khenaidoo | ab1f7bd | 2019-11-14 14:00:27 -0500 | [diff] [blame] | 1 | // Copyright 2015 The Prometheus Authors |
| 2 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | // you may not use this file except in compliance with the License. |
| 4 | // You may obtain a copy of the License at |
| 5 | // |
| 6 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | // |
| 8 | // Unless required by applicable law or agreed to in writing, software |
| 9 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 10 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 11 | // See the License for the specific language governing permissions and |
| 12 | // limitations under the License. |
| 13 | |
| 14 | package prometheus |
| 15 | |
| 16 | import ( |
| 17 | "fmt" |
| 18 | "math" |
| 19 | "runtime" |
| 20 | "sort" |
| 21 | "sync" |
| 22 | "sync/atomic" |
| 23 | |
| 24 | "github.com/golang/protobuf/proto" |
| 25 | |
| 26 | dto "github.com/prometheus/client_model/go" |
| 27 | ) |
| 28 | |
| 29 | // A Histogram counts individual observations from an event or sample stream in |
| 30 | // configurable buckets. Similar to a summary, it also provides a sum of |
| 31 | // observations and an observation count. |
| 32 | // |
| 33 | // On the Prometheus server, quantiles can be calculated from a Histogram using |
| 34 | // the histogram_quantile function in the query language. |
| 35 | // |
| 36 | // Note that Histograms, in contrast to Summaries, can be aggregated with the |
| 37 | // Prometheus query language (see the documentation for detailed |
| 38 | // procedures). However, Histograms require the user to pre-define suitable |
| 39 | // buckets, and they are in general less accurate. The Observe method of a |
| 40 | // Histogram has a very low performance overhead in comparison with the Observe |
| 41 | // method of a Summary. |
| 42 | // |
| 43 | // To create Histogram instances, use NewHistogram. |
| 44 | type Histogram interface { |
| 45 | Metric |
| 46 | Collector |
| 47 | |
| 48 | // Observe adds a single observation to the histogram. |
| 49 | Observe(float64) |
| 50 | } |
| 51 | |
| 52 | // bucketLabel is used for the label that defines the upper bound of a |
| 53 | // bucket of a histogram ("le" -> "less or equal"). |
| 54 | const bucketLabel = "le" |
| 55 | |
| 56 | // DefBuckets are the default Histogram buckets. The default buckets are |
| 57 | // tailored to broadly measure the response time (in seconds) of a network |
| 58 | // service. Most likely, however, you will be required to define buckets |
| 59 | // customized to your use case. |
| 60 | var ( |
| 61 | DefBuckets = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10} |
| 62 | |
| 63 | errBucketLabelNotAllowed = fmt.Errorf( |
| 64 | "%q is not allowed as label name in histograms", bucketLabel, |
| 65 | ) |
| 66 | ) |
| 67 | |
| 68 | // LinearBuckets creates 'count' buckets, each 'width' wide, where the lowest |
| 69 | // bucket has an upper bound of 'start'. The final +Inf bucket is not counted |
| 70 | // and not included in the returned slice. The returned slice is meant to be |
| 71 | // used for the Buckets field of HistogramOpts. |
| 72 | // |
| 73 | // The function panics if 'count' is zero or negative. |
| 74 | func LinearBuckets(start, width float64, count int) []float64 { |
| 75 | if count < 1 { |
| 76 | panic("LinearBuckets needs a positive count") |
| 77 | } |
| 78 | buckets := make([]float64, count) |
| 79 | for i := range buckets { |
| 80 | buckets[i] = start |
| 81 | start += width |
| 82 | } |
| 83 | return buckets |
| 84 | } |
| 85 | |
| 86 | // ExponentialBuckets creates 'count' buckets, where the lowest bucket has an |
| 87 | // upper bound of 'start' and each following bucket's upper bound is 'factor' |
| 88 | // times the previous bucket's upper bound. The final +Inf bucket is not counted |
| 89 | // and not included in the returned slice. The returned slice is meant to be |
| 90 | // used for the Buckets field of HistogramOpts. |
| 91 | // |
| 92 | // The function panics if 'count' is 0 or negative, if 'start' is 0 or negative, |
| 93 | // or if 'factor' is less than or equal 1. |
| 94 | func ExponentialBuckets(start, factor float64, count int) []float64 { |
| 95 | if count < 1 { |
| 96 | panic("ExponentialBuckets needs a positive count") |
| 97 | } |
| 98 | if start <= 0 { |
| 99 | panic("ExponentialBuckets needs a positive start value") |
| 100 | } |
| 101 | if factor <= 1 { |
| 102 | panic("ExponentialBuckets needs a factor greater than 1") |
| 103 | } |
| 104 | buckets := make([]float64, count) |
| 105 | for i := range buckets { |
| 106 | buckets[i] = start |
| 107 | start *= factor |
| 108 | } |
| 109 | return buckets |
| 110 | } |
| 111 | |
| 112 | // HistogramOpts bundles the options for creating a Histogram metric. It is |
| 113 | // mandatory to set Name to a non-empty string. All other fields are optional |
| 114 | // and can safely be left at their zero value, although it is strongly |
| 115 | // encouraged to set a Help string. |
| 116 | type HistogramOpts struct { |
| 117 | // Namespace, Subsystem, and Name are components of the fully-qualified |
| 118 | // name of the Histogram (created by joining these components with |
| 119 | // "_"). Only Name is mandatory, the others merely help structuring the |
| 120 | // name. Note that the fully-qualified name of the Histogram must be a |
| 121 | // valid Prometheus metric name. |
| 122 | Namespace string |
| 123 | Subsystem string |
| 124 | Name string |
| 125 | |
| 126 | // Help provides information about this Histogram. |
| 127 | // |
| 128 | // Metrics with the same fully-qualified name must have the same Help |
| 129 | // string. |
| 130 | Help string |
| 131 | |
| 132 | // ConstLabels are used to attach fixed labels to this metric. Metrics |
| 133 | // with the same fully-qualified name must have the same label names in |
| 134 | // their ConstLabels. |
| 135 | // |
| 136 | // ConstLabels are only used rarely. In particular, do not use them to |
| 137 | // attach the same labels to all your metrics. Those use cases are |
| 138 | // better covered by target labels set by the scraping Prometheus |
| 139 | // server, or by one specific metric (e.g. a build_info or a |
| 140 | // machine_role metric). See also |
| 141 | // https://prometheus.io/docs/instrumenting/writing_exporters/#target-labels,-not-static-scraped-labels |
| 142 | ConstLabels Labels |
| 143 | |
| 144 | // Buckets defines the buckets into which observations are counted. Each |
| 145 | // element in the slice is the upper inclusive bound of a bucket. The |
| 146 | // values must be sorted in strictly increasing order. There is no need |
| 147 | // to add a highest bucket with +Inf bound, it will be added |
| 148 | // implicitly. The default value is DefBuckets. |
| 149 | Buckets []float64 |
| 150 | } |
| 151 | |
| 152 | // NewHistogram creates a new Histogram based on the provided HistogramOpts. It |
| 153 | // panics if the buckets in HistogramOpts are not in strictly increasing order. |
| 154 | func NewHistogram(opts HistogramOpts) Histogram { |
| 155 | return newHistogram( |
| 156 | NewDesc( |
| 157 | BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), |
| 158 | opts.Help, |
| 159 | nil, |
| 160 | opts.ConstLabels, |
| 161 | ), |
| 162 | opts, |
| 163 | ) |
| 164 | } |
| 165 | |
| 166 | func newHistogram(desc *Desc, opts HistogramOpts, labelValues ...string) Histogram { |
| 167 | if len(desc.variableLabels) != len(labelValues) { |
| 168 | panic(makeInconsistentCardinalityError(desc.fqName, desc.variableLabels, labelValues)) |
| 169 | } |
| 170 | |
| 171 | for _, n := range desc.variableLabels { |
| 172 | if n == bucketLabel { |
| 173 | panic(errBucketLabelNotAllowed) |
| 174 | } |
| 175 | } |
| 176 | for _, lp := range desc.constLabelPairs { |
| 177 | if lp.GetName() == bucketLabel { |
| 178 | panic(errBucketLabelNotAllowed) |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | if len(opts.Buckets) == 0 { |
| 183 | opts.Buckets = DefBuckets |
| 184 | } |
| 185 | |
| 186 | h := &histogram{ |
| 187 | desc: desc, |
| 188 | upperBounds: opts.Buckets, |
| 189 | labelPairs: makeLabelPairs(desc, labelValues), |
| 190 | counts: [2]*histogramCounts{&histogramCounts{}, &histogramCounts{}}, |
| 191 | } |
| 192 | for i, upperBound := range h.upperBounds { |
| 193 | if i < len(h.upperBounds)-1 { |
| 194 | if upperBound >= h.upperBounds[i+1] { |
| 195 | panic(fmt.Errorf( |
| 196 | "histogram buckets must be in increasing order: %f >= %f", |
| 197 | upperBound, h.upperBounds[i+1], |
| 198 | )) |
| 199 | } |
| 200 | } else { |
| 201 | if math.IsInf(upperBound, +1) { |
| 202 | // The +Inf bucket is implicit. Remove it here. |
| 203 | h.upperBounds = h.upperBounds[:i] |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | // Finally we know the final length of h.upperBounds and can make buckets |
| 208 | // for both counts: |
| 209 | h.counts[0].buckets = make([]uint64, len(h.upperBounds)) |
| 210 | h.counts[1].buckets = make([]uint64, len(h.upperBounds)) |
| 211 | |
| 212 | h.init(h) // Init self-collection. |
| 213 | return h |
| 214 | } |
| 215 | |
| 216 | type histogramCounts struct { |
| 217 | // sumBits contains the bits of the float64 representing the sum of all |
| 218 | // observations. sumBits and count have to go first in the struct to |
| 219 | // guarantee alignment for atomic operations. |
| 220 | // http://golang.org/pkg/sync/atomic/#pkg-note-BUG |
| 221 | sumBits uint64 |
| 222 | count uint64 |
| 223 | buckets []uint64 |
| 224 | } |
| 225 | |
| 226 | type histogram struct { |
| 227 | // countAndHotIdx enables lock-free writes with use of atomic updates. |
| 228 | // The most significant bit is the hot index [0 or 1] of the count field |
| 229 | // below. Observe calls update the hot one. All remaining bits count the |
| 230 | // number of Observe calls. Observe starts by incrementing this counter, |
| 231 | // and finish by incrementing the count field in the respective |
| 232 | // histogramCounts, as a marker for completion. |
| 233 | // |
| 234 | // Calls of the Write method (which are non-mutating reads from the |
| 235 | // perspective of the histogram) swap the hot–cold under the writeMtx |
| 236 | // lock. A cooldown is awaited (while locked) by comparing the number of |
| 237 | // observations with the initiation count. Once they match, then the |
| 238 | // last observation on the now cool one has completed. All cool fields must |
| 239 | // be merged into the new hot before releasing writeMtx. |
| 240 | // |
| 241 | // Fields with atomic access first! See alignment constraint: |
| 242 | // http://golang.org/pkg/sync/atomic/#pkg-note-BUG |
| 243 | countAndHotIdx uint64 |
| 244 | |
| 245 | selfCollector |
| 246 | desc *Desc |
| 247 | writeMtx sync.Mutex // Only used in the Write method. |
| 248 | |
| 249 | // Two counts, one is "hot" for lock-free observations, the other is |
| 250 | // "cold" for writing out a dto.Metric. It has to be an array of |
| 251 | // pointers to guarantee 64bit alignment of the histogramCounts, see |
| 252 | // http://golang.org/pkg/sync/atomic/#pkg-note-BUG. |
| 253 | counts [2]*histogramCounts |
| 254 | |
| 255 | upperBounds []float64 |
| 256 | labelPairs []*dto.LabelPair |
| 257 | } |
| 258 | |
| 259 | func (h *histogram) Desc() *Desc { |
| 260 | return h.desc |
| 261 | } |
| 262 | |
| 263 | func (h *histogram) Observe(v float64) { |
| 264 | // TODO(beorn7): For small numbers of buckets (<30), a linear search is |
| 265 | // slightly faster than the binary search. If we really care, we could |
| 266 | // switch from one search strategy to the other depending on the number |
| 267 | // of buckets. |
| 268 | // |
| 269 | // Microbenchmarks (BenchmarkHistogramNoLabels): |
| 270 | // 11 buckets: 38.3 ns/op linear - binary 48.7 ns/op |
| 271 | // 100 buckets: 78.1 ns/op linear - binary 54.9 ns/op |
| 272 | // 300 buckets: 154 ns/op linear - binary 61.6 ns/op |
| 273 | i := sort.SearchFloat64s(h.upperBounds, v) |
| 274 | |
| 275 | // We increment h.countAndHotIdx so that the counter in the lower |
| 276 | // 63 bits gets incremented. At the same time, we get the new value |
| 277 | // back, which we can use to find the currently-hot counts. |
| 278 | n := atomic.AddUint64(&h.countAndHotIdx, 1) |
| 279 | hotCounts := h.counts[n>>63] |
| 280 | |
| 281 | if i < len(h.upperBounds) { |
| 282 | atomic.AddUint64(&hotCounts.buckets[i], 1) |
| 283 | } |
| 284 | for { |
| 285 | oldBits := atomic.LoadUint64(&hotCounts.sumBits) |
| 286 | newBits := math.Float64bits(math.Float64frombits(oldBits) + v) |
| 287 | if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) { |
| 288 | break |
| 289 | } |
| 290 | } |
| 291 | // Increment count last as we take it as a signal that the observation |
| 292 | // is complete. |
| 293 | atomic.AddUint64(&hotCounts.count, 1) |
| 294 | } |
| 295 | |
| 296 | func (h *histogram) Write(out *dto.Metric) error { |
| 297 | // For simplicity, we protect this whole method by a mutex. It is not in |
| 298 | // the hot path, i.e. Observe is called much more often than Write. The |
| 299 | // complication of making Write lock-free isn't worth it, if possible at |
| 300 | // all. |
| 301 | h.writeMtx.Lock() |
| 302 | defer h.writeMtx.Unlock() |
| 303 | |
| 304 | // Adding 1<<63 switches the hot index (from 0 to 1 or from 1 to 0) |
| 305 | // without touching the count bits. See the struct comments for a full |
| 306 | // description of the algorithm. |
| 307 | n := atomic.AddUint64(&h.countAndHotIdx, 1<<63) |
| 308 | // count is contained unchanged in the lower 63 bits. |
| 309 | count := n & ((1 << 63) - 1) |
| 310 | // The most significant bit tells us which counts is hot. The complement |
| 311 | // is thus the cold one. |
| 312 | hotCounts := h.counts[n>>63] |
| 313 | coldCounts := h.counts[(^n)>>63] |
| 314 | |
| 315 | // Await cooldown. |
| 316 | for count != atomic.LoadUint64(&coldCounts.count) { |
| 317 | runtime.Gosched() // Let observations get work done. |
| 318 | } |
| 319 | |
| 320 | his := &dto.Histogram{ |
| 321 | Bucket: make([]*dto.Bucket, len(h.upperBounds)), |
| 322 | SampleCount: proto.Uint64(count), |
| 323 | SampleSum: proto.Float64(math.Float64frombits(atomic.LoadUint64(&coldCounts.sumBits))), |
| 324 | } |
| 325 | var cumCount uint64 |
| 326 | for i, upperBound := range h.upperBounds { |
| 327 | cumCount += atomic.LoadUint64(&coldCounts.buckets[i]) |
| 328 | his.Bucket[i] = &dto.Bucket{ |
| 329 | CumulativeCount: proto.Uint64(cumCount), |
| 330 | UpperBound: proto.Float64(upperBound), |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | out.Histogram = his |
| 335 | out.Label = h.labelPairs |
| 336 | |
| 337 | // Finally add all the cold counts to the new hot counts and reset the cold counts. |
| 338 | atomic.AddUint64(&hotCounts.count, count) |
| 339 | atomic.StoreUint64(&coldCounts.count, 0) |
| 340 | for { |
| 341 | oldBits := atomic.LoadUint64(&hotCounts.sumBits) |
| 342 | newBits := math.Float64bits(math.Float64frombits(oldBits) + his.GetSampleSum()) |
| 343 | if atomic.CompareAndSwapUint64(&hotCounts.sumBits, oldBits, newBits) { |
| 344 | atomic.StoreUint64(&coldCounts.sumBits, 0) |
| 345 | break |
| 346 | } |
| 347 | } |
| 348 | for i := range h.upperBounds { |
| 349 | atomic.AddUint64(&hotCounts.buckets[i], atomic.LoadUint64(&coldCounts.buckets[i])) |
| 350 | atomic.StoreUint64(&coldCounts.buckets[i], 0) |
| 351 | } |
| 352 | return nil |
| 353 | } |
| 354 | |
| 355 | // HistogramVec is a Collector that bundles a set of Histograms that all share the |
| 356 | // same Desc, but have different values for their variable labels. This is used |
| 357 | // if you want to count the same thing partitioned by various dimensions |
| 358 | // (e.g. HTTP request latencies, partitioned by status code and method). Create |
| 359 | // instances with NewHistogramVec. |
| 360 | type HistogramVec struct { |
| 361 | *metricVec |
| 362 | } |
| 363 | |
| 364 | // NewHistogramVec creates a new HistogramVec based on the provided HistogramOpts and |
| 365 | // partitioned by the given label names. |
| 366 | func NewHistogramVec(opts HistogramOpts, labelNames []string) *HistogramVec { |
| 367 | desc := NewDesc( |
| 368 | BuildFQName(opts.Namespace, opts.Subsystem, opts.Name), |
| 369 | opts.Help, |
| 370 | labelNames, |
| 371 | opts.ConstLabels, |
| 372 | ) |
| 373 | return &HistogramVec{ |
| 374 | metricVec: newMetricVec(desc, func(lvs ...string) Metric { |
| 375 | return newHistogram(desc, opts, lvs...) |
| 376 | }), |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // GetMetricWithLabelValues returns the Histogram for the given slice of label |
| 381 | // values (same order as the VariableLabels in Desc). If that combination of |
| 382 | // label values is accessed for the first time, a new Histogram is created. |
| 383 | // |
| 384 | // It is possible to call this method without using the returned Histogram to only |
| 385 | // create the new Histogram but leave it at its starting value, a Histogram without |
| 386 | // any observations. |
| 387 | // |
| 388 | // Keeping the Histogram for later use is possible (and should be considered if |
| 389 | // performance is critical), but keep in mind that Reset, DeleteLabelValues and |
| 390 | // Delete can be used to delete the Histogram from the HistogramVec. In that case, the |
| 391 | // Histogram will still exist, but it will not be exported anymore, even if a |
| 392 | // Histogram with the same label values is created later. See also the CounterVec |
| 393 | // example. |
| 394 | // |
| 395 | // An error is returned if the number of label values is not the same as the |
| 396 | // number of VariableLabels in Desc (minus any curried labels). |
| 397 | // |
| 398 | // Note that for more than one label value, this method is prone to mistakes |
| 399 | // caused by an incorrect order of arguments. Consider GetMetricWith(Labels) as |
| 400 | // an alternative to avoid that type of mistake. For higher label numbers, the |
| 401 | // latter has a much more readable (albeit more verbose) syntax, but it comes |
| 402 | // with a performance overhead (for creating and processing the Labels map). |
| 403 | // See also the GaugeVec example. |
| 404 | func (v *HistogramVec) GetMetricWithLabelValues(lvs ...string) (Observer, error) { |
| 405 | metric, err := v.metricVec.getMetricWithLabelValues(lvs...) |
| 406 | if metric != nil { |
| 407 | return metric.(Observer), err |
| 408 | } |
| 409 | return nil, err |
| 410 | } |
| 411 | |
| 412 | // GetMetricWith returns the Histogram for the given Labels map (the label names |
| 413 | // must match those of the VariableLabels in Desc). If that label map is |
| 414 | // accessed for the first time, a new Histogram is created. Implications of |
| 415 | // creating a Histogram without using it and keeping the Histogram for later use |
| 416 | // are the same as for GetMetricWithLabelValues. |
| 417 | // |
| 418 | // An error is returned if the number and names of the Labels are inconsistent |
| 419 | // with those of the VariableLabels in Desc (minus any curried labels). |
| 420 | // |
| 421 | // This method is used for the same purpose as |
| 422 | // GetMetricWithLabelValues(...string). See there for pros and cons of the two |
| 423 | // methods. |
| 424 | func (v *HistogramVec) GetMetricWith(labels Labels) (Observer, error) { |
| 425 | metric, err := v.metricVec.getMetricWith(labels) |
| 426 | if metric != nil { |
| 427 | return metric.(Observer), err |
| 428 | } |
| 429 | return nil, err |
| 430 | } |
| 431 | |
| 432 | // WithLabelValues works as GetMetricWithLabelValues, but panics where |
| 433 | // GetMetricWithLabelValues would have returned an error. Not returning an |
| 434 | // error allows shortcuts like |
| 435 | // myVec.WithLabelValues("404", "GET").Observe(42.21) |
| 436 | func (v *HistogramVec) WithLabelValues(lvs ...string) Observer { |
| 437 | h, err := v.GetMetricWithLabelValues(lvs...) |
| 438 | if err != nil { |
| 439 | panic(err) |
| 440 | } |
| 441 | return h |
| 442 | } |
| 443 | |
| 444 | // With works as GetMetricWith but panics where GetMetricWithLabels would have |
| 445 | // returned an error. Not returning an error allows shortcuts like |
| 446 | // myVec.With(prometheus.Labels{"code": "404", "method": "GET"}).Observe(42.21) |
| 447 | func (v *HistogramVec) With(labels Labels) Observer { |
| 448 | h, err := v.GetMetricWith(labels) |
| 449 | if err != nil { |
| 450 | panic(err) |
| 451 | } |
| 452 | return h |
| 453 | } |
| 454 | |
| 455 | // CurryWith returns a vector curried with the provided labels, i.e. the |
| 456 | // returned vector has those labels pre-set for all labeled operations performed |
| 457 | // on it. The cardinality of the curried vector is reduced accordingly. The |
| 458 | // order of the remaining labels stays the same (just with the curried labels |
| 459 | // taken out of the sequence – which is relevant for the |
| 460 | // (GetMetric)WithLabelValues methods). It is possible to curry a curried |
| 461 | // vector, but only with labels not yet used for currying before. |
| 462 | // |
| 463 | // The metrics contained in the HistogramVec are shared between the curried and |
| 464 | // uncurried vectors. They are just accessed differently. Curried and uncurried |
| 465 | // vectors behave identically in terms of collection. Only one must be |
| 466 | // registered with a given registry (usually the uncurried version). The Reset |
| 467 | // method deletes all metrics, even if called on a curried vector. |
| 468 | func (v *HistogramVec) CurryWith(labels Labels) (ObserverVec, error) { |
| 469 | vec, err := v.curryWith(labels) |
| 470 | if vec != nil { |
| 471 | return &HistogramVec{vec}, err |
| 472 | } |
| 473 | return nil, err |
| 474 | } |
| 475 | |
| 476 | // MustCurryWith works as CurryWith but panics where CurryWith would have |
| 477 | // returned an error. |
| 478 | func (v *HistogramVec) MustCurryWith(labels Labels) ObserverVec { |
| 479 | vec, err := v.CurryWith(labels) |
| 480 | if err != nil { |
| 481 | panic(err) |
| 482 | } |
| 483 | return vec |
| 484 | } |
| 485 | |
| 486 | type constHistogram struct { |
| 487 | desc *Desc |
| 488 | count uint64 |
| 489 | sum float64 |
| 490 | buckets map[float64]uint64 |
| 491 | labelPairs []*dto.LabelPair |
| 492 | } |
| 493 | |
| 494 | func (h *constHistogram) Desc() *Desc { |
| 495 | return h.desc |
| 496 | } |
| 497 | |
| 498 | func (h *constHistogram) Write(out *dto.Metric) error { |
| 499 | his := &dto.Histogram{} |
| 500 | buckets := make([]*dto.Bucket, 0, len(h.buckets)) |
| 501 | |
| 502 | his.SampleCount = proto.Uint64(h.count) |
| 503 | his.SampleSum = proto.Float64(h.sum) |
| 504 | |
| 505 | for upperBound, count := range h.buckets { |
| 506 | buckets = append(buckets, &dto.Bucket{ |
| 507 | CumulativeCount: proto.Uint64(count), |
| 508 | UpperBound: proto.Float64(upperBound), |
| 509 | }) |
| 510 | } |
| 511 | |
| 512 | if len(buckets) > 0 { |
| 513 | sort.Sort(buckSort(buckets)) |
| 514 | } |
| 515 | his.Bucket = buckets |
| 516 | |
| 517 | out.Histogram = his |
| 518 | out.Label = h.labelPairs |
| 519 | |
| 520 | return nil |
| 521 | } |
| 522 | |
| 523 | // NewConstHistogram returns a metric representing a Prometheus histogram with |
| 524 | // fixed values for the count, sum, and bucket counts. As those parameters |
| 525 | // cannot be changed, the returned value does not implement the Histogram |
| 526 | // interface (but only the Metric interface). Users of this package will not |
| 527 | // have much use for it in regular operations. However, when implementing custom |
| 528 | // Collectors, it is useful as a throw-away metric that is generated on the fly |
| 529 | // to send it to Prometheus in the Collect method. |
| 530 | // |
| 531 | // buckets is a map of upper bounds to cumulative counts, excluding the +Inf |
| 532 | // bucket. |
| 533 | // |
| 534 | // NewConstHistogram returns an error if the length of labelValues is not |
| 535 | // consistent with the variable labels in Desc or if Desc is invalid. |
| 536 | func NewConstHistogram( |
| 537 | desc *Desc, |
| 538 | count uint64, |
| 539 | sum float64, |
| 540 | buckets map[float64]uint64, |
| 541 | labelValues ...string, |
| 542 | ) (Metric, error) { |
| 543 | if desc.err != nil { |
| 544 | return nil, desc.err |
| 545 | } |
| 546 | if err := validateLabelValues(labelValues, len(desc.variableLabels)); err != nil { |
| 547 | return nil, err |
| 548 | } |
| 549 | return &constHistogram{ |
| 550 | desc: desc, |
| 551 | count: count, |
| 552 | sum: sum, |
| 553 | buckets: buckets, |
| 554 | labelPairs: makeLabelPairs(desc, labelValues), |
| 555 | }, nil |
| 556 | } |
| 557 | |
| 558 | // MustNewConstHistogram is a version of NewConstHistogram that panics where |
| 559 | // NewConstMetric would have returned an error. |
| 560 | func MustNewConstHistogram( |
| 561 | desc *Desc, |
| 562 | count uint64, |
| 563 | sum float64, |
| 564 | buckets map[float64]uint64, |
| 565 | labelValues ...string, |
| 566 | ) Metric { |
| 567 | m, err := NewConstHistogram(desc, count, sum, buckets, labelValues...) |
| 568 | if err != nil { |
| 569 | panic(err) |
| 570 | } |
| 571 | return m |
| 572 | } |
| 573 | |
| 574 | type buckSort []*dto.Bucket |
| 575 | |
| 576 | func (s buckSort) Len() int { |
| 577 | return len(s) |
| 578 | } |
| 579 | |
| 580 | func (s buckSort) Swap(i, j int) { |
| 581 | s[i], s[j] = s[j], s[i] |
| 582 | } |
| 583 | |
| 584 | func (s buckSort) Less(i, j int) bool { |
| 585 | return s[i].GetUpperBound() < s[j].GetUpperBound() |
| 586 | } |