blob: e6d3d49b39c0e96d0c9b54a258f3c908e882b201 [file] [log] [blame]
khenaidood948f772021-08-11 17:49:24 -04001// Copyright 2019+ Klaus Post. All rights reserved.
2// License information can be found in the LICENSE file.
3// Based on work by Yann Collet, released under BSD License.
4
5package zstd
6
7import (
8 "errors"
9 "fmt"
10)
11
12const (
13 tablelogAbsoluteMax = 9
14)
15
16const (
17 /*!MEMORY_USAGE :
18 * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
19 * Increasing memory usage improves compression ratio
20 * Reduced memory usage can improve speed, due to cache effect
21 * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
22 maxMemoryUsage = tablelogAbsoluteMax + 2
23
24 maxTableLog = maxMemoryUsage - 2
25 maxTablesize = 1 << maxTableLog
26 maxTableMask = (1 << maxTableLog) - 1
27 minTablelog = 5
28 maxSymbolValue = 255
29)
30
31// fseDecoder provides temporary storage for compression and decompression.
32type fseDecoder struct {
33 dt [maxTablesize]decSymbol // Decompression table.
34 symbolLen uint16 // Length of active part of the symbol table.
35 actualTableLog uint8 // Selected tablelog.
36 maxBits uint8 // Maximum number of additional bits
37
38 // used for table creation to avoid allocations.
39 stateTable [256]uint16
40 norm [maxSymbolValue + 1]int16
41 preDefined bool
42}
43
44// tableStep returns the next table index.
45func tableStep(tableSize uint32) uint32 {
46 return (tableSize >> 1) + (tableSize >> 3) + 3
47}
48
49// readNCount will read the symbol distribution so decoding tables can be constructed.
50func (s *fseDecoder) readNCount(b *byteReader, maxSymbol uint16) error {
51 var (
52 charnum uint16
53 previous0 bool
54 )
55 if b.remain() < 4 {
56 return errors.New("input too small")
57 }
58 bitStream := b.Uint32NC()
59 nbBits := uint((bitStream & 0xF) + minTablelog) // extract tableLog
60 if nbBits > tablelogAbsoluteMax {
61 println("Invalid tablelog:", nbBits)
62 return errors.New("tableLog too large")
63 }
64 bitStream >>= 4
65 bitCount := uint(4)
66
67 s.actualTableLog = uint8(nbBits)
68 remaining := int32((1 << nbBits) + 1)
69 threshold := int32(1 << nbBits)
70 gotTotal := int32(0)
71 nbBits++
72
73 for remaining > 1 && charnum <= maxSymbol {
74 if previous0 {
75 //println("prev0")
76 n0 := charnum
77 for (bitStream & 0xFFFF) == 0xFFFF {
78 //println("24 x 0")
79 n0 += 24
80 if r := b.remain(); r > 5 {
81 b.advance(2)
82 // The check above should make sure we can read 32 bits
83 bitStream = b.Uint32NC() >> bitCount
84 } else {
85 // end of bit stream
86 bitStream >>= 16
87 bitCount += 16
88 }
89 }
90 //printf("bitstream: %d, 0b%b", bitStream&3, bitStream)
91 for (bitStream & 3) == 3 {
92 n0 += 3
93 bitStream >>= 2
94 bitCount += 2
95 }
96 n0 += uint16(bitStream & 3)
97 bitCount += 2
98
99 if n0 > maxSymbolValue {
100 return errors.New("maxSymbolValue too small")
101 }
102 //println("inserting ", n0-charnum, "zeroes from idx", charnum, "ending before", n0)
103 for charnum < n0 {
104 s.norm[uint8(charnum)] = 0
105 charnum++
106 }
107
108 if r := b.remain(); r >= 7 || r-int(bitCount>>3) >= 4 {
109 b.advance(bitCount >> 3)
110 bitCount &= 7
111 // The check above should make sure we can read 32 bits
112 bitStream = b.Uint32NC() >> bitCount
113 } else {
114 bitStream >>= 2
115 }
116 }
117
118 max := (2*threshold - 1) - remaining
119 var count int32
120
121 if int32(bitStream)&(threshold-1) < max {
122 count = int32(bitStream) & (threshold - 1)
123 if debugAsserts && nbBits < 1 {
124 panic("nbBits underflow")
125 }
126 bitCount += nbBits - 1
127 } else {
128 count = int32(bitStream) & (2*threshold - 1)
129 if count >= threshold {
130 count -= max
131 }
132 bitCount += nbBits
133 }
134
135 // extra accuracy
136 count--
137 if count < 0 {
138 // -1 means +1
139 remaining += count
140 gotTotal -= count
141 } else {
142 remaining -= count
143 gotTotal += count
144 }
145 s.norm[charnum&0xff] = int16(count)
146 charnum++
147 previous0 = count == 0
148 for remaining < threshold {
149 nbBits--
150 threshold >>= 1
151 }
152
153 if r := b.remain(); r >= 7 || r-int(bitCount>>3) >= 4 {
154 b.advance(bitCount >> 3)
155 bitCount &= 7
156 // The check above should make sure we can read 32 bits
157 bitStream = b.Uint32NC() >> (bitCount & 31)
158 } else {
159 bitCount -= (uint)(8 * (len(b.b) - 4 - b.off))
160 b.off = len(b.b) - 4
161 bitStream = b.Uint32() >> (bitCount & 31)
162 }
163 }
164 s.symbolLen = charnum
165 if s.symbolLen <= 1 {
166 return fmt.Errorf("symbolLen (%d) too small", s.symbolLen)
167 }
168 if s.symbolLen > maxSymbolValue+1 {
169 return fmt.Errorf("symbolLen (%d) too big", s.symbolLen)
170 }
171 if remaining != 1 {
172 return fmt.Errorf("corruption detected (remaining %d != 1)", remaining)
173 }
174 if bitCount > 32 {
175 return fmt.Errorf("corruption detected (bitCount %d > 32)", bitCount)
176 }
177 if gotTotal != 1<<s.actualTableLog {
178 return fmt.Errorf("corruption detected (total %d != %d)", gotTotal, 1<<s.actualTableLog)
179 }
180 b.advance((bitCount + 7) >> 3)
181 // println(s.norm[:s.symbolLen], s.symbolLen)
182 return s.buildDtable()
183}
184
185// decSymbol contains information about a state entry,
186// Including the state offset base, the output symbol and
187// the number of bits to read for the low part of the destination state.
188// Using a composite uint64 is faster than a struct with separate members.
189type decSymbol uint64
190
191func newDecSymbol(nbits, addBits uint8, newState uint16, baseline uint32) decSymbol {
192 return decSymbol(nbits) | (decSymbol(addBits) << 8) | (decSymbol(newState) << 16) | (decSymbol(baseline) << 32)
193}
194
195func (d decSymbol) nbBits() uint8 {
196 return uint8(d)
197}
198
199func (d decSymbol) addBits() uint8 {
200 return uint8(d >> 8)
201}
202
203func (d decSymbol) newState() uint16 {
204 return uint16(d >> 16)
205}
206
207func (d decSymbol) baseline() uint32 {
208 return uint32(d >> 32)
209}
210
211func (d decSymbol) baselineInt() int {
212 return int(d >> 32)
213}
214
215func (d *decSymbol) set(nbits, addBits uint8, newState uint16, baseline uint32) {
216 *d = decSymbol(nbits) | (decSymbol(addBits) << 8) | (decSymbol(newState) << 16) | (decSymbol(baseline) << 32)
217}
218
219func (d *decSymbol) setNBits(nBits uint8) {
220 const mask = 0xffffffffffffff00
221 *d = (*d & mask) | decSymbol(nBits)
222}
223
224func (d *decSymbol) setAddBits(addBits uint8) {
225 const mask = 0xffffffffffff00ff
226 *d = (*d & mask) | (decSymbol(addBits) << 8)
227}
228
229func (d *decSymbol) setNewState(state uint16) {
230 const mask = 0xffffffff0000ffff
231 *d = (*d & mask) | decSymbol(state)<<16
232}
233
234func (d *decSymbol) setBaseline(baseline uint32) {
235 const mask = 0xffffffff
236 *d = (*d & mask) | decSymbol(baseline)<<32
237}
238
239func (d *decSymbol) setExt(addBits uint8, baseline uint32) {
240 const mask = 0xffff00ff
241 *d = (*d & mask) | (decSymbol(addBits) << 8) | (decSymbol(baseline) << 32)
242}
243
244// decSymbolValue returns the transformed decSymbol for the given symbol.
245func decSymbolValue(symb uint8, t []baseOffset) (decSymbol, error) {
246 if int(symb) >= len(t) {
247 return 0, fmt.Errorf("rle symbol %d >= max %d", symb, len(t))
248 }
249 lu := t[symb]
250 return newDecSymbol(0, lu.addBits, 0, lu.baseLine), nil
251}
252
253// setRLE will set the decoder til RLE mode.
254func (s *fseDecoder) setRLE(symbol decSymbol) {
255 s.actualTableLog = 0
256 s.maxBits = symbol.addBits()
257 s.dt[0] = symbol
258}
259
260// buildDtable will build the decoding table.
261func (s *fseDecoder) buildDtable() error {
262 tableSize := uint32(1 << s.actualTableLog)
263 highThreshold := tableSize - 1
264 symbolNext := s.stateTable[:256]
265
266 // Init, lay down lowprob symbols
267 {
268 for i, v := range s.norm[:s.symbolLen] {
269 if v == -1 {
270 s.dt[highThreshold].setAddBits(uint8(i))
271 highThreshold--
272 symbolNext[i] = 1
273 } else {
274 symbolNext[i] = uint16(v)
275 }
276 }
277 }
278 // Spread symbols
279 {
280 tableMask := tableSize - 1
281 step := tableStep(tableSize)
282 position := uint32(0)
283 for ss, v := range s.norm[:s.symbolLen] {
284 for i := 0; i < int(v); i++ {
285 s.dt[position].setAddBits(uint8(ss))
286 position = (position + step) & tableMask
287 for position > highThreshold {
288 // lowprob area
289 position = (position + step) & tableMask
290 }
291 }
292 }
293 if position != 0 {
294 // position must reach all cells once, otherwise normalizedCounter is incorrect
295 return errors.New("corrupted input (position != 0)")
296 }
297 }
298
299 // Build Decoding table
300 {
301 tableSize := uint16(1 << s.actualTableLog)
302 for u, v := range s.dt[:tableSize] {
303 symbol := v.addBits()
304 nextState := symbolNext[symbol]
305 symbolNext[symbol] = nextState + 1
306 nBits := s.actualTableLog - byte(highBits(uint32(nextState)))
307 s.dt[u&maxTableMask].setNBits(nBits)
308 newState := (nextState << nBits) - tableSize
309 if newState > tableSize {
310 return fmt.Errorf("newState (%d) outside table size (%d)", newState, tableSize)
311 }
312 if newState == uint16(u) && nBits == 0 {
313 // Seems weird that this is possible with nbits > 0.
314 return fmt.Errorf("newState (%d) == oldState (%d) and no bits", newState, u)
315 }
316 s.dt[u&maxTableMask].setNewState(newState)
317 }
318 }
319 return nil
320}
321
322// transform will transform the decoder table into a table usable for
323// decoding without having to apply the transformation while decoding.
324// The state will contain the base value and the number of bits to read.
325func (s *fseDecoder) transform(t []baseOffset) error {
326 tableSize := uint16(1 << s.actualTableLog)
327 s.maxBits = 0
328 for i, v := range s.dt[:tableSize] {
329 add := v.addBits()
330 if int(add) >= len(t) {
331 return fmt.Errorf("invalid decoding table entry %d, symbol %d >= max (%d)", i, v.addBits(), len(t))
332 }
333 lu := t[add]
334 if lu.addBits > s.maxBits {
335 s.maxBits = lu.addBits
336 }
337 v.setExt(lu.addBits, lu.baseLine)
338 s.dt[i] = v
339 }
340 return nil
341}
342
343type fseState struct {
344 dt []decSymbol
345 state decSymbol
346}
347
348// Initialize and decodeAsync first state and symbol.
349func (s *fseState) init(br *bitReader, tableLog uint8, dt []decSymbol) {
350 s.dt = dt
351 br.fill()
352 s.state = dt[br.getBits(tableLog)]
353}
354
355// next returns the current symbol and sets the next state.
356// At least tablelog bits must be available in the bit reader.
357func (s *fseState) next(br *bitReader) {
358 lowBits := uint16(br.getBits(s.state.nbBits()))
359 s.state = s.dt[s.state.newState()+lowBits]
360}
361
362// finished returns true if all bits have been read from the bitstream
363// and the next state would require reading bits from the input.
364func (s *fseState) finished(br *bitReader) bool {
365 return br.finished() && s.state.nbBits() > 0
366}
367
368// final returns the current state symbol without decoding the next.
369func (s *fseState) final() (int, uint8) {
370 return s.state.baselineInt(), s.state.addBits()
371}
372
373// final returns the current state symbol without decoding the next.
374func (s decSymbol) final() (int, uint8) {
375 return s.baselineInt(), s.addBits()
376}
377
378// nextFast returns the next symbol and sets the next state.
379// This can only be used if no symbols are 0 bits.
380// At least tablelog bits must be available in the bit reader.
381func (s *fseState) nextFast(br *bitReader) (uint32, uint8) {
382 lowBits := uint16(br.getBitsFast(s.state.nbBits()))
383 s.state = s.dt[s.state.newState()+lowBits]
384 return s.state.baseline(), s.state.addBits()
385}