blob: 029feeefd792ba5a6c7230df231c715a36600146 [file] [log] [blame]
khenaidood948f772021-08-11 17:49:24 -04001// Copyright 2018 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package impl
6
7import (
8 "fmt"
9 "reflect"
10 "strings"
11 "sync"
12
13 "google.golang.org/protobuf/internal/descopts"
14 ptag "google.golang.org/protobuf/internal/encoding/tag"
15 "google.golang.org/protobuf/internal/errors"
16 "google.golang.org/protobuf/internal/filedesc"
17 "google.golang.org/protobuf/internal/strs"
18 "google.golang.org/protobuf/reflect/protoreflect"
19 pref "google.golang.org/protobuf/reflect/protoreflect"
20 "google.golang.org/protobuf/runtime/protoiface"
21 piface "google.golang.org/protobuf/runtime/protoiface"
22)
23
24// legacyWrapMessage wraps v as a protoreflect.Message,
25// where v must be a *struct kind and not implement the v2 API already.
26func legacyWrapMessage(v reflect.Value) pref.Message {
27 t := v.Type()
28 if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
29 return aberrantMessage{v: v}
30 }
31 mt := legacyLoadMessageInfo(t, "")
32 return mt.MessageOf(v.Interface())
33}
34
35// legacyLoadMessageType dynamically loads a protoreflect.Type for t,
36// where t must be not implement the v2 API already.
37// The provided name is used if it cannot be determined from the message.
38func legacyLoadMessageType(t reflect.Type, name pref.FullName) protoreflect.MessageType {
39 if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
40 return aberrantMessageType{t}
41 }
42 return legacyLoadMessageInfo(t, name)
43}
44
45var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
46
47// legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
48// where t must be a *struct kind and not implement the v2 API already.
49// The provided name is used if it cannot be determined from the message.
50func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
51 // Fast-path: check if a MessageInfo is cached for this concrete type.
52 if mt, ok := legacyMessageTypeCache.Load(t); ok {
53 return mt.(*MessageInfo)
54 }
55
56 // Slow-path: derive message descriptor and initialize MessageInfo.
57 mi := &MessageInfo{
58 Desc: legacyLoadMessageDesc(t, name),
59 GoReflectType: t,
60 }
61
62 var hasMarshal, hasUnmarshal bool
63 v := reflect.Zero(t).Interface()
64 if _, hasMarshal = v.(legacyMarshaler); hasMarshal {
65 mi.methods.Marshal = legacyMarshal
66
67 // We have no way to tell whether the type's Marshal method
68 // supports deterministic serialization or not, but this
69 // preserves the v1 implementation's behavior of always
70 // calling Marshal methods when present.
71 mi.methods.Flags |= piface.SupportMarshalDeterministic
72 }
73 if _, hasUnmarshal = v.(legacyUnmarshaler); hasUnmarshal {
74 mi.methods.Unmarshal = legacyUnmarshal
75 }
76 if _, hasMerge := v.(legacyMerger); hasMerge || (hasMarshal && hasUnmarshal) {
77 mi.methods.Merge = legacyMerge
78 }
79
80 if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
81 return mi.(*MessageInfo)
82 }
83 return mi
84}
85
86var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
87
88// LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
89// which should be a *struct kind and must not implement the v2 API already.
90//
91// This is exported for testing purposes.
92func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
93 return legacyLoadMessageDesc(t, "")
94}
95func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
96 // Fast-path: check if a MessageDescriptor is cached for this concrete type.
97 if mi, ok := legacyMessageDescCache.Load(t); ok {
98 return mi.(pref.MessageDescriptor)
99 }
100
101 // Slow-path: initialize MessageDescriptor from the raw descriptor.
102 mv := reflect.Zero(t).Interface()
103 if _, ok := mv.(pref.ProtoMessage); ok {
104 panic(fmt.Sprintf("%v already implements proto.Message", t))
105 }
106 mdV1, ok := mv.(messageV1)
107 if !ok {
108 return aberrantLoadMessageDesc(t, name)
109 }
110
111 // If this is a dynamic message type where there isn't a 1-1 mapping between
112 // Go and protobuf types, calling the Descriptor method on the zero value of
113 // the message type isn't likely to work. If it panics, swallow the panic and
114 // continue as if the Descriptor method wasn't present.
115 b, idxs := func() ([]byte, []int) {
116 defer func() {
117 recover()
118 }()
119 return mdV1.Descriptor()
120 }()
121 if b == nil {
122 return aberrantLoadMessageDesc(t, name)
123 }
124
125 // If the Go type has no fields, then this might be a proto3 empty message
126 // from before the size cache was added. If there are any fields, check to
127 // see that at least one of them looks like something we generated.
128 if t.Elem().Kind() == reflect.Struct {
129 if nfield := t.Elem().NumField(); nfield > 0 {
130 hasProtoField := false
131 for i := 0; i < nfield; i++ {
132 f := t.Elem().Field(i)
133 if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
134 hasProtoField = true
135 break
136 }
137 }
138 if !hasProtoField {
139 return aberrantLoadMessageDesc(t, name)
140 }
141 }
142 }
143
144 md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
145 for _, i := range idxs[1:] {
146 md = md.Messages().Get(i)
147 }
148 if name != "" && md.FullName() != name {
149 panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
150 }
151 if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
152 return md.(protoreflect.MessageDescriptor)
153 }
154 return md
155}
156
157var (
158 aberrantMessageDescLock sync.Mutex
159 aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
160)
161
162// aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
163// which must not implement protoreflect.ProtoMessage or messageV1.
164//
165// This is a best-effort derivation of the message descriptor using the protobuf
166// tags on the struct fields.
167func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
168 aberrantMessageDescLock.Lock()
169 defer aberrantMessageDescLock.Unlock()
170 if aberrantMessageDescCache == nil {
171 aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
172 }
173 return aberrantLoadMessageDescReentrant(t, name)
174}
175func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
176 // Fast-path: check if an MessageDescriptor is cached for this concrete type.
177 if md, ok := aberrantMessageDescCache[t]; ok {
178 return md
179 }
180
181 // Slow-path: construct a descriptor from the Go struct type (best-effort).
182 // Cache the MessageDescriptor early on so that we can resolve internal
183 // cyclic references.
184 md := &filedesc.Message{L2: new(filedesc.MessageL2)}
185 md.L0.FullName = aberrantDeriveMessageName(t, name)
186 md.L0.ParentFile = filedesc.SurrogateProto2
187 aberrantMessageDescCache[t] = md
188
189 if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
190 return md
191 }
192
193 // Try to determine if the message is using proto3 by checking scalars.
194 for i := 0; i < t.Elem().NumField(); i++ {
195 f := t.Elem().Field(i)
196 if tag := f.Tag.Get("protobuf"); tag != "" {
197 switch f.Type.Kind() {
198 case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
199 md.L0.ParentFile = filedesc.SurrogateProto3
200 }
201 for _, s := range strings.Split(tag, ",") {
202 if s == "proto3" {
203 md.L0.ParentFile = filedesc.SurrogateProto3
204 }
205 }
206 }
207 }
208
209 // Obtain a list of oneof wrapper types.
210 var oneofWrappers []reflect.Type
211 for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
212 if fn, ok := t.MethodByName(method); ok {
213 for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
214 if vs, ok := v.Interface().([]interface{}); ok {
215 for _, v := range vs {
216 oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
217 }
218 }
219 }
220 }
221 }
222
223 // Obtain a list of the extension ranges.
224 if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
225 vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
226 for i := 0; i < vs.Len(); i++ {
227 v := vs.Index(i)
228 md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
229 pref.FieldNumber(v.FieldByName("Start").Int()),
230 pref.FieldNumber(v.FieldByName("End").Int() + 1),
231 })
232 md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
233 }
234 }
235
236 // Derive the message fields by inspecting the struct fields.
237 for i := 0; i < t.Elem().NumField(); i++ {
238 f := t.Elem().Field(i)
239 if tag := f.Tag.Get("protobuf"); tag != "" {
240 tagKey := f.Tag.Get("protobuf_key")
241 tagVal := f.Tag.Get("protobuf_val")
242 aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
243 }
244 if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
245 n := len(md.L2.Oneofs.List)
246 md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
247 od := &md.L2.Oneofs.List[n]
248 od.L0.FullName = md.FullName().Append(pref.Name(tag))
249 od.L0.ParentFile = md.L0.ParentFile
250 od.L0.Parent = md
251 od.L0.Index = n
252
253 for _, t := range oneofWrappers {
254 if t.Implements(f.Type) {
255 f := t.Elem().Field(0)
256 if tag := f.Tag.Get("protobuf"); tag != "" {
257 aberrantAppendField(md, f.Type, tag, "", "")
258 fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
259 fd.L1.ContainingOneof = od
260 od.L1.Fields.List = append(od.L1.Fields.List, fd)
261 }
262 }
263 }
264 }
265 }
266
267 return md
268}
269
270func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
271 if name.IsValid() {
272 return name
273 }
274 func() {
275 defer func() { recover() }() // swallow possible nil panics
276 if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
277 name = pref.FullName(m.XXX_MessageName())
278 }
279 }()
280 if name.IsValid() {
281 return name
282 }
283 if t.Kind() == reflect.Ptr {
284 t = t.Elem()
285 }
286 return AberrantDeriveFullName(t)
287}
288
289func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
290 t := goType
291 isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
292 isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
293 if isOptional || isRepeated {
294 t = t.Elem()
295 }
296 fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
297
298 // Append field descriptor to the message.
299 n := len(md.L2.Fields.List)
300 md.L2.Fields.List = append(md.L2.Fields.List, *fd)
301 fd = &md.L2.Fields.List[n]
302 fd.L0.FullName = md.FullName().Append(fd.Name())
303 fd.L0.ParentFile = md.L0.ParentFile
304 fd.L0.Parent = md
305 fd.L0.Index = n
306
307 if fd.L1.IsWeak || fd.L1.HasPacked {
308 fd.L1.Options = func() pref.ProtoMessage {
309 opts := descopts.Field.ProtoReflect().New()
310 if fd.L1.IsWeak {
311 opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
312 }
313 if fd.L1.HasPacked {
314 opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
315 }
316 return opts.Interface()
317 }
318 }
319
320 // Populate Enum and Message.
321 if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
322 switch v := reflect.Zero(t).Interface().(type) {
323 case pref.Enum:
324 fd.L1.Enum = v.Descriptor()
325 default:
326 fd.L1.Enum = LegacyLoadEnumDesc(t)
327 }
328 }
329 if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
330 switch v := reflect.Zero(t).Interface().(type) {
331 case pref.ProtoMessage:
332 fd.L1.Message = v.ProtoReflect().Descriptor()
333 case messageV1:
334 fd.L1.Message = LegacyLoadMessageDesc(t)
335 default:
336 if t.Kind() == reflect.Map {
337 n := len(md.L1.Messages.List)
338 md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
339 md2 := &md.L1.Messages.List[n]
340 md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
341 md2.L0.ParentFile = md.L0.ParentFile
342 md2.L0.Parent = md
343 md2.L0.Index = n
344
345 md2.L1.IsMapEntry = true
346 md2.L2.Options = func() pref.ProtoMessage {
347 opts := descopts.Message.ProtoReflect().New()
348 opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
349 return opts.Interface()
350 }
351
352 aberrantAppendField(md2, t.Key(), tagKey, "", "")
353 aberrantAppendField(md2, t.Elem(), tagVal, "", "")
354
355 fd.L1.Message = md2
356 break
357 }
358 fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
359 }
360 }
361}
362
363type placeholderEnumValues struct {
364 protoreflect.EnumValueDescriptors
365}
366
367func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
368 return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
369}
370
371// legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
372type legacyMarshaler interface {
373 Marshal() ([]byte, error)
374}
375
376// legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
377type legacyUnmarshaler interface {
378 Unmarshal([]byte) error
379}
380
381// legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
382type legacyMerger interface {
383 Merge(protoiface.MessageV1)
384}
385
386var aberrantProtoMethods = &piface.Methods{
387 Marshal: legacyMarshal,
388 Unmarshal: legacyUnmarshal,
389 Merge: legacyMerge,
390
391 // We have no way to tell whether the type's Marshal method
392 // supports deterministic serialization or not, but this
393 // preserves the v1 implementation's behavior of always
394 // calling Marshal methods when present.
395 Flags: piface.SupportMarshalDeterministic,
396}
397
398func legacyMarshal(in piface.MarshalInput) (piface.MarshalOutput, error) {
399 v := in.Message.(unwrapper).protoUnwrap()
400 marshaler, ok := v.(legacyMarshaler)
401 if !ok {
402 return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
403 }
404 out, err := marshaler.Marshal()
405 if in.Buf != nil {
406 out = append(in.Buf, out...)
407 }
408 return piface.MarshalOutput{
409 Buf: out,
410 }, err
411}
412
413func legacyUnmarshal(in piface.UnmarshalInput) (piface.UnmarshalOutput, error) {
414 v := in.Message.(unwrapper).protoUnwrap()
415 unmarshaler, ok := v.(legacyUnmarshaler)
416 if !ok {
417 return piface.UnmarshalOutput{}, errors.New("%T does not implement Unmarshal", v)
418 }
419 return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
420}
421
422func legacyMerge(in piface.MergeInput) piface.MergeOutput {
423 // Check whether this supports the legacy merger.
424 dstv := in.Destination.(unwrapper).protoUnwrap()
425 merger, ok := dstv.(legacyMerger)
426 if ok {
427 merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
428 return piface.MergeOutput{Flags: piface.MergeComplete}
429 }
430
431 // If legacy merger is unavailable, implement merge in terms of
432 // a marshal and unmarshal operation.
433 srcv := in.Source.(unwrapper).protoUnwrap()
434 marshaler, ok := srcv.(legacyMarshaler)
435 if !ok {
436 return piface.MergeOutput{}
437 }
438 dstv = in.Destination.(unwrapper).protoUnwrap()
439 unmarshaler, ok := dstv.(legacyUnmarshaler)
440 if !ok {
441 return piface.MergeOutput{}
442 }
443 if !in.Source.IsValid() {
444 // Legacy Marshal methods may not function on nil messages.
445 // Check for a typed nil source only after we confirm that
446 // legacy Marshal/Unmarshal methods are present, for
447 // consistency.
448 return piface.MergeOutput{Flags: piface.MergeComplete}
449 }
450 b, err := marshaler.Marshal()
451 if err != nil {
452 return piface.MergeOutput{}
453 }
454 err = unmarshaler.Unmarshal(b)
455 if err != nil {
456 return piface.MergeOutput{}
457 }
458 return piface.MergeOutput{Flags: piface.MergeComplete}
459}
460
461// aberrantMessageType implements MessageType for all types other than pointer-to-struct.
462type aberrantMessageType struct {
463 t reflect.Type
464}
465
466func (mt aberrantMessageType) New() pref.Message {
467 if mt.t.Kind() == reflect.Ptr {
468 return aberrantMessage{reflect.New(mt.t.Elem())}
469 }
470 return aberrantMessage{reflect.Zero(mt.t)}
471}
472func (mt aberrantMessageType) Zero() pref.Message {
473 return aberrantMessage{reflect.Zero(mt.t)}
474}
475func (mt aberrantMessageType) GoType() reflect.Type {
476 return mt.t
477}
478func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
479 return LegacyLoadMessageDesc(mt.t)
480}
481
482// aberrantMessage implements Message for all types other than pointer-to-struct.
483//
484// When the underlying type implements legacyMarshaler or legacyUnmarshaler,
485// the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
486// not much that can be done with values of this type.
487type aberrantMessage struct {
488 v reflect.Value
489}
490
491// Reset implements the v1 proto.Message.Reset method.
492func (m aberrantMessage) Reset() {
493 if mr, ok := m.v.Interface().(interface{ Reset() }); ok {
494 mr.Reset()
495 return
496 }
497 if m.v.Kind() == reflect.Ptr && !m.v.IsNil() {
498 m.v.Elem().Set(reflect.Zero(m.v.Type().Elem()))
499 }
500}
501
502func (m aberrantMessage) ProtoReflect() pref.Message {
503 return m
504}
505
506func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
507 return LegacyLoadMessageDesc(m.v.Type())
508}
509func (m aberrantMessage) Type() pref.MessageType {
510 return aberrantMessageType{m.v.Type()}
511}
512func (m aberrantMessage) New() pref.Message {
513 if m.v.Type().Kind() == reflect.Ptr {
514 return aberrantMessage{reflect.New(m.v.Type().Elem())}
515 }
516 return aberrantMessage{reflect.Zero(m.v.Type())}
517}
518func (m aberrantMessage) Interface() pref.ProtoMessage {
519 return m
520}
521func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
522 return
523}
524func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
525 return false
526}
527func (m aberrantMessage) Clear(pref.FieldDescriptor) {
528 panic("invalid Message.Clear on " + string(m.Descriptor().FullName()))
529}
530func (m aberrantMessage) Get(fd pref.FieldDescriptor) pref.Value {
531 if fd.Default().IsValid() {
532 return fd.Default()
533 }
534 panic("invalid Message.Get on " + string(m.Descriptor().FullName()))
535}
536func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
537 panic("invalid Message.Set on " + string(m.Descriptor().FullName()))
538}
539func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
540 panic("invalid Message.Mutable on " + string(m.Descriptor().FullName()))
541}
542func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
543 panic("invalid Message.NewField on " + string(m.Descriptor().FullName()))
544}
545func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
546 panic("invalid Message.WhichOneof descriptor on " + string(m.Descriptor().FullName()))
547}
548func (m aberrantMessage) GetUnknown() pref.RawFields {
549 return nil
550}
551func (m aberrantMessage) SetUnknown(pref.RawFields) {
552 // SetUnknown discards its input on messages which don't support unknown field storage.
553}
554func (m aberrantMessage) IsValid() bool {
555 if m.v.Kind() == reflect.Ptr {
556 return !m.v.IsNil()
557 }
558 return false
559}
560func (m aberrantMessage) ProtoMethods() *piface.Methods {
561 return aberrantProtoMethods
562}
563func (m aberrantMessage) protoUnwrap() interface{} {
564 return m.v.Interface()
565}