khenaidoo | ab1f7bd | 2019-11-14 14:00:27 -0500 | [diff] [blame] | 1 | package bbolt |
| 2 | |
| 3 | import ( |
| 4 | "bytes" |
| 5 | "fmt" |
| 6 | "sort" |
| 7 | "unsafe" |
| 8 | ) |
| 9 | |
| 10 | // node represents an in-memory, deserialized page. |
| 11 | type node struct { |
| 12 | bucket *Bucket |
| 13 | isLeaf bool |
| 14 | unbalanced bool |
| 15 | spilled bool |
| 16 | key []byte |
| 17 | pgid pgid |
| 18 | parent *node |
| 19 | children nodes |
| 20 | inodes inodes |
| 21 | } |
| 22 | |
| 23 | // root returns the top-level node this node is attached to. |
| 24 | func (n *node) root() *node { |
| 25 | if n.parent == nil { |
| 26 | return n |
| 27 | } |
| 28 | return n.parent.root() |
| 29 | } |
| 30 | |
| 31 | // minKeys returns the minimum number of inodes this node should have. |
| 32 | func (n *node) minKeys() int { |
| 33 | if n.isLeaf { |
| 34 | return 1 |
| 35 | } |
| 36 | return 2 |
| 37 | } |
| 38 | |
| 39 | // size returns the size of the node after serialization. |
| 40 | func (n *node) size() int { |
| 41 | sz, elsz := pageHeaderSize, n.pageElementSize() |
| 42 | for i := 0; i < len(n.inodes); i++ { |
| 43 | item := &n.inodes[i] |
| 44 | sz += elsz + len(item.key) + len(item.value) |
| 45 | } |
| 46 | return sz |
| 47 | } |
| 48 | |
| 49 | // sizeLessThan returns true if the node is less than a given size. |
| 50 | // This is an optimization to avoid calculating a large node when we only need |
| 51 | // to know if it fits inside a certain page size. |
| 52 | func (n *node) sizeLessThan(v int) bool { |
| 53 | sz, elsz := pageHeaderSize, n.pageElementSize() |
| 54 | for i := 0; i < len(n.inodes); i++ { |
| 55 | item := &n.inodes[i] |
| 56 | sz += elsz + len(item.key) + len(item.value) |
| 57 | if sz >= v { |
| 58 | return false |
| 59 | } |
| 60 | } |
| 61 | return true |
| 62 | } |
| 63 | |
| 64 | // pageElementSize returns the size of each page element based on the type of node. |
| 65 | func (n *node) pageElementSize() int { |
| 66 | if n.isLeaf { |
| 67 | return leafPageElementSize |
| 68 | } |
| 69 | return branchPageElementSize |
| 70 | } |
| 71 | |
| 72 | // childAt returns the child node at a given index. |
| 73 | func (n *node) childAt(index int) *node { |
| 74 | if n.isLeaf { |
| 75 | panic(fmt.Sprintf("invalid childAt(%d) on a leaf node", index)) |
| 76 | } |
| 77 | return n.bucket.node(n.inodes[index].pgid, n) |
| 78 | } |
| 79 | |
| 80 | // childIndex returns the index of a given child node. |
| 81 | func (n *node) childIndex(child *node) int { |
| 82 | index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, child.key) != -1 }) |
| 83 | return index |
| 84 | } |
| 85 | |
| 86 | // numChildren returns the number of children. |
| 87 | func (n *node) numChildren() int { |
| 88 | return len(n.inodes) |
| 89 | } |
| 90 | |
| 91 | // nextSibling returns the next node with the same parent. |
| 92 | func (n *node) nextSibling() *node { |
| 93 | if n.parent == nil { |
| 94 | return nil |
| 95 | } |
| 96 | index := n.parent.childIndex(n) |
| 97 | if index >= n.parent.numChildren()-1 { |
| 98 | return nil |
| 99 | } |
| 100 | return n.parent.childAt(index + 1) |
| 101 | } |
| 102 | |
| 103 | // prevSibling returns the previous node with the same parent. |
| 104 | func (n *node) prevSibling() *node { |
| 105 | if n.parent == nil { |
| 106 | return nil |
| 107 | } |
| 108 | index := n.parent.childIndex(n) |
| 109 | if index == 0 { |
| 110 | return nil |
| 111 | } |
| 112 | return n.parent.childAt(index - 1) |
| 113 | } |
| 114 | |
| 115 | // put inserts a key/value. |
| 116 | func (n *node) put(oldKey, newKey, value []byte, pgid pgid, flags uint32) { |
| 117 | if pgid >= n.bucket.tx.meta.pgid { |
| 118 | panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", pgid, n.bucket.tx.meta.pgid)) |
| 119 | } else if len(oldKey) <= 0 { |
| 120 | panic("put: zero-length old key") |
| 121 | } else if len(newKey) <= 0 { |
| 122 | panic("put: zero-length new key") |
| 123 | } |
| 124 | |
| 125 | // Find insertion index. |
| 126 | index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, oldKey) != -1 }) |
| 127 | |
| 128 | // Add capacity and shift nodes if we don't have an exact match and need to insert. |
| 129 | exact := (len(n.inodes) > 0 && index < len(n.inodes) && bytes.Equal(n.inodes[index].key, oldKey)) |
| 130 | if !exact { |
| 131 | n.inodes = append(n.inodes, inode{}) |
| 132 | copy(n.inodes[index+1:], n.inodes[index:]) |
| 133 | } |
| 134 | |
| 135 | inode := &n.inodes[index] |
| 136 | inode.flags = flags |
| 137 | inode.key = newKey |
| 138 | inode.value = value |
| 139 | inode.pgid = pgid |
| 140 | _assert(len(inode.key) > 0, "put: zero-length inode key") |
| 141 | } |
| 142 | |
| 143 | // del removes a key from the node. |
| 144 | func (n *node) del(key []byte) { |
| 145 | // Find index of key. |
| 146 | index := sort.Search(len(n.inodes), func(i int) bool { return bytes.Compare(n.inodes[i].key, key) != -1 }) |
| 147 | |
| 148 | // Exit if the key isn't found. |
| 149 | if index >= len(n.inodes) || !bytes.Equal(n.inodes[index].key, key) { |
| 150 | return |
| 151 | } |
| 152 | |
| 153 | // Delete inode from the node. |
| 154 | n.inodes = append(n.inodes[:index], n.inodes[index+1:]...) |
| 155 | |
| 156 | // Mark the node as needing rebalancing. |
| 157 | n.unbalanced = true |
| 158 | } |
| 159 | |
| 160 | // read initializes the node from a page. |
| 161 | func (n *node) read(p *page) { |
| 162 | n.pgid = p.id |
| 163 | n.isLeaf = ((p.flags & leafPageFlag) != 0) |
| 164 | n.inodes = make(inodes, int(p.count)) |
| 165 | |
| 166 | for i := 0; i < int(p.count); i++ { |
| 167 | inode := &n.inodes[i] |
| 168 | if n.isLeaf { |
| 169 | elem := p.leafPageElement(uint16(i)) |
| 170 | inode.flags = elem.flags |
| 171 | inode.key = elem.key() |
| 172 | inode.value = elem.value() |
| 173 | } else { |
| 174 | elem := p.branchPageElement(uint16(i)) |
| 175 | inode.pgid = elem.pgid |
| 176 | inode.key = elem.key() |
| 177 | } |
| 178 | _assert(len(inode.key) > 0, "read: zero-length inode key") |
| 179 | } |
| 180 | |
| 181 | // Save first key so we can find the node in the parent when we spill. |
| 182 | if len(n.inodes) > 0 { |
| 183 | n.key = n.inodes[0].key |
| 184 | _assert(len(n.key) > 0, "read: zero-length node key") |
| 185 | } else { |
| 186 | n.key = nil |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | // write writes the items onto one or more pages. |
| 191 | func (n *node) write(p *page) { |
| 192 | // Initialize page. |
| 193 | if n.isLeaf { |
| 194 | p.flags |= leafPageFlag |
| 195 | } else { |
| 196 | p.flags |= branchPageFlag |
| 197 | } |
| 198 | |
| 199 | if len(n.inodes) >= 0xFFFF { |
| 200 | panic(fmt.Sprintf("inode overflow: %d (pgid=%d)", len(n.inodes), p.id)) |
| 201 | } |
| 202 | p.count = uint16(len(n.inodes)) |
| 203 | |
| 204 | // Stop here if there are no items to write. |
| 205 | if p.count == 0 { |
| 206 | return |
| 207 | } |
| 208 | |
| 209 | // Loop over each item and write it to the page. |
| 210 | b := (*[maxAllocSize]byte)(unsafe.Pointer(&p.ptr))[n.pageElementSize()*len(n.inodes):] |
| 211 | for i, item := range n.inodes { |
| 212 | _assert(len(item.key) > 0, "write: zero-length inode key") |
| 213 | |
| 214 | // Write the page element. |
| 215 | if n.isLeaf { |
| 216 | elem := p.leafPageElement(uint16(i)) |
| 217 | elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem))) |
| 218 | elem.flags = item.flags |
| 219 | elem.ksize = uint32(len(item.key)) |
| 220 | elem.vsize = uint32(len(item.value)) |
| 221 | } else { |
| 222 | elem := p.branchPageElement(uint16(i)) |
| 223 | elem.pos = uint32(uintptr(unsafe.Pointer(&b[0])) - uintptr(unsafe.Pointer(elem))) |
| 224 | elem.ksize = uint32(len(item.key)) |
| 225 | elem.pgid = item.pgid |
| 226 | _assert(elem.pgid != p.id, "write: circular dependency occurred") |
| 227 | } |
| 228 | |
| 229 | // If the length of key+value is larger than the max allocation size |
| 230 | // then we need to reallocate the byte array pointer. |
| 231 | // |
| 232 | // See: https://github.com/boltdb/bolt/pull/335 |
| 233 | klen, vlen := len(item.key), len(item.value) |
| 234 | if len(b) < klen+vlen { |
| 235 | b = (*[maxAllocSize]byte)(unsafe.Pointer(&b[0]))[:] |
| 236 | } |
| 237 | |
| 238 | // Write data for the element to the end of the page. |
| 239 | copy(b[0:], item.key) |
| 240 | b = b[klen:] |
| 241 | copy(b[0:], item.value) |
| 242 | b = b[vlen:] |
| 243 | } |
| 244 | |
| 245 | // DEBUG ONLY: n.dump() |
| 246 | } |
| 247 | |
| 248 | // split breaks up a node into multiple smaller nodes, if appropriate. |
| 249 | // This should only be called from the spill() function. |
| 250 | func (n *node) split(pageSize int) []*node { |
| 251 | var nodes []*node |
| 252 | |
| 253 | node := n |
| 254 | for { |
| 255 | // Split node into two. |
| 256 | a, b := node.splitTwo(pageSize) |
| 257 | nodes = append(nodes, a) |
| 258 | |
| 259 | // If we can't split then exit the loop. |
| 260 | if b == nil { |
| 261 | break |
| 262 | } |
| 263 | |
| 264 | // Set node to b so it gets split on the next iteration. |
| 265 | node = b |
| 266 | } |
| 267 | |
| 268 | return nodes |
| 269 | } |
| 270 | |
| 271 | // splitTwo breaks up a node into two smaller nodes, if appropriate. |
| 272 | // This should only be called from the split() function. |
| 273 | func (n *node) splitTwo(pageSize int) (*node, *node) { |
| 274 | // Ignore the split if the page doesn't have at least enough nodes for |
| 275 | // two pages or if the nodes can fit in a single page. |
| 276 | if len(n.inodes) <= (minKeysPerPage*2) || n.sizeLessThan(pageSize) { |
| 277 | return n, nil |
| 278 | } |
| 279 | |
| 280 | // Determine the threshold before starting a new node. |
| 281 | var fillPercent = n.bucket.FillPercent |
| 282 | if fillPercent < minFillPercent { |
| 283 | fillPercent = minFillPercent |
| 284 | } else if fillPercent > maxFillPercent { |
| 285 | fillPercent = maxFillPercent |
| 286 | } |
| 287 | threshold := int(float64(pageSize) * fillPercent) |
| 288 | |
| 289 | // Determine split position and sizes of the two pages. |
| 290 | splitIndex, _ := n.splitIndex(threshold) |
| 291 | |
| 292 | // Split node into two separate nodes. |
| 293 | // If there's no parent then we'll need to create one. |
| 294 | if n.parent == nil { |
| 295 | n.parent = &node{bucket: n.bucket, children: []*node{n}} |
| 296 | } |
| 297 | |
| 298 | // Create a new node and add it to the parent. |
| 299 | next := &node{bucket: n.bucket, isLeaf: n.isLeaf, parent: n.parent} |
| 300 | n.parent.children = append(n.parent.children, next) |
| 301 | |
| 302 | // Split inodes across two nodes. |
| 303 | next.inodes = n.inodes[splitIndex:] |
| 304 | n.inodes = n.inodes[:splitIndex] |
| 305 | |
| 306 | // Update the statistics. |
| 307 | n.bucket.tx.stats.Split++ |
| 308 | |
| 309 | return n, next |
| 310 | } |
| 311 | |
| 312 | // splitIndex finds the position where a page will fill a given threshold. |
| 313 | // It returns the index as well as the size of the first page. |
| 314 | // This is only be called from split(). |
| 315 | func (n *node) splitIndex(threshold int) (index, sz int) { |
| 316 | sz = pageHeaderSize |
| 317 | |
| 318 | // Loop until we only have the minimum number of keys required for the second page. |
| 319 | for i := 0; i < len(n.inodes)-minKeysPerPage; i++ { |
| 320 | index = i |
| 321 | inode := n.inodes[i] |
| 322 | elsize := n.pageElementSize() + len(inode.key) + len(inode.value) |
| 323 | |
| 324 | // If we have at least the minimum number of keys and adding another |
| 325 | // node would put us over the threshold then exit and return. |
| 326 | if i >= minKeysPerPage && sz+elsize > threshold { |
| 327 | break |
| 328 | } |
| 329 | |
| 330 | // Add the element size to the total size. |
| 331 | sz += elsize |
| 332 | } |
| 333 | |
| 334 | return |
| 335 | } |
| 336 | |
| 337 | // spill writes the nodes to dirty pages and splits nodes as it goes. |
| 338 | // Returns an error if dirty pages cannot be allocated. |
| 339 | func (n *node) spill() error { |
| 340 | var tx = n.bucket.tx |
| 341 | if n.spilled { |
| 342 | return nil |
| 343 | } |
| 344 | |
| 345 | // Spill child nodes first. Child nodes can materialize sibling nodes in |
| 346 | // the case of split-merge so we cannot use a range loop. We have to check |
| 347 | // the children size on every loop iteration. |
| 348 | sort.Sort(n.children) |
| 349 | for i := 0; i < len(n.children); i++ { |
| 350 | if err := n.children[i].spill(); err != nil { |
| 351 | return err |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | // We no longer need the child list because it's only used for spill tracking. |
| 356 | n.children = nil |
| 357 | |
| 358 | // Split nodes into appropriate sizes. The first node will always be n. |
| 359 | var nodes = n.split(tx.db.pageSize) |
| 360 | for _, node := range nodes { |
| 361 | // Add node's page to the freelist if it's not new. |
| 362 | if node.pgid > 0 { |
| 363 | tx.db.freelist.free(tx.meta.txid, tx.page(node.pgid)) |
| 364 | node.pgid = 0 |
| 365 | } |
| 366 | |
| 367 | // Allocate contiguous space for the node. |
| 368 | p, err := tx.allocate((node.size() + tx.db.pageSize - 1) / tx.db.pageSize) |
| 369 | if err != nil { |
| 370 | return err |
| 371 | } |
| 372 | |
| 373 | // Write the node. |
| 374 | if p.id >= tx.meta.pgid { |
| 375 | panic(fmt.Sprintf("pgid (%d) above high water mark (%d)", p.id, tx.meta.pgid)) |
| 376 | } |
| 377 | node.pgid = p.id |
| 378 | node.write(p) |
| 379 | node.spilled = true |
| 380 | |
| 381 | // Insert into parent inodes. |
| 382 | if node.parent != nil { |
| 383 | var key = node.key |
| 384 | if key == nil { |
| 385 | key = node.inodes[0].key |
| 386 | } |
| 387 | |
| 388 | node.parent.put(key, node.inodes[0].key, nil, node.pgid, 0) |
| 389 | node.key = node.inodes[0].key |
| 390 | _assert(len(node.key) > 0, "spill: zero-length node key") |
| 391 | } |
| 392 | |
| 393 | // Update the statistics. |
| 394 | tx.stats.Spill++ |
| 395 | } |
| 396 | |
| 397 | // If the root node split and created a new root then we need to spill that |
| 398 | // as well. We'll clear out the children to make sure it doesn't try to respill. |
| 399 | if n.parent != nil && n.parent.pgid == 0 { |
| 400 | n.children = nil |
| 401 | return n.parent.spill() |
| 402 | } |
| 403 | |
| 404 | return nil |
| 405 | } |
| 406 | |
| 407 | // rebalance attempts to combine the node with sibling nodes if the node fill |
| 408 | // size is below a threshold or if there are not enough keys. |
| 409 | func (n *node) rebalance() { |
| 410 | if !n.unbalanced { |
| 411 | return |
| 412 | } |
| 413 | n.unbalanced = false |
| 414 | |
| 415 | // Update statistics. |
| 416 | n.bucket.tx.stats.Rebalance++ |
| 417 | |
| 418 | // Ignore if node is above threshold (25%) and has enough keys. |
| 419 | var threshold = n.bucket.tx.db.pageSize / 4 |
| 420 | if n.size() > threshold && len(n.inodes) > n.minKeys() { |
| 421 | return |
| 422 | } |
| 423 | |
| 424 | // Root node has special handling. |
| 425 | if n.parent == nil { |
| 426 | // If root node is a branch and only has one node then collapse it. |
| 427 | if !n.isLeaf && len(n.inodes) == 1 { |
| 428 | // Move root's child up. |
| 429 | child := n.bucket.node(n.inodes[0].pgid, n) |
| 430 | n.isLeaf = child.isLeaf |
| 431 | n.inodes = child.inodes[:] |
| 432 | n.children = child.children |
| 433 | |
| 434 | // Reparent all child nodes being moved. |
| 435 | for _, inode := range n.inodes { |
| 436 | if child, ok := n.bucket.nodes[inode.pgid]; ok { |
| 437 | child.parent = n |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | // Remove old child. |
| 442 | child.parent = nil |
| 443 | delete(n.bucket.nodes, child.pgid) |
| 444 | child.free() |
| 445 | } |
| 446 | |
| 447 | return |
| 448 | } |
| 449 | |
| 450 | // If node has no keys then just remove it. |
| 451 | if n.numChildren() == 0 { |
| 452 | n.parent.del(n.key) |
| 453 | n.parent.removeChild(n) |
| 454 | delete(n.bucket.nodes, n.pgid) |
| 455 | n.free() |
| 456 | n.parent.rebalance() |
| 457 | return |
| 458 | } |
| 459 | |
| 460 | _assert(n.parent.numChildren() > 1, "parent must have at least 2 children") |
| 461 | |
| 462 | // Destination node is right sibling if idx == 0, otherwise left sibling. |
| 463 | var target *node |
| 464 | var useNextSibling = (n.parent.childIndex(n) == 0) |
| 465 | if useNextSibling { |
| 466 | target = n.nextSibling() |
| 467 | } else { |
| 468 | target = n.prevSibling() |
| 469 | } |
| 470 | |
| 471 | // If both this node and the target node are too small then merge them. |
| 472 | if useNextSibling { |
| 473 | // Reparent all child nodes being moved. |
| 474 | for _, inode := range target.inodes { |
| 475 | if child, ok := n.bucket.nodes[inode.pgid]; ok { |
| 476 | child.parent.removeChild(child) |
| 477 | child.parent = n |
| 478 | child.parent.children = append(child.parent.children, child) |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | // Copy over inodes from target and remove target. |
| 483 | n.inodes = append(n.inodes, target.inodes...) |
| 484 | n.parent.del(target.key) |
| 485 | n.parent.removeChild(target) |
| 486 | delete(n.bucket.nodes, target.pgid) |
| 487 | target.free() |
| 488 | } else { |
| 489 | // Reparent all child nodes being moved. |
| 490 | for _, inode := range n.inodes { |
| 491 | if child, ok := n.bucket.nodes[inode.pgid]; ok { |
| 492 | child.parent.removeChild(child) |
| 493 | child.parent = target |
| 494 | child.parent.children = append(child.parent.children, child) |
| 495 | } |
| 496 | } |
| 497 | |
| 498 | // Copy over inodes to target and remove node. |
| 499 | target.inodes = append(target.inodes, n.inodes...) |
| 500 | n.parent.del(n.key) |
| 501 | n.parent.removeChild(n) |
| 502 | delete(n.bucket.nodes, n.pgid) |
| 503 | n.free() |
| 504 | } |
| 505 | |
| 506 | // Either this node or the target node was deleted from the parent so rebalance it. |
| 507 | n.parent.rebalance() |
| 508 | } |
| 509 | |
| 510 | // removes a node from the list of in-memory children. |
| 511 | // This does not affect the inodes. |
| 512 | func (n *node) removeChild(target *node) { |
| 513 | for i, child := range n.children { |
| 514 | if child == target { |
| 515 | n.children = append(n.children[:i], n.children[i+1:]...) |
| 516 | return |
| 517 | } |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | // dereference causes the node to copy all its inode key/value references to heap memory. |
| 522 | // This is required when the mmap is reallocated so inodes are not pointing to stale data. |
| 523 | func (n *node) dereference() { |
| 524 | if n.key != nil { |
| 525 | key := make([]byte, len(n.key)) |
| 526 | copy(key, n.key) |
| 527 | n.key = key |
| 528 | _assert(n.pgid == 0 || len(n.key) > 0, "dereference: zero-length node key on existing node") |
| 529 | } |
| 530 | |
| 531 | for i := range n.inodes { |
| 532 | inode := &n.inodes[i] |
| 533 | |
| 534 | key := make([]byte, len(inode.key)) |
| 535 | copy(key, inode.key) |
| 536 | inode.key = key |
| 537 | _assert(len(inode.key) > 0, "dereference: zero-length inode key") |
| 538 | |
| 539 | value := make([]byte, len(inode.value)) |
| 540 | copy(value, inode.value) |
| 541 | inode.value = value |
| 542 | } |
| 543 | |
| 544 | // Recursively dereference children. |
| 545 | for _, child := range n.children { |
| 546 | child.dereference() |
| 547 | } |
| 548 | |
| 549 | // Update statistics. |
| 550 | n.bucket.tx.stats.NodeDeref++ |
| 551 | } |
| 552 | |
| 553 | // free adds the node's underlying page to the freelist. |
| 554 | func (n *node) free() { |
| 555 | if n.pgid != 0 { |
| 556 | n.bucket.tx.db.freelist.free(n.bucket.tx.meta.txid, n.bucket.tx.page(n.pgid)) |
| 557 | n.pgid = 0 |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | // dump writes the contents of the node to STDERR for debugging purposes. |
| 562 | /* |
| 563 | func (n *node) dump() { |
| 564 | // Write node header. |
| 565 | var typ = "branch" |
| 566 | if n.isLeaf { |
| 567 | typ = "leaf" |
| 568 | } |
| 569 | warnf("[NODE %d {type=%s count=%d}]", n.pgid, typ, len(n.inodes)) |
| 570 | |
| 571 | // Write out abbreviated version of each item. |
| 572 | for _, item := range n.inodes { |
| 573 | if n.isLeaf { |
| 574 | if item.flags&bucketLeafFlag != 0 { |
| 575 | bucket := (*bucket)(unsafe.Pointer(&item.value[0])) |
| 576 | warnf("+L %08x -> (bucket root=%d)", trunc(item.key, 4), bucket.root) |
| 577 | } else { |
| 578 | warnf("+L %08x -> %08x", trunc(item.key, 4), trunc(item.value, 4)) |
| 579 | } |
| 580 | } else { |
| 581 | warnf("+B %08x -> pgid=%d", trunc(item.key, 4), item.pgid) |
| 582 | } |
| 583 | } |
| 584 | warn("") |
| 585 | } |
| 586 | */ |
| 587 | |
| 588 | type nodes []*node |
| 589 | |
| 590 | func (s nodes) Len() int { return len(s) } |
| 591 | func (s nodes) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |
| 592 | func (s nodes) Less(i, j int) bool { return bytes.Compare(s[i].inodes[0].key, s[j].inodes[0].key) == -1 } |
| 593 | |
| 594 | // inode represents an internal node inside of a node. |
| 595 | // It can be used to point to elements in a page or point |
| 596 | // to an element which hasn't been added to a page yet. |
| 597 | type inode struct { |
| 598 | flags uint32 |
| 599 | pgid pgid |
| 600 | key []byte |
| 601 | value []byte |
| 602 | } |
| 603 | |
| 604 | type inodes []inode |