blob: 06c68e117026fa6d571b26f88b118b923d010a24 [file] [log] [blame]
Andrea Campanella3614a922021-02-25 12:40:42 +01001// Copyright 2018 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package impl
6
7import (
8 "fmt"
9 "reflect"
10 "strings"
11 "sync"
12
13 "google.golang.org/protobuf/internal/descopts"
14 ptag "google.golang.org/protobuf/internal/encoding/tag"
15 "google.golang.org/protobuf/internal/errors"
16 "google.golang.org/protobuf/internal/filedesc"
17 "google.golang.org/protobuf/internal/strs"
18 "google.golang.org/protobuf/reflect/protoreflect"
19 pref "google.golang.org/protobuf/reflect/protoreflect"
20 "google.golang.org/protobuf/runtime/protoiface"
21 piface "google.golang.org/protobuf/runtime/protoiface"
22)
23
24// legacyWrapMessage wraps v as a protoreflect.Message,
25// where v must be a *struct kind and not implement the v2 API already.
26func legacyWrapMessage(v reflect.Value) pref.Message {
27 typ := v.Type()
28 if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct {
29 return aberrantMessage{v: v}
30 }
31 mt := legacyLoadMessageInfo(typ, "")
32 return mt.MessageOf(v.Interface())
33}
34
35var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
36
37// legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
38// where t must be a *struct kind and not implement the v2 API already.
39// The provided name is used if it cannot be determined from the message.
40func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
41 // Fast-path: check if a MessageInfo is cached for this concrete type.
42 if mt, ok := legacyMessageTypeCache.Load(t); ok {
43 return mt.(*MessageInfo)
44 }
45
46 // Slow-path: derive message descriptor and initialize MessageInfo.
47 mi := &MessageInfo{
48 Desc: legacyLoadMessageDesc(t, name),
49 GoReflectType: t,
50 }
51
52 v := reflect.Zero(t).Interface()
53 if _, ok := v.(legacyMarshaler); ok {
54 mi.methods.Marshal = legacyMarshal
55
56 // We have no way to tell whether the type's Marshal method
57 // supports deterministic serialization or not, but this
58 // preserves the v1 implementation's behavior of always
59 // calling Marshal methods when present.
60 mi.methods.Flags |= piface.SupportMarshalDeterministic
61 }
62 if _, ok := v.(legacyUnmarshaler); ok {
63 mi.methods.Unmarshal = legacyUnmarshal
64 }
65 if _, ok := v.(legacyMerger); ok {
66 mi.methods.Merge = legacyMerge
67 }
68
69 if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
70 return mi.(*MessageInfo)
71 }
72 return mi
73}
74
75var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
76
77// LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
78// which must be a *struct kind and not implement the v2 API already.
79//
80// This is exported for testing purposes.
81func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
82 return legacyLoadMessageDesc(t, "")
83}
84func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
85 // Fast-path: check if a MessageDescriptor is cached for this concrete type.
86 if mi, ok := legacyMessageDescCache.Load(t); ok {
87 return mi.(pref.MessageDescriptor)
88 }
89
90 // Slow-path: initialize MessageDescriptor from the raw descriptor.
91 mv := reflect.Zero(t).Interface()
92 if _, ok := mv.(pref.ProtoMessage); ok {
93 panic(fmt.Sprintf("%v already implements proto.Message", t))
94 }
95 mdV1, ok := mv.(messageV1)
96 if !ok {
97 return aberrantLoadMessageDesc(t, name)
98 }
99
100 // If this is a dynamic message type where there isn't a 1-1 mapping between
101 // Go and protobuf types, calling the Descriptor method on the zero value of
102 // the message type isn't likely to work. If it panics, swallow the panic and
103 // continue as if the Descriptor method wasn't present.
104 b, idxs := func() ([]byte, []int) {
105 defer func() {
106 recover()
107 }()
108 return mdV1.Descriptor()
109 }()
110 if b == nil {
111 return aberrantLoadMessageDesc(t, name)
112 }
113
114 // If the Go type has no fields, then this might be a proto3 empty message
115 // from before the size cache was added. If there are any fields, check to
116 // see that at least one of them looks like something we generated.
117 if nfield := t.Elem().NumField(); nfield > 0 {
118 hasProtoField := false
119 for i := 0; i < nfield; i++ {
120 f := t.Elem().Field(i)
121 if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
122 hasProtoField = true
123 break
124 }
125 }
126 if !hasProtoField {
127 return aberrantLoadMessageDesc(t, name)
128 }
129 }
130
131 md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
132 for _, i := range idxs[1:] {
133 md = md.Messages().Get(i)
134 }
135 if name != "" && md.FullName() != name {
136 panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
137 }
138 if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
139 return md.(protoreflect.MessageDescriptor)
140 }
141 return md
142}
143
144var (
145 aberrantMessageDescLock sync.Mutex
146 aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
147)
148
149// aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
150// which must not implement protoreflect.ProtoMessage or messageV1.
151//
152// This is a best-effort derivation of the message descriptor using the protobuf
153// tags on the struct fields.
154func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
155 aberrantMessageDescLock.Lock()
156 defer aberrantMessageDescLock.Unlock()
157 if aberrantMessageDescCache == nil {
158 aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
159 }
160 return aberrantLoadMessageDescReentrant(t, name)
161}
162func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
163 // Fast-path: check if an MessageDescriptor is cached for this concrete type.
164 if md, ok := aberrantMessageDescCache[t]; ok {
165 return md
166 }
167
168 // Slow-path: construct a descriptor from the Go struct type (best-effort).
169 // Cache the MessageDescriptor early on so that we can resolve internal
170 // cyclic references.
171 md := &filedesc.Message{L2: new(filedesc.MessageL2)}
172 md.L0.FullName = aberrantDeriveMessageName(t, name)
173 md.L0.ParentFile = filedesc.SurrogateProto2
174 aberrantMessageDescCache[t] = md
175
176 if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
177 return md
178 }
179
180 // Try to determine if the message is using proto3 by checking scalars.
181 for i := 0; i < t.Elem().NumField(); i++ {
182 f := t.Elem().Field(i)
183 if tag := f.Tag.Get("protobuf"); tag != "" {
184 switch f.Type.Kind() {
185 case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
186 md.L0.ParentFile = filedesc.SurrogateProto3
187 }
188 for _, s := range strings.Split(tag, ",") {
189 if s == "proto3" {
190 md.L0.ParentFile = filedesc.SurrogateProto3
191 }
192 }
193 }
194 }
195
196 // Obtain a list of oneof wrapper types.
197 var oneofWrappers []reflect.Type
198 for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
199 if fn, ok := t.MethodByName(method); ok {
200 for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
201 if vs, ok := v.Interface().([]interface{}); ok {
202 for _, v := range vs {
203 oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
204 }
205 }
206 }
207 }
208 }
209
210 // Obtain a list of the extension ranges.
211 if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
212 vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
213 for i := 0; i < vs.Len(); i++ {
214 v := vs.Index(i)
215 md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
216 pref.FieldNumber(v.FieldByName("Start").Int()),
217 pref.FieldNumber(v.FieldByName("End").Int() + 1),
218 })
219 md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
220 }
221 }
222
223 // Derive the message fields by inspecting the struct fields.
224 for i := 0; i < t.Elem().NumField(); i++ {
225 f := t.Elem().Field(i)
226 if tag := f.Tag.Get("protobuf"); tag != "" {
227 tagKey := f.Tag.Get("protobuf_key")
228 tagVal := f.Tag.Get("protobuf_val")
229 aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
230 }
231 if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
232 n := len(md.L2.Oneofs.List)
233 md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
234 od := &md.L2.Oneofs.List[n]
235 od.L0.FullName = md.FullName().Append(pref.Name(tag))
236 od.L0.ParentFile = md.L0.ParentFile
237 od.L0.Parent = md
238 od.L0.Index = n
239
240 for _, t := range oneofWrappers {
241 if t.Implements(f.Type) {
242 f := t.Elem().Field(0)
243 if tag := f.Tag.Get("protobuf"); tag != "" {
244 aberrantAppendField(md, f.Type, tag, "", "")
245 fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
246 fd.L1.ContainingOneof = od
247 od.L1.Fields.List = append(od.L1.Fields.List, fd)
248 }
249 }
250 }
251 }
252 }
253
254 return md
255}
256
257func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
258 if name.IsValid() {
259 return name
260 }
261 func() {
262 defer func() { recover() }() // swallow possible nil panics
263 if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
264 name = pref.FullName(m.XXX_MessageName())
265 }
266 }()
267 if name.IsValid() {
268 return name
269 }
270 if t.Kind() == reflect.Ptr {
271 t = t.Elem()
272 }
273 return AberrantDeriveFullName(t)
274}
275
276func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
277 t := goType
278 isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
279 isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
280 if isOptional || isRepeated {
281 t = t.Elem()
282 }
283 fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
284
285 // Append field descriptor to the message.
286 n := len(md.L2.Fields.List)
287 md.L2.Fields.List = append(md.L2.Fields.List, *fd)
288 fd = &md.L2.Fields.List[n]
289 fd.L0.FullName = md.FullName().Append(fd.Name())
290 fd.L0.ParentFile = md.L0.ParentFile
291 fd.L0.Parent = md
292 fd.L0.Index = n
293
294 if fd.L1.IsWeak || fd.L1.HasPacked {
295 fd.L1.Options = func() pref.ProtoMessage {
296 opts := descopts.Field.ProtoReflect().New()
297 if fd.L1.IsWeak {
298 opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
299 }
300 if fd.L1.HasPacked {
301 opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
302 }
303 return opts.Interface()
304 }
305 }
306
307 // Populate Enum and Message.
308 if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
309 switch v := reflect.Zero(t).Interface().(type) {
310 case pref.Enum:
311 fd.L1.Enum = v.Descriptor()
312 default:
313 fd.L1.Enum = LegacyLoadEnumDesc(t)
314 }
315 }
316 if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
317 switch v := reflect.Zero(t).Interface().(type) {
318 case pref.ProtoMessage:
319 fd.L1.Message = v.ProtoReflect().Descriptor()
320 case messageV1:
321 fd.L1.Message = LegacyLoadMessageDesc(t)
322 default:
323 if t.Kind() == reflect.Map {
324 n := len(md.L1.Messages.List)
325 md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
326 md2 := &md.L1.Messages.List[n]
327 md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
328 md2.L0.ParentFile = md.L0.ParentFile
329 md2.L0.Parent = md
330 md2.L0.Index = n
331
332 md2.L1.IsMapEntry = true
333 md2.L2.Options = func() pref.ProtoMessage {
334 opts := descopts.Message.ProtoReflect().New()
335 opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
336 return opts.Interface()
337 }
338
339 aberrantAppendField(md2, t.Key(), tagKey, "", "")
340 aberrantAppendField(md2, t.Elem(), tagVal, "", "")
341
342 fd.L1.Message = md2
343 break
344 }
345 fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
346 }
347 }
348}
349
350type placeholderEnumValues struct {
351 protoreflect.EnumValueDescriptors
352}
353
354func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
355 return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
356}
357
358// legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
359type legacyMarshaler interface {
360 Marshal() ([]byte, error)
361}
362
363// legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
364type legacyUnmarshaler interface {
365 Unmarshal([]byte) error
366}
367
368// legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
369type legacyMerger interface {
370 Merge(protoiface.MessageV1)
371}
372
373var legacyProtoMethods = &piface.Methods{
374 Marshal: legacyMarshal,
375 Unmarshal: legacyUnmarshal,
376 Merge: legacyMerge,
377
378 // We have no way to tell whether the type's Marshal method
379 // supports deterministic serialization or not, but this
380 // preserves the v1 implementation's behavior of always
381 // calling Marshal methods when present.
382 Flags: piface.SupportMarshalDeterministic,
383}
384
385func legacyMarshal(in piface.MarshalInput) (piface.MarshalOutput, error) {
386 v := in.Message.(unwrapper).protoUnwrap()
387 marshaler, ok := v.(legacyMarshaler)
388 if !ok {
389 return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
390 }
391 out, err := marshaler.Marshal()
392 if in.Buf != nil {
393 out = append(in.Buf, out...)
394 }
395 return piface.MarshalOutput{
396 Buf: out,
397 }, err
398}
399
400func legacyUnmarshal(in piface.UnmarshalInput) (piface.UnmarshalOutput, error) {
401 v := in.Message.(unwrapper).protoUnwrap()
402 unmarshaler, ok := v.(legacyUnmarshaler)
403 if !ok {
404 return piface.UnmarshalOutput{}, errors.New("%T does not implement Marshal", v)
405 }
406 return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
407}
408
409func legacyMerge(in piface.MergeInput) piface.MergeOutput {
410 dstv := in.Destination.(unwrapper).protoUnwrap()
411 merger, ok := dstv.(legacyMerger)
412 if !ok {
413 return piface.MergeOutput{}
414 }
415 merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
416 return piface.MergeOutput{Flags: piface.MergeComplete}
417}
418
419// aberrantMessageType implements MessageType for all types other than pointer-to-struct.
420type aberrantMessageType struct {
421 t reflect.Type
422}
423
424func (mt aberrantMessageType) New() pref.Message {
425 return aberrantMessage{reflect.Zero(mt.t)}
426}
427func (mt aberrantMessageType) Zero() pref.Message {
428 return aberrantMessage{reflect.Zero(mt.t)}
429}
430func (mt aberrantMessageType) GoType() reflect.Type {
431 return mt.t
432}
433func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
434 return LegacyLoadMessageDesc(mt.t)
435}
436
437// aberrantMessage implements Message for all types other than pointer-to-struct.
438//
439// When the underlying type implements legacyMarshaler or legacyUnmarshaler,
440// the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
441// not much that can be done with values of this type.
442type aberrantMessage struct {
443 v reflect.Value
444}
445
446func (m aberrantMessage) ProtoReflect() pref.Message {
447 return m
448}
449
450func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
451 return LegacyLoadMessageDesc(m.v.Type())
452}
453func (m aberrantMessage) Type() pref.MessageType {
454 return aberrantMessageType{m.v.Type()}
455}
456func (m aberrantMessage) New() pref.Message {
457 return aberrantMessage{reflect.Zero(m.v.Type())}
458}
459func (m aberrantMessage) Interface() pref.ProtoMessage {
460 return m
461}
462func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
463}
464func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
465 panic("invalid field descriptor")
466}
467func (m aberrantMessage) Clear(pref.FieldDescriptor) {
468 panic("invalid field descriptor")
469}
470func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value {
471 panic("invalid field descriptor")
472}
473func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
474 panic("invalid field descriptor")
475}
476func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
477 panic("invalid field descriptor")
478}
479func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
480 panic("invalid field descriptor")
481}
482func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
483 panic("invalid oneof descriptor")
484}
485func (m aberrantMessage) GetUnknown() pref.RawFields {
486 return nil
487}
488func (m aberrantMessage) SetUnknown(pref.RawFields) {
489 // SetUnknown discards its input on messages which don't support unknown field storage.
490}
491func (m aberrantMessage) IsValid() bool {
492 // An invalid message is a read-only, empty message. Since we don't know anything
493 // about the alleged contents of this message, we can't say with confidence that
494 // it is invalid in this sense. Therefore, report it as valid.
495 return true
496}
497func (m aberrantMessage) ProtoMethods() *piface.Methods {
498 return legacyProtoMethods
499}
500func (m aberrantMessage) protoUnwrap() interface{} {
501 return m.v.Interface()
502}