// NotNil asserts that the specified object is not nil.
410//
411// assert.NotNil(t, err)
412func NotNil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
413 if h, ok := t.(tHelper); ok {
414 h.Helper()
415 }
416 if !isNil(object) {
417 return true
418 }
419 return Fail(t, "Expected value not to be nil.", msgAndArgs...)
420}
421
422// containsKind checks if a specified kind in the slice of kinds.
423func containsKind(kinds []reflect.Kind, kind reflect.Kind) bool {
424 for i := 0; i < len(kinds); i++ {
425 if kind == kinds[i] {
426 return true
427 }
428 }
429
430 return false
431}
432
433// isNil checks if a specified object is nil or not, without Failing.
434func isNil(object interface{}) bool {
435 if object == nil {
436 return true
437 }
438
439 value := reflect.ValueOf(object)
440 kind := value.Kind()
441 isNilableKind := containsKind(
442 []reflect.Kind{
443 reflect.Chan, reflect.Func,
444 reflect.Interface, reflect.Map,
445 reflect.Ptr, reflect.Slice},
446 kind)
447
448 if isNilableKind && value.IsNil() {
449 return true
450 }
451
452 return false
453}
454
455// Nil asserts that the specified object is nil.
456//
457// assert.Nil(t, err)
458func Nil(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
459 if h, ok := t.(tHelper); ok {
460 h.Helper()
461 }
462 if isNil(object) {
463 return true
464 }
465 return Fail(t, fmt.Sprintf("Expected nil, but got: %#v", object), msgAndArgs...)
466}
467
468// isEmpty gets whether the specified object is considered empty or not.
469func isEmpty(object interface{}) bool {
470
471 // get nil case out of the way
472 if object == nil {
473 return true
474 }
475
476 objValue := reflect.ValueOf(object)
477
478 switch objValue.Kind() {
479 // collection types are empty when they have no element
480 case reflect.Array, reflect.Chan, reflect.Map, reflect.Slice:
481 return objValue.Len() == 0
482 // pointers are empty if nil or if the value they point to is empty
483 case reflect.Ptr:
484 if objValue.IsNil() {
485 return true
486 }
487 deref := objValue.Elem().Interface()
488 return isEmpty(deref)
489 // for all other types, compare against the zero value
490 default:
491 zero := reflect.Zero(objValue.Type())
492 return reflect.DeepEqual(object, zero.Interface())
493 }
494}
495
496// Empty asserts that the specified object is empty. I.e. nil, "", false, 0 or either
497// a slice or a channel with len == 0.
498//
499// assert.Empty(t, obj)
500func Empty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
501 if h, ok := t.(tHelper); ok {
502 h.Helper()
503 }
504
505 pass := isEmpty(object)
506 if !pass {
507 Fail(t, fmt.Sprintf("Should be empty, but was %v", object), msgAndArgs...)
508 }
509
510 return pass
511
512}
513
514// NotEmpty asserts that the specified object is NOT empty. I.e. not nil, "", false, 0 or either
515// a slice or a channel with len == 0.
516//
517// if assert.NotEmpty(t, obj) {
518// assert.Equal(t, "two", obj[1])
519// }
520func NotEmpty(t TestingT, object interface{}, msgAndArgs ...interface{}) bool {
521 if h, ok := t.(tHelper); ok {
522 h.Helper()
523 }
524
525 pass := !isEmpty(object)
526 if !pass {
527 Fail(t, fmt.Sprintf("Should NOT be empty, but was %v", object), msgAndArgs...)
528 }
529
530 return pass
531
532}
533
534// getLen try to get length of object.
535// return (false, 0) if impossible.
536func getLen(x interface{}) (ok bool, length int) {
537 v := reflect.ValueOf(x)
538 defer func() {
539 if e := recover(); e != nil {
540 ok = false
541 }
542 }()
543 return true, v.Len()
544}
545
546// Len asserts that the specified object has specific length.
547// Len also fails if the object has a type that len() not accept.
548//
549// assert.Len(t, mySlice, 3)
550func Len(t TestingT, object interface{}, length int, msgAndArgs ...interface{}) bool {
551 if h, ok := t.(tHelper); ok {
552 h.Helper()
553 }
554 ok, l := getLen(object)
555 if !ok {
556 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", object), msgAndArgs...)
557 }
558
559 if l != length {
560 return Fail(t, fmt.Sprintf("\"%s\" should have %d item(s), but has %d", object, length, l), msgAndArgs...)
561 }
562 return true
563}
564
565// True asserts that the specified value is true.
566//
567// assert.True(t, myBool)
568func True(t TestingT, value bool, msgAndArgs ...interface{}) bool {
569 if h, ok := t.(tHelper); ok {
570 h.Helper()
571 }
572 if h, ok := t.(interface {
573 Helper()
574 }); ok {
575 h.Helper()
576 }
577
578 if value != true {
579 return Fail(t, "Should be true", msgAndArgs...)
580 }
581
582 return true
583
584}
585
586// False asserts that the specified value is false.
587//
588// assert.False(t, myBool)
589func False(t TestingT, value bool, msgAndArgs ...interface{}) bool {
590 if h, ok := t.(tHelper); ok {
591 h.Helper()
592 }
593
594 if value != false {
595 return Fail(t, "Should be false", msgAndArgs...)
596 }
597
598 return true
599
600}
601
602// NotEqual asserts that the specified values are NOT equal.
603//
604// assert.NotEqual(t, obj1, obj2)
605//
606// Pointer variable equality is determined based on the equality of the
607// referenced values (as opposed to the memory addresses).
608func NotEqual(t TestingT, expected, actual interface{}, msgAndArgs ...interface{}) bool {
609 if h, ok := t.(tHelper); ok {
610 h.Helper()
611 }
612 if err := validateEqualArgs(expected, actual); err != nil {
613 return Fail(t, fmt.Sprintf("Invalid operation: %#v != %#v (%s)",
614 expected, actual, err), msgAndArgs...)
615 }
616
617 if ObjectsAreEqual(expected, actual) {
618 return Fail(t, fmt.Sprintf("Should not be: %#v\n", actual), msgAndArgs...)
619 }
620
621 return true
622
623}
624
625// containsElement try loop over the list check if the list includes the element.
626// return (false, false) if impossible.
627// return (true, false) if element was not found.
628// return (true, true) if element was found.
629func includeElement(list interface{}, element interface{}) (ok, found bool) {
630
631 listValue := reflect.ValueOf(list)
632 elementValue := reflect.ValueOf(element)
633 defer func() {
634 if e := recover(); e != nil {
635 ok = false
636 found = false
637 }
638 }()
639
640 if reflect.TypeOf(list).Kind() == reflect.String {
641 return true, strings.Contains(listValue.String(), elementValue.String())
642 }
643
644 if reflect.TypeOf(list).Kind() == reflect.Map {
645 mapKeys := listValue.MapKeys()
646 for i := 0; i < len(mapKeys); i++ {
647 if ObjectsAreEqual(mapKeys[i].Interface(), element) {
648 return true, true
649 }
650 }
651 return true, false
652 }
653
654 for i := 0; i < listValue.Len(); i++ {
655 if ObjectsAreEqual(listValue.Index(i).Interface(), element) {
656 return true, true
657 }
658 }
659 return true, false
660
661}
662
663// Contains asserts that the specified string, list(array, slice...) or map contains the
664// specified substring or element.
665//
666// assert.Contains(t, "Hello World", "World")
667// assert.Contains(t, ["Hello", "World"], "World")
668// assert.Contains(t, {"Hello": "World"}, "Hello")
669func Contains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
670 if h, ok := t.(tHelper); ok {
671 h.Helper()
672 }
673
674 ok, found := includeElement(s, contains)
675 if !ok {
676 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
677 }
678 if !found {
679 return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", s, contains), msgAndArgs...)
680 }
681
682 return true
683
684}
685
686// NotContains asserts that the specified string, list(array, slice...) or map does NOT contain the
687// specified substring or element.
688//
689// assert.NotContains(t, "Hello World", "Earth")
690// assert.NotContains(t, ["Hello", "World"], "Earth")
691// assert.NotContains(t, {"Hello": "World"}, "Earth")
692func NotContains(t TestingT, s, contains interface{}, msgAndArgs ...interface{}) bool {
693 if h, ok := t.(tHelper); ok {
694 h.Helper()
695 }
696
697 ok, found := includeElement(s, contains)
698 if !ok {
699 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", s), msgAndArgs...)
700 }
701 if found {
702 return Fail(t, fmt.Sprintf("\"%s\" should not contain \"%s\"", s, contains), msgAndArgs...)
703 }
704
705 return true
706
707}
708
709// Subset asserts that the specified list(array, slice...) contains all
710// elements given in the specified subset(array, slice...).
711//
712// assert.Subset(t, [1, 2, 3], [1, 2], "But [1, 2, 3] does contain [1, 2]")
713func Subset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
714 if h, ok := t.(tHelper); ok {
715 h.Helper()
716 }
717 if subset == nil {
718 return true // we consider nil to be equal to the nil set
719 }
720
721 subsetValue := reflect.ValueOf(subset)
722 defer func() {
723 if e := recover(); e != nil {
724 ok = false
725 }
726 }()
727
728 listKind := reflect.TypeOf(list).Kind()
729 subsetKind := reflect.TypeOf(subset).Kind()
730
731 if listKind != reflect.Array && listKind != reflect.Slice {
732 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
733 }
734
735 if subsetKind != reflect.Array && subsetKind != reflect.Slice {
736 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
737 }
738
739 for i := 0; i < subsetValue.Len(); i++ {
740 element := subsetValue.Index(i).Interface()
741 ok, found := includeElement(list, element)
742 if !ok {
743 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
744 }
745 if !found {
746 return Fail(t, fmt.Sprintf("\"%s\" does not contain \"%s\"", list, element), msgAndArgs...)
747 }
748 }
749
750 return true
751}
752
753// NotSubset asserts that the specified list(array, slice...) contains not all
754// elements given in the specified subset(array, slice...).
755//
756// assert.NotSubset(t, [1, 3, 4], [1, 2], "But [1, 3, 4] does not contain [1, 2]")
757func NotSubset(t TestingT, list, subset interface{}, msgAndArgs ...interface{}) (ok bool) {
758 if h, ok := t.(tHelper); ok {
759 h.Helper()
760 }
761 if subset == nil {
762 return Fail(t, fmt.Sprintf("nil is the empty set which is a subset of every set"), msgAndArgs...)
763 }
764
765 subsetValue := reflect.ValueOf(subset)
766 defer func() {
767 if e := recover(); e != nil {
768 ok = false
769 }
770 }()
771
772 listKind := reflect.TypeOf(list).Kind()
773 subsetKind := reflect.TypeOf(subset).Kind()
774
775 if listKind != reflect.Array && listKind != reflect.Slice {
776 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", list, listKind), msgAndArgs...)
777 }
778
779 if subsetKind != reflect.Array && subsetKind != reflect.Slice {
780 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", subset, subsetKind), msgAndArgs...)
781 }
782
783 for i := 0; i < subsetValue.Len(); i++ {
784 element := subsetValue.Index(i).Interface()
785 ok, found := includeElement(list, element)
786 if !ok {
787 return Fail(t, fmt.Sprintf("\"%s\" could not be applied builtin len()", list), msgAndArgs...)
788 }
789 if !found {
790 return true
791 }
792 }
793
794 return Fail(t, fmt.Sprintf("%q is a subset of %q", subset, list), msgAndArgs...)
795}
796
797// ElementsMatch asserts that the specified listA(array, slice...) is equal to specified
798// listB(array, slice...) ignoring the order of the elements. If there are duplicate elements,
799// the number of appearances of each of them in both lists should match.
800//
801// assert.ElementsMatch(t, [1, 3, 2, 3], [1, 3, 3, 2])
802func ElementsMatch(t TestingT, listA, listB interface{}, msgAndArgs ...interface{}) (ok bool) {
803 if h, ok := t.(tHelper); ok {
804 h.Helper()
805 }
806 if isEmpty(listA) && isEmpty(listB) {
807 return true
808 }
809
810 aKind := reflect.TypeOf(listA).Kind()
811 bKind := reflect.TypeOf(listB).Kind()
812
813 if aKind != reflect.Array && aKind != reflect.Slice {
814 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listA, aKind), msgAndArgs...)
815 }
816
817 if bKind != reflect.Array && bKind != reflect.Slice {
818 return Fail(t, fmt.Sprintf("%q has an unsupported type %s", listB, bKind), msgAndArgs...)
819 }
820
821 aValue := reflect.ValueOf(listA)
822 bValue := reflect.ValueOf(listB)
823
824 aLen := aValue.Len()
825 bLen := bValue.Len()
826
827 if aLen != bLen {
828 return Fail(t, fmt.Sprintf("lengths don't match: %d != %d", aLen, bLen), msgAndArgs...)
829 }
830
831 // Mark indexes in bValue that we already used
832 visited := make([]bool, bLen)
833 for i := 0; i < aLen; i++ {
834 element := aValue.Index(i).Interface()
835 found := false
836 for j := 0; j < bLen; j++ {
837 if visited[j] {
838 continue
839 }
840 if ObjectsAreEqual(bValue.Index(j).Interface(), element) {
841 visited[j] = true
842 found = true
843 break
844 }
845 }
846 if !found {
847 return Fail(t, fmt.Sprintf("element %s appears more times in %s than in %s", element, aValue, bValue), msgAndArgs...)
848 }
849 }
850
851 return true
852}
853
854// Condition uses a Comparison to assert a complex condition.
855func Condition(t TestingT, comp Comparison, msgAndArgs ...interface{}) bool {
856 if h, ok := t.(tHelper); ok {
857 h.Helper()
858 }
859 result := comp()
860 if !result {
861 Fail(t, "Condition failed!", msgAndArgs...)
862 }
863 return result
864}
865
866// PanicTestFunc defines a func that should be passed to the assert.Panics and assert.NotPanics
867// methods, and represents a simple func that takes no arguments, and returns nothing.
868type PanicTestFunc func()
869
870// didPanic returns true if the function passed to it panics. Otherwise, it returns false.
871func didPanic(f PanicTestFunc) (bool, interface{}) {
872
873 didPanic := false
874 var message interface{}
875 func() {
876
877 defer func() {
878 if message = recover(); message != nil {
879 didPanic = true
880 }
881 }()
882
883 // call the target function
884 f()
885
886 }()
887
888 return didPanic, message
889
890}
891
892// Panics asserts that the code inside the specified PanicTestFunc panics.
893//
894// assert.Panics(t, func(){ GoCrazy() })
895func Panics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
896 if h, ok := t.(tHelper); ok {
897 h.Helper()
898 }
899
900 if funcDidPanic, panicValue := didPanic(f); !funcDidPanic {
901 return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
902 }
903
904 return true
905}
906
907// PanicsWithValue asserts that the code inside the specified PanicTestFunc panics, and that
908// the recovered panic value equals the expected panic value.
909//
910// assert.PanicsWithValue(t, "crazy error", func(){ GoCrazy() })
911func PanicsWithValue(t TestingT, expected interface{}, f PanicTestFunc, msgAndArgs ...interface{}) bool {
912 if h, ok := t.(tHelper); ok {
913 h.Helper()
914 }
915
916 funcDidPanic, panicValue := didPanic(f)
917 if !funcDidPanic {
918 return Fail(t, fmt.Sprintf("func %#v should panic\n\tPanic value:\t%#v", f, panicValue), msgAndArgs...)
919 }
920 if panicValue != expected {
921 return Fail(t, fmt.Sprintf("func %#v should panic with value:\t%#v\n\tPanic value:\t%#v", f, expected, panicValue), msgAndArgs...)
922 }
923
924 return true
925}
926
927// NotPanics asserts that the code inside the specified PanicTestFunc does NOT panic.
928//
929// assert.NotPanics(t, func(){ RemainCalm() })
930func NotPanics(t TestingT, f PanicTestFunc, msgAndArgs ...interface{}) bool {
931 if h, ok := t.(tHelper); ok {
932 h.Helper()
933 }
934
935 if funcDidPanic, panicValue := didPanic(f); funcDidPanic {
936 return Fail(t, fmt.Sprintf("func %#v should not panic\n\tPanic value:\t%v", f, panicValue), msgAndArgs...)
937 }
938
939 return true
940}
941
942// WithinDuration asserts that the two times are within duration delta of each other.
943//
944// assert.WithinDuration(t, time.Now(), time.Now(), 10*time.Second)
945func WithinDuration(t TestingT, expected, actual time.Time, delta time.Duration, msgAndArgs ...interface{}) bool {
946 if h, ok := t.(tHelper); ok {
947 h.Helper()
948 }
949
950 dt := expected.Sub(actual)
951 if dt < -delta || dt > delta {
952 return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
953 }
954
955 return true
956}
957
958func toFloat(x interface{}) (float64, bool) {
959 var xf float64
960 xok := true
961
962 switch xn := x.(type) {
963 case uint8:
964 xf = float64(xn)
965 case uint16:
966 xf = float64(xn)
967 case uint32:
968 xf = float64(xn)
969 case uint64:
970 xf = float64(xn)
971 case int:
972 xf = float64(xn)
973 case int8:
974 xf = float64(xn)
975 case int16:
976 xf = float64(xn)
977 case int32:
978 xf = float64(xn)
979 case int64:
980 xf = float64(xn)
981 case float32:
982 xf = float64(xn)
983 case float64:
984 xf = float64(xn)
985 case time.Duration:
986 xf = float64(xn)
987 default:
988 xok = false
989 }
990
991 return xf, xok
992}
993
994// InDelta asserts that the two numerals are within delta of each other.
995//
996// assert.InDelta(t, math.Pi, (22 / 7.0), 0.01)
997func InDelta(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
998 if h, ok := t.(tHelper); ok {
999 h.Helper()
1000 }
1001
1002 af, aok := toFloat(expected)
1003 bf, bok := toFloat(actual)
1004
1005 if !aok || !bok {
1006 return Fail(t, fmt.Sprintf("Parameters must be numerical"), msgAndArgs...)
1007 }
1008
1009 if math.IsNaN(af) {
1010 return Fail(t, fmt.Sprintf("Expected must not be NaN"), msgAndArgs...)
1011 }
1012
1013 if math.IsNaN(bf) {
1014 return Fail(t, fmt.Sprintf("Expected %v with delta %v, but was NaN", expected, delta), msgAndArgs...)
1015 }
1016
1017 dt := af - bf
1018 if dt < -delta || dt > delta {
1019 return Fail(t, fmt.Sprintf("Max difference between %v and %v allowed is %v, but difference was %v", expected, actual, delta, dt), msgAndArgs...)
1020 }
1021
1022 return true
1023}
1024
1025// InDeltaSlice is the same as InDelta, except it compares two slices.
1026func InDeltaSlice(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1027 if h, ok := t.(tHelper); ok {
1028 h.Helper()
1029 }
1030 if expected == nil || actual == nil ||
1031 reflect.TypeOf(actual).Kind() != reflect.Slice ||
1032 reflect.TypeOf(expected).Kind() != reflect.Slice {
1033 return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1034 }
1035
1036 actualSlice := reflect.ValueOf(actual)
1037 expectedSlice := reflect.ValueOf(expected)
1038
1039 for i := 0; i < actualSlice.Len(); i++ {
1040 result := InDelta(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), delta, msgAndArgs...)
1041 if !result {
1042 return result
1043 }
1044 }
1045
1046 return true
1047}
1048
1049// InDeltaMapValues is the same as InDelta, but it compares all values between two maps. Both maps must have exactly the same keys.
1050func InDeltaMapValues(t TestingT, expected, actual interface{}, delta float64, msgAndArgs ...interface{}) bool {
1051 if h, ok := t.(tHelper); ok {
1052 h.Helper()
1053 }
1054 if expected == nil || actual == nil ||
1055 reflect.TypeOf(actual).Kind() != reflect.Map ||
1056 reflect.TypeOf(expected).Kind() != reflect.Map {
1057 return Fail(t, "Arguments must be maps", msgAndArgs...)
1058 }
1059
1060 expectedMap := reflect.ValueOf(expected)
1061 actualMap := reflect.ValueOf(actual)
1062
1063 if expectedMap.Len() != actualMap.Len() {
1064 return Fail(t, "Arguments must have the same number of keys", msgAndArgs...)
1065 }
1066
1067 for _, k := range expectedMap.MapKeys() {
1068 ev := expectedMap.MapIndex(k)
1069 av := actualMap.MapIndex(k)
1070
1071 if !ev.IsValid() {
1072 return Fail(t, fmt.Sprintf("missing key %q in expected map", k), msgAndArgs...)
1073 }
1074
1075 if !av.IsValid() {
1076 return Fail(t, fmt.Sprintf("missing key %q in actual map", k), msgAndArgs...)
1077 }
1078
1079 if !InDelta(
1080 t,
1081 ev.Interface(),
1082 av.Interface(),
1083 delta,
1084 msgAndArgs...,
1085 ) {
1086 return false
1087 }
1088 }
1089
1090 return true
1091}
1092
1093func calcRelativeError(expected, actual interface{}) (float64, error) {
1094 af, aok := toFloat(expected)
1095 if !aok {
1096 return 0, fmt.Errorf("expected value %q cannot be converted to float", expected)
1097 }
1098 if af == 0 {
1099 return 0, fmt.Errorf("expected value must have a value other than zero to calculate the relative error")
1100 }
1101 bf, bok := toFloat(actual)
1102 if !bok {
1103 return 0, fmt.Errorf("actual value %q cannot be converted to float", actual)
1104 }
1105
1106 return math.Abs(af-bf) / math.Abs(af), nil
1107}
1108
1109// InEpsilon asserts that expected and actual have a relative error less than epsilon
1110func InEpsilon(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1111 if h, ok := t.(tHelper); ok {
1112 h.Helper()
1113 }
1114 actualEpsilon, err := calcRelativeError(expected, actual)
1115 if err != nil {
1116 return Fail(t, err.Error(), msgAndArgs...)
1117 }
1118 if actualEpsilon > epsilon {
1119 return Fail(t, fmt.Sprintf("Relative error is too high: %#v (expected)\n"+
1120 " < %#v (actual)", epsilon, actualEpsilon), msgAndArgs...)
1121 }
1122
1123 return true
1124}
1125
1126// InEpsilonSlice is the same as InEpsilon, except it compares each value from two slices.
1127func InEpsilonSlice(t TestingT, expected, actual interface{}, epsilon float64, msgAndArgs ...interface{}) bool {
1128 if h, ok := t.(tHelper); ok {
1129 h.Helper()
1130 }
1131 if expected == nil || actual == nil ||
1132 reflect.TypeOf(actual).Kind() != reflect.Slice ||
1133 reflect.TypeOf(expected).Kind() != reflect.Slice {
1134 return Fail(t, fmt.Sprintf("Parameters must be slice"), msgAndArgs...)
1135 }
1136
1137 actualSlice := reflect.ValueOf(actual)
1138 expectedSlice := reflect.ValueOf(expected)
1139
1140 for i := 0; i < actualSlice.Len(); i++ {
1141 result := InEpsilon(t, actualSlice.Index(i).Interface(), expectedSlice.Index(i).Interface(), epsilon)
1142 if !result {
1143 return result
1144 }
1145 }
1146
1147 return true
1148}
1149
1150/*
1151 Errors
1152*/
1153
1154// NoError asserts that a function returned no error (i.e. `nil`).
1155//
1156// actualObj, err := SomeFunction()
1157// if assert.NoError(t, err) {
1158// assert.Equal(t, expectedObj, actualObj)
1159// }
1160func NoError(t TestingT, err error, msgAndArgs ...interface{}) bool {
1161 if h, ok := t.(tHelper); ok {
1162 h.Helper()
1163 }
1164 if err != nil {
1165 return Fail(t, fmt.Sprintf("Received unexpected error:\n%+v", err), msgAndArgs...)
1166 }
1167
1168 return true
1169}
1170
1171// Error asserts that a function returned an error (i.e. not `nil`).
1172//
1173// actualObj, err := SomeFunction()
1174// if assert.Error(t, err) {
1175// assert.Equal(t, expectedError, err)
1176// }
1177func Error(t TestingT, err error, msgAndArgs ...interface{}) bool {
1178 if h, ok := t.(tHelper); ok {
1179 h.Helper()
1180 }
1181
1182 if err == nil {
1183 return Fail(t, "An error is expected but got nil.", msgAndArgs...)
1184 }
1185
1186 return true
1187}
1188
1189// EqualError asserts that a function returned an error (i.e. not `nil`)
1190// and that it is equal to the provided error.
1191//
1192// actualObj, err := SomeFunction()
1193// assert.EqualError(t, err, expectedErrorString)
1194func EqualError(t TestingT, theError error, errString string, msgAndArgs ...interface{}) bool {
1195 if h, ok := t.(tHelper); ok {
1196 h.Helper()
1197 }
1198 if !Error(t, theError, msgAndArgs...) {
1199 return false
1200 }
1201 expected := errString
1202 actual := theError.Error()
1203 // don't need to use deep equals here, we know they are both strings
1204 if expected != actual {
1205 return Fail(t, fmt.Sprintf("Error message not equal:\n"+
1206 "expected: %q\n"+
1207 "actual : %q", expected, actual), msgAndArgs...)
1208 }
1209 return true
1210}
1211
1212// matchRegexp return true if a specified regexp matches a string.
1213func matchRegexp(rx interface{}, str interface{}) bool {
1214
1215 var r *regexp.Regexp
1216 if rr, ok := rx.(*regexp.Regexp); ok {
1217 r = rr
1218 } else {
1219 r = regexp.MustCompile(fmt.Sprint(rx))
1220 }
1221
1222 return (r.FindStringIndex(fmt.Sprint(str)) != nil)
1223
1224}
1225
1226// Regexp asserts that a specified regexp matches a string.
1227//
1228// assert.Regexp(t, regexp.MustCompile("start"), "it's starting")
1229// assert.Regexp(t, "start...$", "it's not starting")
1230func Regexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1231 if h, ok := t.(tHelper); ok {
1232 h.Helper()
1233 }
1234
1235 match := matchRegexp(rx, str)
1236
1237 if !match {
1238 Fail(t, fmt.Sprintf("Expect \"%v\" to match \"%v\"", str, rx), msgAndArgs...)
1239 }
1240
1241 return match
1242}
1243
1244// NotRegexp asserts that a specified regexp does not match a string.
1245//
1246// assert.NotRegexp(t, regexp.MustCompile("starts"), "it's starting")
1247// assert.NotRegexp(t, "^start", "it's not starting")
1248func NotRegexp(t TestingT, rx interface{}, str interface{}, msgAndArgs ...interface{}) bool {
1249 if h, ok := t.(tHelper); ok {
1250 h.Helper()
1251 }
1252 match := matchRegexp(rx, str)
1253
1254 if match {
1255 Fail(t, fmt.Sprintf("Expect \"%v\" to NOT match \"%v\"", str, rx), msgAndArgs...)
1256 }
1257
1258 return !match
1259
1260}
1261
1262// Zero asserts that i is the zero value for its type.
1263func Zero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1264 if h, ok := t.(tHelper); ok {
1265 h.Helper()
1266 }
1267 if i != nil && !reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1268 return Fail(t, fmt.Sprintf("Should be zero, but was %v", i), msgAndArgs...)
1269 }
1270 return true
1271}
1272
1273// NotZero asserts that i is not the zero value for its type.
1274func NotZero(t TestingT, i interface{}, msgAndArgs ...interface{}) bool {
1275 if h, ok := t.(tHelper); ok {
1276 h.Helper()
1277 }
1278 if i == nil || reflect.DeepEqual(i, reflect.Zero(reflect.TypeOf(i)).Interface()) {
1279 return Fail(t, fmt.Sprintf("Should not be zero, but was %v", i), msgAndArgs...)
1280 }
1281 return true
1282}
1283
1284// FileExists checks whether a file exists in the given path. It also fails if the path points to a directory or there is an error when trying to check the file.
1285func FileExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1286 if h, ok := t.(tHelper); ok {
1287 h.Helper()
1288 }
1289 info, err := os.Lstat(path)
1290 if err != nil {
1291 if os.IsNotExist(err) {
1292 return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1293 }
1294 return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1295 }
1296 if info.IsDir() {
1297 return Fail(t, fmt.Sprintf("%q is a directory", path), msgAndArgs...)
1298 }
1299 return true
1300}
1301
1302// DirExists checks whether a directory exists in the given path. It also fails if the path is a file rather a directory or there is an error checking whether it exists.
1303func DirExists(t TestingT, path string, msgAndArgs ...interface{}) bool {
1304 if h, ok := t.(tHelper); ok {
1305 h.Helper()
1306 }
1307 info, err := os.Lstat(path)
1308 if err != nil {
1309 if os.IsNotExist(err) {
1310 return Fail(t, fmt.Sprintf("unable to find file %q", path), msgAndArgs...)
1311 }
1312 return Fail(t, fmt.Sprintf("error when running os.Lstat(%q): %s", path, err), msgAndArgs...)
1313 }
1314 if !info.IsDir() {
1315 return Fail(t, fmt.Sprintf("%q is a file", path), msgAndArgs...)
1316 }
1317 return true
1318}
1319
1320// JSONEq asserts that two JSON strings are equivalent.
1321//
1322// assert.JSONEq(t, `{"hello": "world", "foo": "bar"}`, `{"foo": "bar", "hello": "world"}`)
1323func JSONEq(t TestingT, expected string, actual string, msgAndArgs ...interface{}) bool {
1324 if h, ok := t.(tHelper); ok {
1325 h.Helper()
1326 }
1327 var expectedJSONAsInterface, actualJSONAsInterface interface{}
1328
1329 if err := json.Unmarshal([]byte(expected), &expectedJSONAsInterface); err != nil {
1330 return Fail(t, fmt.Sprintf("Expected value ('%s') is not valid json.\nJSON parsing error: '%s'", expected, err.Error()), msgAndArgs...)
1331 }
1332
1333 if err := json.Unmarshal([]byte(actual), &actualJSONAsInterface); err != nil {
1334 return Fail(t, fmt.Sprintf("Input ('%s') needs to be valid json.\nJSON parsing error: '%s'", actual, err.Error()), msgAndArgs...)
1335 }
1336
1337 return Equal(t, expectedJSONAsInterface, actualJSONAsInterface, msgAndArgs...)
1338}
1339
1340func typeAndKind(v interface{}) (reflect.Type, reflect.Kind) {
1341 t := reflect.TypeOf(v)
1342 k := t.Kind()
1343
1344 if k == reflect.Ptr {
1345 t = t.Elem()
1346 k = t.Kind()
1347 }
1348 return t, k
1349}
1350
1351// diff returns a diff of both values as long as both are of the same type and
1352// are a struct, map, slice, array or string. Otherwise it returns an empty string.
1353func diff(expected interface{}, actual interface{}) string {
1354 if expected == nil || actual == nil {
1355 return ""
1356 }
1357
1358 et, ek := typeAndKind(expected)
1359 at, _ := typeAndKind(actual)
1360
1361 if et != at {
1362 return ""
1363 }
1364
1365 if ek != reflect.Struct && ek != reflect.Map && ek != reflect.Slice && ek != reflect.Array && ek != reflect.String {
1366 return ""
1367 }
1368
1369 var e, a string
1370 if et != reflect.TypeOf("") {
1371 e = spewConfig.Sdump(expected)
1372 a = spewConfig.Sdump(actual)
1373 } else {
1374 e = expected.(string)
1375 a = actual.(string)
1376 }
1377
1378 diff, _ := difflib.GetUnifiedDiffString(difflib.UnifiedDiff{
1379 A: difflib.SplitLines(e),
1380 B: difflib.SplitLines(a),
1381 FromFile: "Expected",
1382 FromDate: "",
1383 ToFile: "Actual",
1384 ToDate: "",
1385 Context: 1,
1386 })
1387
1388 return "\n\nDiff:\n" + diff
1389}
1390
1391// validateEqualArgs checks whether provided arguments can be safely used in the
1392// Equal/NotEqual functions.
1393func validateEqualArgs(expected, actual interface{}) error {
1394 if isFunction(expected) || isFunction(actual) {
1395 return errors.New("cannot take func type as argument")
1396 }
1397 return nil
1398}
1399
1400func isFunction(arg interface{}) bool {
1401 if arg == nil {
1402 return false
1403 }
1404 return reflect.TypeOf(arg).Kind() == reflect.Func
1405}
1406
1407var spewConfig = spew.ConfigState{
1408 Indent: " ",
1409 DisablePointerAddresses: true,
1410 DisableCapacities: true,
1411 SortKeys: true,
1412}
1413
1414type tHelper interface {
1415 Helper()
1416}