blob: 296d7f0beb0fae11e4b2f2741e91f93c27b06500 [file] [log] [blame]
khenaidooac637102019-01-14 15:44:34 -05001// Copyright 2016 The Snappy-Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
khenaidood948f772021-08-11 17:49:24 -04005// +build !amd64,!arm64 appengine !gc noasm
khenaidooac637102019-01-14 15:44:34 -05006
7package snappy
8
9func load32(b []byte, i int) uint32 {
10 b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line.
11 return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24
12}
13
14func load64(b []byte, i int) uint64 {
15 b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line.
16 return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 |
17 uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56
18}
19
20// emitLiteral writes a literal chunk and returns the number of bytes written.
21//
22// It assumes that:
23// dst is long enough to hold the encoded bytes
24// 1 <= len(lit) && len(lit) <= 65536
25func emitLiteral(dst, lit []byte) int {
26 i, n := 0, uint(len(lit)-1)
27 switch {
28 case n < 60:
29 dst[0] = uint8(n)<<2 | tagLiteral
30 i = 1
31 case n < 1<<8:
32 dst[0] = 60<<2 | tagLiteral
33 dst[1] = uint8(n)
34 i = 2
35 default:
36 dst[0] = 61<<2 | tagLiteral
37 dst[1] = uint8(n)
38 dst[2] = uint8(n >> 8)
39 i = 3
40 }
41 return i + copy(dst[i:], lit)
42}
43
44// emitCopy writes a copy chunk and returns the number of bytes written.
45//
46// It assumes that:
47// dst is long enough to hold the encoded bytes
48// 1 <= offset && offset <= 65535
49// 4 <= length && length <= 65535
50func emitCopy(dst []byte, offset, length int) int {
51 i := 0
52 // The maximum length for a single tagCopy1 or tagCopy2 op is 64 bytes. The
53 // threshold for this loop is a little higher (at 68 = 64 + 4), and the
54 // length emitted down below is is a little lower (at 60 = 64 - 4), because
55 // it's shorter to encode a length 67 copy as a length 60 tagCopy2 followed
56 // by a length 7 tagCopy1 (which encodes as 3+2 bytes) than to encode it as
57 // a length 64 tagCopy2 followed by a length 3 tagCopy2 (which encodes as
58 // 3+3 bytes). The magic 4 in the 64±4 is because the minimum length for a
59 // tagCopy1 op is 4 bytes, which is why a length 3 copy has to be an
60 // encodes-as-3-bytes tagCopy2 instead of an encodes-as-2-bytes tagCopy1.
61 for length >= 68 {
62 // Emit a length 64 copy, encoded as 3 bytes.
63 dst[i+0] = 63<<2 | tagCopy2
64 dst[i+1] = uint8(offset)
65 dst[i+2] = uint8(offset >> 8)
66 i += 3
67 length -= 64
68 }
69 if length > 64 {
70 // Emit a length 60 copy, encoded as 3 bytes.
71 dst[i+0] = 59<<2 | tagCopy2
72 dst[i+1] = uint8(offset)
73 dst[i+2] = uint8(offset >> 8)
74 i += 3
75 length -= 60
76 }
77 if length >= 12 || offset >= 2048 {
78 // Emit the remaining copy, encoded as 3 bytes.
79 dst[i+0] = uint8(length-1)<<2 | tagCopy2
80 dst[i+1] = uint8(offset)
81 dst[i+2] = uint8(offset >> 8)
82 return i + 3
83 }
84 // Emit the remaining copy, encoded as 2 bytes.
85 dst[i+0] = uint8(offset>>8)<<5 | uint8(length-4)<<2 | tagCopy1
86 dst[i+1] = uint8(offset)
87 return i + 2
88}
89
90// extendMatch returns the largest k such that k <= len(src) and that
91// src[i:i+k-j] and src[j:k] have the same contents.
92//
93// It assumes that:
94// 0 <= i && i < j && j <= len(src)
95func extendMatch(src []byte, i, j int) int {
96 for ; j < len(src) && src[i] == src[j]; i, j = i+1, j+1 {
97 }
98 return j
99}
100
101func hash(u, shift uint32) uint32 {
102 return (u * 0x1e35a7bd) >> shift
103}
104
105// encodeBlock encodes a non-empty src to a guaranteed-large-enough dst. It
106// assumes that the varint-encoded length of the decompressed bytes has already
107// been written.
108//
109// It also assumes that:
110// len(dst) >= MaxEncodedLen(len(src)) &&
111// minNonLiteralBlockSize <= len(src) && len(src) <= maxBlockSize
112func encodeBlock(dst, src []byte) (d int) {
113 // Initialize the hash table. Its size ranges from 1<<8 to 1<<14 inclusive.
114 // The table element type is uint16, as s < sLimit and sLimit < len(src)
115 // and len(src) <= maxBlockSize and maxBlockSize == 65536.
116 const (
117 maxTableSize = 1 << 14
118 // tableMask is redundant, but helps the compiler eliminate bounds
119 // checks.
120 tableMask = maxTableSize - 1
121 )
122 shift := uint32(32 - 8)
123 for tableSize := 1 << 8; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 {
124 shift--
125 }
126 // In Go, all array elements are zero-initialized, so there is no advantage
127 // to a smaller tableSize per se. However, it matches the C++ algorithm,
128 // and in the asm versions of this code, we can get away with zeroing only
129 // the first tableSize elements.
130 var table [maxTableSize]uint16
131
132 // sLimit is when to stop looking for offset/length copies. The inputMargin
133 // lets us use a fast path for emitLiteral in the main loop, while we are
134 // looking for copies.
135 sLimit := len(src) - inputMargin
136
137 // nextEmit is where in src the next emitLiteral should start from.
138 nextEmit := 0
139
140 // The encoded form must start with a literal, as there are no previous
141 // bytes to copy, so we start looking for hash matches at s == 1.
142 s := 1
143 nextHash := hash(load32(src, s), shift)
144
145 for {
146 // Copied from the C++ snappy implementation:
147 //
148 // Heuristic match skipping: If 32 bytes are scanned with no matches
149 // found, start looking only at every other byte. If 32 more bytes are
150 // scanned (or skipped), look at every third byte, etc.. When a match
151 // is found, immediately go back to looking at every byte. This is a
152 // small loss (~5% performance, ~0.1% density) for compressible data
153 // due to more bookkeeping, but for non-compressible data (such as
154 // JPEG) it's a huge win since the compressor quickly "realizes" the
155 // data is incompressible and doesn't bother looking for matches
156 // everywhere.
157 //
158 // The "skip" variable keeps track of how many bytes there are since
159 // the last match; dividing it by 32 (ie. right-shifting by five) gives
160 // the number of bytes to move ahead for each iteration.
161 skip := 32
162
163 nextS := s
164 candidate := 0
165 for {
166 s = nextS
167 bytesBetweenHashLookups := skip >> 5
168 nextS = s + bytesBetweenHashLookups
169 skip += bytesBetweenHashLookups
170 if nextS > sLimit {
171 goto emitRemainder
172 }
173 candidate = int(table[nextHash&tableMask])
174 table[nextHash&tableMask] = uint16(s)
175 nextHash = hash(load32(src, nextS), shift)
176 if load32(src, s) == load32(src, candidate) {
177 break
178 }
179 }
180
181 // A 4-byte match has been found. We'll later see if more than 4 bytes
182 // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit
183 // them as literal bytes.
184 d += emitLiteral(dst[d:], src[nextEmit:s])
185
186 // Call emitCopy, and then see if another emitCopy could be our next
187 // move. Repeat until we find no match for the input immediately after
188 // what was consumed by the last emitCopy call.
189 //
190 // If we exit this loop normally then we need to call emitLiteral next,
191 // though we don't yet know how big the literal will be. We handle that
192 // by proceeding to the next iteration of the main loop. We also can
193 // exit this loop via goto if we get close to exhausting the input.
194 for {
195 // Invariant: we have a 4-byte match at s, and no need to emit any
196 // literal bytes prior to s.
197 base := s
198
199 // Extend the 4-byte match as long as possible.
200 //
201 // This is an inlined version of:
202 // s = extendMatch(src, candidate+4, s+4)
203 s += 4
204 for i := candidate + 4; s < len(src) && src[i] == src[s]; i, s = i+1, s+1 {
205 }
206
207 d += emitCopy(dst[d:], base-candidate, s-base)
208 nextEmit = s
209 if s >= sLimit {
210 goto emitRemainder
211 }
212
213 // We could immediately start working at s now, but to improve
214 // compression we first update the hash table at s-1 and at s. If
215 // another emitCopy is not our next move, also calculate nextHash
216 // at s+1. At least on GOARCH=amd64, these three hash calculations
217 // are faster as one load64 call (with some shifts) instead of
218 // three load32 calls.
219 x := load64(src, s-1)
220 prevHash := hash(uint32(x>>0), shift)
221 table[prevHash&tableMask] = uint16(s - 1)
222 currHash := hash(uint32(x>>8), shift)
223 candidate = int(table[currHash&tableMask])
224 table[currHash&tableMask] = uint16(s)
225 if uint32(x>>8) != load32(src, candidate) {
226 nextHash = hash(uint32(x>>16), shift)
227 s++
228 break
229 }
230 }
231 }
232
233emitRemainder:
234 if nextEmit < len(src) {
235 d += emitLiteral(dst[d:], src[nextEmit:])
236 }
237 return d
238}