blob: 96ae54993484175190f3bdf6f7c51ce6bc34a7c8 [file] [log] [blame]
Scott Baker2c1c4822019-10-16 11:02:41 -07001// Package common provides encryption methods common across encryption types
2package common
3
4import (
5 "bytes"
6 "crypto/hmac"
7 "encoding/binary"
8 "encoding/hex"
9 "errors"
10 "fmt"
11
12 "gopkg.in/jcmturner/gokrb5.v7/crypto/etype"
13)
14
15// ZeroPad pads bytes with zeros to nearest multiple of message size m.
16func ZeroPad(b []byte, m int) ([]byte, error) {
17 if m <= 0 {
18 return nil, errors.New("Invalid message block size when padding")
19 }
20 if b == nil || len(b) == 0 {
21 return nil, errors.New("Data not valid to pad: Zero size")
22 }
23 if l := len(b) % m; l != 0 {
24 n := m - l
25 z := make([]byte, n)
26 b = append(b, z...)
27 }
28 return b, nil
29}
30
31// PKCS7Pad pads bytes according to RFC 2315 to nearest multiple of message size m.
32func PKCS7Pad(b []byte, m int) ([]byte, error) {
33 if m <= 0 {
34 return nil, errors.New("Invalid message block size when padding")
35 }
36 if b == nil || len(b) == 0 {
37 return nil, errors.New("Data not valid to pad: Zero size")
38 }
39 n := m - (len(b) % m)
40 pb := make([]byte, len(b)+n)
41 copy(pb, b)
42 copy(pb[len(b):], bytes.Repeat([]byte{byte(n)}, n))
43 return pb, nil
44}
45
46// PKCS7Unpad removes RFC 2315 padding from byes where message size is m.
47func PKCS7Unpad(b []byte, m int) ([]byte, error) {
48 if m <= 0 {
49 return nil, errors.New("invalid message block size when unpadding")
50 }
51 if b == nil || len(b) == 0 {
52 return nil, errors.New("padded data not valid: Zero size")
53 }
54 if len(b)%m != 0 {
55 return nil, errors.New("padded data not valid: Not multiple of message block size")
56 }
57 c := b[len(b)-1]
58 n := int(c)
59 if n == 0 || n > len(b) {
60 return nil, errors.New("padded data not valid: Data may not have been padded")
61 }
62 for i := 0; i < n; i++ {
63 if b[len(b)-n+i] != c {
64 return nil, errors.New("padded data not valid")
65 }
66 }
67 return b[:len(b)-n], nil
68}
69
70// GetHash generates the keyed hash value according to the etype's hash function.
71func GetHash(pt, key []byte, usage []byte, etype etype.EType) ([]byte, error) {
72 k, err := etype.DeriveKey(key, usage)
73 if err != nil {
74 return nil, fmt.Errorf("unable to derive key for checksum: %v", err)
75 }
76 mac := hmac.New(etype.GetHashFunc(), k)
77 p := make([]byte, len(pt))
78 copy(p, pt)
79 mac.Write(p)
80 return mac.Sum(nil)[:etype.GetHMACBitLength()/8], nil
81}
82
83// GetChecksumHash returns a keyed checksum hash of the bytes provided.
84func GetChecksumHash(b, key []byte, usage uint32, etype etype.EType) ([]byte, error) {
85 return GetHash(b, key, GetUsageKc(usage), etype)
86}
87
88// GetIntegrityHash returns a keyed integrity hash of the bytes provided.
89func GetIntegrityHash(b, key []byte, usage uint32, etype etype.EType) ([]byte, error) {
90 return GetHash(b, key, GetUsageKi(usage), etype)
91}
92
93// VerifyChecksum compares the checksum of the msg bytes is the same as the checksum provided.
94func VerifyChecksum(key, chksum, msg []byte, usage uint32, etype etype.EType) bool {
95 //The ciphertext output is the concatenation of the output of the basic
96 //encryption function E and a (possibly truncated) HMAC using the
97 //specified hash function H, both applied to the plaintext with a
98 //random confounder prefix and sufficient padding to bring it to a
99 //multiple of the message block size. When the HMAC is computed, the
100 //key is used in the protocol key form.
101 expectedMAC, _ := GetChecksumHash(msg, key, usage, etype)
102 return hmac.Equal(chksum, expectedMAC)
103}
104
105// GetUsageKc returns the checksum key usage value for the usage number un.
106//
107// RFC 3961: The "well-known constant" used for the DK function is the key usage number, expressed as four octets in big-endian order, followed by one octet indicated below.
108//
109// Kc = DK(base-key, usage | 0x99);
110func GetUsageKc(un uint32) []byte {
111 return getUsage(un, 0x99)
112}
113
114// GetUsageKe returns the encryption key usage value for the usage number un
115//
116// RFC 3961: The "well-known constant" used for the DK function is the key usage number, expressed as four octets in big-endian order, followed by one octet indicated below.
117//
118// Ke = DK(base-key, usage | 0xAA);
119func GetUsageKe(un uint32) []byte {
120 return getUsage(un, 0xAA)
121}
122
123// GetUsageKi returns the integrity key usage value for the usage number un
124//
125// RFC 3961: The "well-known constant" used for the DK function is the key usage number, expressed as four octets in big-endian order, followed by one octet indicated below.
126//
127// Ki = DK(base-key, usage | 0x55);
128func GetUsageKi(un uint32) []byte {
129 return getUsage(un, 0x55)
130}
131
132func getUsage(un uint32, o byte) []byte {
133 var buf bytes.Buffer
134 binary.Write(&buf, binary.BigEndian, un)
135 return append(buf.Bytes(), o)
136}
137
138// IterationsToS2Kparams converts the number of iterations as an integer to a string representation.
139func IterationsToS2Kparams(i uint32) string {
140 b := make([]byte, 4, 4)
141 binary.BigEndian.PutUint32(b, i)
142 return hex.EncodeToString(b)
143}