[VOL-2831] - Multiple adapter support

This commit introduces the necessary APIs needed to support
multiple adapters.  It uses the number of replicas of a given
adapter and consistent hashing to determine the target of a
given request.

The endpoint_manager.go provides two APIs that will be needed
by components communicating over kafka:
 - GetEndPoint() : to be called before sending a request to kafka
 - IsDeviceOwnedByService(): used during device reconciliation

A change is made to the adapter_proxy.go to use this new mechanism
when sending a request to an adapter from another adapter.

The mocks directory was refactored to get around circular package
dependencies.  This implies any component using these mocks will
need to adjust to the new set of directories when using this
library version.

Change-Id: I470cd62fcfd04edc1fd4508400c9619cadaab25a
diff --git a/vendor/github.com/buraksezer/consistent/consistent.go b/vendor/github.com/buraksezer/consistent/consistent.go
new file mode 100644
index 0000000..a1446d6
--- /dev/null
+++ b/vendor/github.com/buraksezer/consistent/consistent.go
@@ -0,0 +1,362 @@
+// Copyright (c) 2018 Burak Sezer
+// All rights reserved.
+//
+// This code is licensed under the MIT License.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files(the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions :
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+// THE SOFTWARE.
+
+// Package consistent provides a consistent hashing function with bounded loads.
+// For more information about the underlying algorithm, please take a look at
+// https://research.googleblog.com/2017/04/consistent-hashing-with-bounded-loads.html
+//
+// Example Use:
+// 	cfg := consistent.Config{
+// 		PartitionCount:    71,
+// 		ReplicationFactor: 20,
+// 		Load:              1.25,
+// 		Hasher:            hasher{},
+//	}
+//
+//      // Create a new consistent object
+//      // You may call this with a list of members
+//      // instead of adding them one by one.
+//	c := consistent.New(members, cfg)
+//
+//      // myMember struct just needs to implement a String method.
+//      // New/Add/Remove distributes partitions among members using the algorithm
+//      // defined on Google Research Blog.
+//	c.Add(myMember)
+//
+//	key := []byte("my-key")
+//      // LocateKey hashes the key and calculates partition ID with
+//      // this modulo operation: MOD(hash result, partition count)
+//      // The owner of the partition is already calculated by New/Add/Remove.
+//      // LocateKey just returns the member which's responsible for the key.
+//	member := c.LocateKey(key)
+//
+package consistent
+
+import (
+	"encoding/binary"
+	"errors"
+	"fmt"
+	"math"
+	"sort"
+	"sync"
+)
+
+var (
+	//ErrInsufficientMemberCount represents an error which means there are not enough members to complete the task.
+	ErrInsufficientMemberCount = errors.New("insufficient member count")
+
+	// ErrMemberNotFound represents an error which means requested member could not be found in consistent hash ring.
+	ErrMemberNotFound = errors.New("member could not be found in ring")
+)
+
+// Hasher is responsible for generating unsigned, 64 bit hash of provided byte slice.
+// Hasher should minimize collisions (generating same hash for different byte slice)
+// and while performance is also important fast functions are preferable (i.e.
+// you can use FarmHash family).
+type Hasher interface {
+	Sum64([]byte) uint64
+}
+
+// Member interface represents a member in consistent hash ring.
+type Member interface {
+	String() string
+}
+
+// Config represents a structure to control consistent package.
+type Config struct {
+	// Hasher is responsible for generating unsigned, 64 bit hash of provided byte slice.
+	Hasher Hasher
+
+	// Keys are distributed among partitions. Prime numbers are good to
+	// distribute keys uniformly. Select a big PartitionCount if you have
+	// too many keys.
+	PartitionCount int
+
+	// Members are replicated on consistent hash ring. This number means that a member
+	// how many times replicated on the ring.
+	ReplicationFactor int
+
+	// Load is used to calculate average load. See the code, the paper and Google's blog post to learn about it.
+	Load float64
+}
+
+// Consistent holds the information about the members of the consistent hash circle.
+type Consistent struct {
+	mu sync.RWMutex
+
+	config         Config
+	hasher         Hasher
+	sortedSet      []uint64
+	partitionCount uint64
+	loads          map[string]float64
+	members        map[string]*Member
+	partitions     map[int]*Member
+	ring           map[uint64]*Member
+}
+
+// New creates and returns a new Consistent object.
+func New(members []Member, config Config) *Consistent {
+	c := &Consistent{
+		config:         config,
+		members:        make(map[string]*Member),
+		partitionCount: uint64(config.PartitionCount),
+		ring:           make(map[uint64]*Member),
+	}
+	if config.Hasher == nil {
+		panic("Hasher cannot be nil")
+	}
+	// TODO: Check configuration here
+	c.hasher = config.Hasher
+	for _, member := range members {
+		c.add(member)
+	}
+	if members != nil {
+		c.distributePartitions()
+	}
+	return c
+}
+
+// GetMembers returns a thread-safe copy of members.
+func (c *Consistent) GetMembers() []Member {
+	c.mu.RLock()
+	defer c.mu.RUnlock()
+
+	// Create a thread-safe copy of member list.
+	members := make([]Member, 0, len(c.members))
+	for _, member := range c.members {
+		members = append(members, *member)
+	}
+	return members
+}
+
+// AverageLoad exposes the current average load.
+func (c *Consistent) AverageLoad() float64 {
+	avgLoad := float64(c.partitionCount/uint64(len(c.members))) * c.config.Load
+	return math.Ceil(avgLoad)
+}
+
+func (c *Consistent) distributeWithLoad(partID, idx int, partitions map[int]*Member, loads map[string]float64) {
+	avgLoad := c.AverageLoad()
+	var count int
+	for {
+		count++
+		if count >= len(c.sortedSet) {
+			// User needs to decrease partition count, increase member count or increase load factor.
+			panic("not enough room to distribute partitions")
+		}
+		i := c.sortedSet[idx]
+		member := *c.ring[i]
+		load := loads[member.String()]
+		if load+1 <= avgLoad {
+			partitions[partID] = &member
+			loads[member.String()]++
+			return
+		}
+		idx++
+		if idx >= len(c.sortedSet) {
+			idx = 0
+		}
+	}
+}
+
+func (c *Consistent) distributePartitions() {
+	loads := make(map[string]float64)
+	partitions := make(map[int]*Member)
+
+	bs := make([]byte, 8)
+	for partID := uint64(0); partID < c.partitionCount; partID++ {
+		binary.LittleEndian.PutUint64(bs, partID)
+		key := c.hasher.Sum64(bs)
+		idx := sort.Search(len(c.sortedSet), func(i int) bool {
+			return c.sortedSet[i] >= key
+		})
+		if idx >= len(c.sortedSet) {
+			idx = 0
+		}
+		c.distributeWithLoad(int(partID), idx, partitions, loads)
+	}
+	c.partitions = partitions
+	c.loads = loads
+}
+
+func (c *Consistent) add(member Member) {
+	for i := 0; i < c.config.ReplicationFactor; i++ {
+		key := []byte(fmt.Sprintf("%s%d", member.String(), i))
+		h := c.hasher.Sum64(key)
+		c.ring[h] = &member
+		c.sortedSet = append(c.sortedSet, h)
+	}
+	// sort hashes ascendingly
+	sort.Slice(c.sortedSet, func(i int, j int) bool {
+		return c.sortedSet[i] < c.sortedSet[j]
+	})
+	// Storing member at this map is useful to find backup members of a partition.
+	c.members[member.String()] = &member
+}
+
+// Add adds a new member to the consistent hash circle.
+func (c *Consistent) Add(member Member) {
+	c.mu.Lock()
+	defer c.mu.Unlock()
+
+	if _, ok := c.members[member.String()]; ok {
+		// We already have this member. Quit immediately.
+		return
+	}
+	c.add(member)
+	c.distributePartitions()
+}
+
+func (c *Consistent) delSlice(val uint64) {
+	for i := 0; i < len(c.sortedSet); i++ {
+		if c.sortedSet[i] == val {
+			c.sortedSet = append(c.sortedSet[:i], c.sortedSet[i+1:]...)
+			break
+		}
+	}
+}
+
+// Remove removes a member from the consistent hash circle.
+func (c *Consistent) Remove(name string) {
+	c.mu.Lock()
+	defer c.mu.Unlock()
+
+	if _, ok := c.members[name]; !ok {
+		// There is no member with that name. Quit immediately.
+		return
+	}
+
+	for i := 0; i < c.config.ReplicationFactor; i++ {
+		key := []byte(fmt.Sprintf("%s%d", name, i))
+		h := c.hasher.Sum64(key)
+		delete(c.ring, h)
+		c.delSlice(h)
+	}
+	delete(c.members, name)
+	if len(c.members) == 0 {
+		// consistent hash ring is empty now. Reset the partition table.
+		c.partitions = make(map[int]*Member)
+		return
+	}
+	c.distributePartitions()
+}
+
+// LoadDistribution exposes load distribution of members.
+func (c *Consistent) LoadDistribution() map[string]float64 {
+	c.mu.RLock()
+	defer c.mu.RUnlock()
+
+	// Create a thread-safe copy
+	res := make(map[string]float64)
+	for member, load := range c.loads {
+		res[member] = load
+	}
+	return res
+}
+
+// FindPartitionID returns partition id for given key.
+func (c *Consistent) FindPartitionID(key []byte) int {
+	hkey := c.hasher.Sum64(key)
+	return int(hkey % c.partitionCount)
+}
+
+// GetPartitionOwner returns the owner of the given partition.
+func (c *Consistent) GetPartitionOwner(partID int) Member {
+	c.mu.RLock()
+	defer c.mu.RUnlock()
+
+	member, ok := c.partitions[partID]
+	if !ok {
+		return nil
+	}
+	// Create a thread-safe copy of member and return it.
+	return *member
+}
+
+// LocateKey finds a home for given key
+func (c *Consistent) LocateKey(key []byte) Member {
+	partID := c.FindPartitionID(key)
+	return c.GetPartitionOwner(partID)
+}
+
+func (c *Consistent) getClosestN(partID, count int) ([]Member, error) {
+	c.mu.RLock()
+	defer c.mu.RUnlock()
+
+	res := []Member{}
+	if count > len(c.members) {
+		return res, ErrInsufficientMemberCount
+	}
+
+	var ownerKey uint64
+	owner := c.GetPartitionOwner(partID)
+	// Hash and sort all the names.
+	keys := []uint64{}
+	kmems := make(map[uint64]*Member)
+	for name, member := range c.members {
+		key := c.hasher.Sum64([]byte(name))
+		if name == owner.String() {
+			ownerKey = key
+		}
+		keys = append(keys, key)
+		kmems[key] = member
+	}
+	sort.Slice(keys, func(i, j int) bool {
+		return keys[i] < keys[j]
+	})
+
+	// Find the key owner
+	idx := 0
+	for idx < len(keys) {
+		if keys[idx] == ownerKey {
+			key := keys[idx]
+			res = append(res, *kmems[key])
+			break
+		}
+		idx++
+	}
+
+	// Find the closest(replica owners) members.
+	for len(res) < count {
+		idx++
+		if idx >= len(keys) {
+			idx = 0
+		}
+		key := keys[idx]
+		res = append(res, *kmems[key])
+	}
+	return res, nil
+}
+
+// GetClosestN returns the closest N member to a key in the hash ring.
+// This may be useful to find members for replication.
+func (c *Consistent) GetClosestN(key []byte, count int) ([]Member, error) {
+	partID := c.FindPartitionID(key)
+	return c.getClosestN(partID, count)
+}
+
+// GetClosestNForPartition returns the closest N member for given partition.
+// This may be useful to find members for replication.
+func (c *Consistent) GetClosestNForPartition(partID, count int) ([]Member, error) {
+	return c.getClosestN(partID, count)
+}