blob: d9aa3c42d666ec2503c322d567c035a0a884ee24 [file] [log] [blame]
khenaidooac637102019-01-14 15:44:34 -05001// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors. All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10// * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12// * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16// * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32package proto
33
34/*
35 * Routines for decoding protocol buffer data to construct in-memory representations.
36 */
37
38import (
39 "errors"
40 "fmt"
41 "io"
42)
43
44// errOverflow is returned when an integer is too large to be represented.
45var errOverflow = errors.New("proto: integer overflow")
46
47// ErrInternalBadWireType is returned by generated code when an incorrect
48// wire type is encountered. It does not get returned to user code.
49var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof")
50
51// DecodeVarint reads a varint-encoded integer from the slice.
52// It returns the integer and the number of bytes consumed, or
53// zero if there is not enough.
54// This is the format for the
55// int32, int64, uint32, uint64, bool, and enum
56// protocol buffer types.
57func DecodeVarint(buf []byte) (x uint64, n int) {
58 for shift := uint(0); shift < 64; shift += 7 {
59 if n >= len(buf) {
60 return 0, 0
61 }
62 b := uint64(buf[n])
63 n++
64 x |= (b & 0x7F) << shift
65 if (b & 0x80) == 0 {
66 return x, n
67 }
68 }
69
70 // The number is too large to represent in a 64-bit value.
71 return 0, 0
72}
73
74func (p *Buffer) decodeVarintSlow() (x uint64, err error) {
75 i := p.index
76 l := len(p.buf)
77
78 for shift := uint(0); shift < 64; shift += 7 {
79 if i >= l {
80 err = io.ErrUnexpectedEOF
81 return
82 }
83 b := p.buf[i]
84 i++
85 x |= (uint64(b) & 0x7F) << shift
86 if b < 0x80 {
87 p.index = i
88 return
89 }
90 }
91
92 // The number is too large to represent in a 64-bit value.
93 err = errOverflow
94 return
95}
96
97// DecodeVarint reads a varint-encoded integer from the Buffer.
98// This is the format for the
99// int32, int64, uint32, uint64, bool, and enum
100// protocol buffer types.
101func (p *Buffer) DecodeVarint() (x uint64, err error) {
102 i := p.index
103 buf := p.buf
104
105 if i >= len(buf) {
106 return 0, io.ErrUnexpectedEOF
107 } else if buf[i] < 0x80 {
108 p.index++
109 return uint64(buf[i]), nil
110 } else if len(buf)-i < 10 {
111 return p.decodeVarintSlow()
112 }
113
114 var b uint64
115 // we already checked the first byte
116 x = uint64(buf[i]) - 0x80
117 i++
118
119 b = uint64(buf[i])
120 i++
121 x += b << 7
122 if b&0x80 == 0 {
123 goto done
124 }
125 x -= 0x80 << 7
126
127 b = uint64(buf[i])
128 i++
129 x += b << 14
130 if b&0x80 == 0 {
131 goto done
132 }
133 x -= 0x80 << 14
134
135 b = uint64(buf[i])
136 i++
137 x += b << 21
138 if b&0x80 == 0 {
139 goto done
140 }
141 x -= 0x80 << 21
142
143 b = uint64(buf[i])
144 i++
145 x += b << 28
146 if b&0x80 == 0 {
147 goto done
148 }
149 x -= 0x80 << 28
150
151 b = uint64(buf[i])
152 i++
153 x += b << 35
154 if b&0x80 == 0 {
155 goto done
156 }
157 x -= 0x80 << 35
158
159 b = uint64(buf[i])
160 i++
161 x += b << 42
162 if b&0x80 == 0 {
163 goto done
164 }
165 x -= 0x80 << 42
166
167 b = uint64(buf[i])
168 i++
169 x += b << 49
170 if b&0x80 == 0 {
171 goto done
172 }
173 x -= 0x80 << 49
174
175 b = uint64(buf[i])
176 i++
177 x += b << 56
178 if b&0x80 == 0 {
179 goto done
180 }
181 x -= 0x80 << 56
182
183 b = uint64(buf[i])
184 i++
185 x += b << 63
186 if b&0x80 == 0 {
187 goto done
188 }
189 // x -= 0x80 << 63 // Always zero.
190
191 return 0, errOverflow
192
193done:
194 p.index = i
195 return x, nil
196}
197
198// DecodeFixed64 reads a 64-bit integer from the Buffer.
199// This is the format for the
200// fixed64, sfixed64, and double protocol buffer types.
201func (p *Buffer) DecodeFixed64() (x uint64, err error) {
202 // x, err already 0
203 i := p.index + 8
204 if i < 0 || i > len(p.buf) {
205 err = io.ErrUnexpectedEOF
206 return
207 }
208 p.index = i
209
210 x = uint64(p.buf[i-8])
211 x |= uint64(p.buf[i-7]) << 8
212 x |= uint64(p.buf[i-6]) << 16
213 x |= uint64(p.buf[i-5]) << 24
214 x |= uint64(p.buf[i-4]) << 32
215 x |= uint64(p.buf[i-3]) << 40
216 x |= uint64(p.buf[i-2]) << 48
217 x |= uint64(p.buf[i-1]) << 56
218 return
219}
220
221// DecodeFixed32 reads a 32-bit integer from the Buffer.
222// This is the format for the
223// fixed32, sfixed32, and float protocol buffer types.
224func (p *Buffer) DecodeFixed32() (x uint64, err error) {
225 // x, err already 0
226 i := p.index + 4
227 if i < 0 || i > len(p.buf) {
228 err = io.ErrUnexpectedEOF
229 return
230 }
231 p.index = i
232
233 x = uint64(p.buf[i-4])
234 x |= uint64(p.buf[i-3]) << 8
235 x |= uint64(p.buf[i-2]) << 16
236 x |= uint64(p.buf[i-1]) << 24
237 return
238}
239
240// DecodeZigzag64 reads a zigzag-encoded 64-bit integer
241// from the Buffer.
242// This is the format used for the sint64 protocol buffer type.
243func (p *Buffer) DecodeZigzag64() (x uint64, err error) {
244 x, err = p.DecodeVarint()
245 if err != nil {
246 return
247 }
248 x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63)
249 return
250}
251
252// DecodeZigzag32 reads a zigzag-encoded 32-bit integer
253// from the Buffer.
254// This is the format used for the sint32 protocol buffer type.
255func (p *Buffer) DecodeZigzag32() (x uint64, err error) {
256 x, err = p.DecodeVarint()
257 if err != nil {
258 return
259 }
260 x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31))
261 return
262}
263
264// DecodeRawBytes reads a count-delimited byte buffer from the Buffer.
265// This is the format used for the bytes protocol buffer
266// type and for embedded messages.
267func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) {
268 n, err := p.DecodeVarint()
269 if err != nil {
270 return nil, err
271 }
272
273 nb := int(n)
274 if nb < 0 {
275 return nil, fmt.Errorf("proto: bad byte length %d", nb)
276 }
277 end := p.index + nb
278 if end < p.index || end > len(p.buf) {
279 return nil, io.ErrUnexpectedEOF
280 }
281
282 if !alloc {
283 // todo: check if can get more uses of alloc=false
284 buf = p.buf[p.index:end]
285 p.index += nb
286 return
287 }
288
289 buf = make([]byte, nb)
290 copy(buf, p.buf[p.index:])
291 p.index += nb
292 return
293}
294
295// DecodeStringBytes reads an encoded string from the Buffer.
296// This is the format used for the proto2 string type.
297func (p *Buffer) DecodeStringBytes() (s string, err error) {
298 buf, err := p.DecodeRawBytes(false)
299 if err != nil {
300 return
301 }
302 return string(buf), nil
303}
304
305// Unmarshaler is the interface representing objects that can
306// unmarshal themselves. The argument points to data that may be
307// overwritten, so implementations should not keep references to the
308// buffer.
309// Unmarshal implementations should not clear the receiver.
310// Any unmarshaled data should be merged into the receiver.
311// Callers of Unmarshal that do not want to retain existing data
312// should Reset the receiver before calling Unmarshal.
313type Unmarshaler interface {
314 Unmarshal([]byte) error
315}
316
317// newUnmarshaler is the interface representing objects that can
318// unmarshal themselves. The semantics are identical to Unmarshaler.
319//
320// This exists to support protoc-gen-go generated messages.
321// The proto package will stop type-asserting to this interface in the future.
322//
323// DO NOT DEPEND ON THIS.
324type newUnmarshaler interface {
325 XXX_Unmarshal([]byte) error
326}
327
328// Unmarshal parses the protocol buffer representation in buf and places the
329// decoded result in pb. If the struct underlying pb does not match
330// the data in buf, the results can be unpredictable.
331//
332// Unmarshal resets pb before starting to unmarshal, so any
333// existing data in pb is always removed. Use UnmarshalMerge
334// to preserve and append to existing data.
335func Unmarshal(buf []byte, pb Message) error {
336 pb.Reset()
337 if u, ok := pb.(newUnmarshaler); ok {
338 return u.XXX_Unmarshal(buf)
339 }
340 if u, ok := pb.(Unmarshaler); ok {
341 return u.Unmarshal(buf)
342 }
343 return NewBuffer(buf).Unmarshal(pb)
344}
345
346// UnmarshalMerge parses the protocol buffer representation in buf and
347// writes the decoded result to pb. If the struct underlying pb does not match
348// the data in buf, the results can be unpredictable.
349//
350// UnmarshalMerge merges into existing data in pb.
351// Most code should use Unmarshal instead.
352func UnmarshalMerge(buf []byte, pb Message) error {
353 if u, ok := pb.(newUnmarshaler); ok {
354 return u.XXX_Unmarshal(buf)
355 }
356 if u, ok := pb.(Unmarshaler); ok {
357 // NOTE: The history of proto have unfortunately been inconsistent
358 // whether Unmarshaler should or should not implicitly clear itself.
359 // Some implementations do, most do not.
360 // Thus, calling this here may or may not do what people want.
361 //
362 // See https://github.com/golang/protobuf/issues/424
363 return u.Unmarshal(buf)
364 }
365 return NewBuffer(buf).Unmarshal(pb)
366}
367
368// DecodeMessage reads a count-delimited message from the Buffer.
369func (p *Buffer) DecodeMessage(pb Message) error {
370 enc, err := p.DecodeRawBytes(false)
371 if err != nil {
372 return err
373 }
374 return NewBuffer(enc).Unmarshal(pb)
375}
376
377// DecodeGroup reads a tag-delimited group from the Buffer.
378// StartGroup tag is already consumed. This function consumes
379// EndGroup tag.
380func (p *Buffer) DecodeGroup(pb Message) error {
381 b := p.buf[p.index:]
382 x, y := findEndGroup(b)
383 if x < 0 {
384 return io.ErrUnexpectedEOF
385 }
386 err := Unmarshal(b[:x], pb)
387 p.index += y
388 return err
389}
390
391// Unmarshal parses the protocol buffer representation in the
392// Buffer and places the decoded result in pb. If the struct
393// underlying pb does not match the data in the buffer, the results can be
394// unpredictable.
395//
396// Unlike proto.Unmarshal, this does not reset pb before starting to unmarshal.
397func (p *Buffer) Unmarshal(pb Message) error {
398 // If the object can unmarshal itself, let it.
399 if u, ok := pb.(newUnmarshaler); ok {
400 err := u.XXX_Unmarshal(p.buf[p.index:])
401 p.index = len(p.buf)
402 return err
403 }
404 if u, ok := pb.(Unmarshaler); ok {
405 // NOTE: The history of proto have unfortunately been inconsistent
406 // whether Unmarshaler should or should not implicitly clear itself.
407 // Some implementations do, most do not.
408 // Thus, calling this here may or may not do what people want.
409 //
410 // See https://github.com/golang/protobuf/issues/424
411 err := u.Unmarshal(p.buf[p.index:])
412 p.index = len(p.buf)
413 return err
414 }
415
416 // Slow workaround for messages that aren't Unmarshalers.
417 // This includes some hand-coded .pb.go files and
418 // bootstrap protos.
419 // TODO: fix all of those and then add Unmarshal to
420 // the Message interface. Then:
421 // The cast above and code below can be deleted.
422 // The old unmarshaler can be deleted.
423 // Clients can call Unmarshal directly (can already do that, actually).
424 var info InternalMessageInfo
425 err := info.Unmarshal(pb, p.buf[p.index:])
426 p.index = len(p.buf)
427 return err
428}