khenaidoo | 2672188 | 2021-08-11 17:42:52 -0400 | [diff] [blame] | 1 | // Copyright 2020 The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | // +build !appengine |
| 6 | // +build gc |
| 7 | // +build !noasm |
| 8 | |
| 9 | #include "textflag.h" |
| 10 | |
| 11 | // The asm code generally follows the pure Go code in encode_other.go, except |
| 12 | // where marked with a "!!!". |
| 13 | |
| 14 | // ---------------------------------------------------------------------------- |
| 15 | |
| 16 | // func emitLiteral(dst, lit []byte) int |
| 17 | // |
| 18 | // All local variables fit into registers. The register allocation: |
| 19 | // - R3 len(lit) |
| 20 | // - R4 n |
| 21 | // - R6 return value |
| 22 | // - R8 &dst[i] |
| 23 | // - R10 &lit[0] |
| 24 | // |
| 25 | // The 32 bytes of stack space is to call runtime·memmove. |
| 26 | // |
| 27 | // The unusual register allocation of local variables, such as R10 for the |
| 28 | // source pointer, matches the allocation used at the call site in encodeBlock, |
| 29 | // which makes it easier to manually inline this function. |
| 30 | TEXT ·emitLiteral(SB), NOSPLIT, $32-56 |
| 31 | MOVD dst_base+0(FP), R8 |
| 32 | MOVD lit_base+24(FP), R10 |
| 33 | MOVD lit_len+32(FP), R3 |
| 34 | MOVD R3, R6 |
| 35 | MOVW R3, R4 |
| 36 | SUBW $1, R4, R4 |
| 37 | |
| 38 | CMPW $60, R4 |
| 39 | BLT oneByte |
| 40 | CMPW $256, R4 |
| 41 | BLT twoBytes |
| 42 | |
| 43 | threeBytes: |
| 44 | MOVD $0xf4, R2 |
| 45 | MOVB R2, 0(R8) |
| 46 | MOVW R4, 1(R8) |
| 47 | ADD $3, R8, R8 |
| 48 | ADD $3, R6, R6 |
| 49 | B memmove |
| 50 | |
| 51 | twoBytes: |
| 52 | MOVD $0xf0, R2 |
| 53 | MOVB R2, 0(R8) |
| 54 | MOVB R4, 1(R8) |
| 55 | ADD $2, R8, R8 |
| 56 | ADD $2, R6, R6 |
| 57 | B memmove |
| 58 | |
| 59 | oneByte: |
| 60 | LSLW $2, R4, R4 |
| 61 | MOVB R4, 0(R8) |
| 62 | ADD $1, R8, R8 |
| 63 | ADD $1, R6, R6 |
| 64 | |
| 65 | memmove: |
| 66 | MOVD R6, ret+48(FP) |
| 67 | |
| 68 | // copy(dst[i:], lit) |
| 69 | // |
| 70 | // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push |
| 71 | // R8, R10 and R3 as arguments. |
| 72 | MOVD R8, 8(RSP) |
| 73 | MOVD R10, 16(RSP) |
| 74 | MOVD R3, 24(RSP) |
| 75 | CALL runtime·memmove(SB) |
| 76 | RET |
| 77 | |
| 78 | // ---------------------------------------------------------------------------- |
| 79 | |
| 80 | // func emitCopy(dst []byte, offset, length int) int |
| 81 | // |
| 82 | // All local variables fit into registers. The register allocation: |
| 83 | // - R3 length |
| 84 | // - R7 &dst[0] |
| 85 | // - R8 &dst[i] |
| 86 | // - R11 offset |
| 87 | // |
| 88 | // The unusual register allocation of local variables, such as R11 for the |
| 89 | // offset, matches the allocation used at the call site in encodeBlock, which |
| 90 | // makes it easier to manually inline this function. |
| 91 | TEXT ·emitCopy(SB), NOSPLIT, $0-48 |
| 92 | MOVD dst_base+0(FP), R8 |
| 93 | MOVD R8, R7 |
| 94 | MOVD offset+24(FP), R11 |
| 95 | MOVD length+32(FP), R3 |
| 96 | |
| 97 | loop0: |
| 98 | // for length >= 68 { etc } |
| 99 | CMPW $68, R3 |
| 100 | BLT step1 |
| 101 | |
| 102 | // Emit a length 64 copy, encoded as 3 bytes. |
| 103 | MOVD $0xfe, R2 |
| 104 | MOVB R2, 0(R8) |
| 105 | MOVW R11, 1(R8) |
| 106 | ADD $3, R8, R8 |
| 107 | SUB $64, R3, R3 |
| 108 | B loop0 |
| 109 | |
| 110 | step1: |
| 111 | // if length > 64 { etc } |
| 112 | CMP $64, R3 |
| 113 | BLE step2 |
| 114 | |
| 115 | // Emit a length 60 copy, encoded as 3 bytes. |
| 116 | MOVD $0xee, R2 |
| 117 | MOVB R2, 0(R8) |
| 118 | MOVW R11, 1(R8) |
| 119 | ADD $3, R8, R8 |
| 120 | SUB $60, R3, R3 |
| 121 | |
| 122 | step2: |
| 123 | // if length >= 12 || offset >= 2048 { goto step3 } |
| 124 | CMP $12, R3 |
| 125 | BGE step3 |
| 126 | CMPW $2048, R11 |
| 127 | BGE step3 |
| 128 | |
| 129 | // Emit the remaining copy, encoded as 2 bytes. |
| 130 | MOVB R11, 1(R8) |
| 131 | LSRW $3, R11, R11 |
| 132 | AND $0xe0, R11, R11 |
| 133 | SUB $4, R3, R3 |
| 134 | LSLW $2, R3 |
| 135 | AND $0xff, R3, R3 |
| 136 | ORRW R3, R11, R11 |
| 137 | ORRW $1, R11, R11 |
| 138 | MOVB R11, 0(R8) |
| 139 | ADD $2, R8, R8 |
| 140 | |
| 141 | // Return the number of bytes written. |
| 142 | SUB R7, R8, R8 |
| 143 | MOVD R8, ret+40(FP) |
| 144 | RET |
| 145 | |
| 146 | step3: |
| 147 | // Emit the remaining copy, encoded as 3 bytes. |
| 148 | SUB $1, R3, R3 |
| 149 | AND $0xff, R3, R3 |
| 150 | LSLW $2, R3, R3 |
| 151 | ORRW $2, R3, R3 |
| 152 | MOVB R3, 0(R8) |
| 153 | MOVW R11, 1(R8) |
| 154 | ADD $3, R8, R8 |
| 155 | |
| 156 | // Return the number of bytes written. |
| 157 | SUB R7, R8, R8 |
| 158 | MOVD R8, ret+40(FP) |
| 159 | RET |
| 160 | |
| 161 | // ---------------------------------------------------------------------------- |
| 162 | |
| 163 | // func extendMatch(src []byte, i, j int) int |
| 164 | // |
| 165 | // All local variables fit into registers. The register allocation: |
| 166 | // - R6 &src[0] |
| 167 | // - R7 &src[j] |
| 168 | // - R13 &src[len(src) - 8] |
| 169 | // - R14 &src[len(src)] |
| 170 | // - R15 &src[i] |
| 171 | // |
| 172 | // The unusual register allocation of local variables, such as R15 for a source |
| 173 | // pointer, matches the allocation used at the call site in encodeBlock, which |
| 174 | // makes it easier to manually inline this function. |
| 175 | TEXT ·extendMatch(SB), NOSPLIT, $0-48 |
| 176 | MOVD src_base+0(FP), R6 |
| 177 | MOVD src_len+8(FP), R14 |
| 178 | MOVD i+24(FP), R15 |
| 179 | MOVD j+32(FP), R7 |
| 180 | ADD R6, R14, R14 |
| 181 | ADD R6, R15, R15 |
| 182 | ADD R6, R7, R7 |
| 183 | MOVD R14, R13 |
| 184 | SUB $8, R13, R13 |
| 185 | |
| 186 | cmp8: |
| 187 | // As long as we are 8 or more bytes before the end of src, we can load and |
| 188 | // compare 8 bytes at a time. If those 8 bytes are equal, repeat. |
| 189 | CMP R13, R7 |
| 190 | BHI cmp1 |
| 191 | MOVD (R15), R3 |
| 192 | MOVD (R7), R4 |
| 193 | CMP R4, R3 |
| 194 | BNE bsf |
| 195 | ADD $8, R15, R15 |
| 196 | ADD $8, R7, R7 |
| 197 | B cmp8 |
| 198 | |
| 199 | bsf: |
| 200 | // If those 8 bytes were not equal, XOR the two 8 byte values, and return |
| 201 | // the index of the first byte that differs. |
| 202 | // RBIT reverses the bit order, then CLZ counts the leading zeros, the |
| 203 | // combination of which finds the least significant bit which is set. |
| 204 | // The arm64 architecture is little-endian, and the shift by 3 converts |
| 205 | // a bit index to a byte index. |
| 206 | EOR R3, R4, R4 |
| 207 | RBIT R4, R4 |
| 208 | CLZ R4, R4 |
| 209 | ADD R4>>3, R7, R7 |
| 210 | |
| 211 | // Convert from &src[ret] to ret. |
| 212 | SUB R6, R7, R7 |
| 213 | MOVD R7, ret+40(FP) |
| 214 | RET |
| 215 | |
| 216 | cmp1: |
| 217 | // In src's tail, compare 1 byte at a time. |
| 218 | CMP R7, R14 |
| 219 | BLS extendMatchEnd |
| 220 | MOVB (R15), R3 |
| 221 | MOVB (R7), R4 |
| 222 | CMP R4, R3 |
| 223 | BNE extendMatchEnd |
| 224 | ADD $1, R15, R15 |
| 225 | ADD $1, R7, R7 |
| 226 | B cmp1 |
| 227 | |
| 228 | extendMatchEnd: |
| 229 | // Convert from &src[ret] to ret. |
| 230 | SUB R6, R7, R7 |
| 231 | MOVD R7, ret+40(FP) |
| 232 | RET |
| 233 | |
| 234 | // ---------------------------------------------------------------------------- |
| 235 | |
| 236 | // func encodeBlock(dst, src []byte) (d int) |
| 237 | // |
| 238 | // All local variables fit into registers, other than "var table". The register |
| 239 | // allocation: |
| 240 | // - R3 . . |
| 241 | // - R4 . . |
| 242 | // - R5 64 shift |
| 243 | // - R6 72 &src[0], tableSize |
| 244 | // - R7 80 &src[s] |
| 245 | // - R8 88 &dst[d] |
| 246 | // - R9 96 sLimit |
| 247 | // - R10 . &src[nextEmit] |
| 248 | // - R11 104 prevHash, currHash, nextHash, offset |
| 249 | // - R12 112 &src[base], skip |
| 250 | // - R13 . &src[nextS], &src[len(src) - 8] |
| 251 | // - R14 . len(src), bytesBetweenHashLookups, &src[len(src)], x |
| 252 | // - R15 120 candidate |
| 253 | // - R16 . hash constant, 0x1e35a7bd |
| 254 | // - R17 . &table |
| 255 | // - . 128 table |
| 256 | // |
| 257 | // The second column (64, 72, etc) is the stack offset to spill the registers |
| 258 | // when calling other functions. We could pack this slightly tighter, but it's |
| 259 | // simpler to have a dedicated spill map independent of the function called. |
| 260 | // |
| 261 | // "var table [maxTableSize]uint16" takes up 32768 bytes of stack space. An |
| 262 | // extra 64 bytes, to call other functions, and an extra 64 bytes, to spill |
| 263 | // local variables (registers) during calls gives 32768 + 64 + 64 = 32896. |
| 264 | TEXT ·encodeBlock(SB), 0, $32896-56 |
| 265 | MOVD dst_base+0(FP), R8 |
| 266 | MOVD src_base+24(FP), R7 |
| 267 | MOVD src_len+32(FP), R14 |
| 268 | |
| 269 | // shift, tableSize := uint32(32-8), 1<<8 |
| 270 | MOVD $24, R5 |
| 271 | MOVD $256, R6 |
| 272 | MOVW $0xa7bd, R16 |
| 273 | MOVKW $(0x1e35<<16), R16 |
| 274 | |
| 275 | calcShift: |
| 276 | // for ; tableSize < maxTableSize && tableSize < len(src); tableSize *= 2 { |
| 277 | // shift-- |
| 278 | // } |
| 279 | MOVD $16384, R2 |
| 280 | CMP R2, R6 |
| 281 | BGE varTable |
| 282 | CMP R14, R6 |
| 283 | BGE varTable |
| 284 | SUB $1, R5, R5 |
| 285 | LSL $1, R6, R6 |
| 286 | B calcShift |
| 287 | |
| 288 | varTable: |
| 289 | // var table [maxTableSize]uint16 |
| 290 | // |
| 291 | // In the asm code, unlike the Go code, we can zero-initialize only the |
| 292 | // first tableSize elements. Each uint16 element is 2 bytes and each |
| 293 | // iterations writes 64 bytes, so we can do only tableSize/32 writes |
| 294 | // instead of the 2048 writes that would zero-initialize all of table's |
| 295 | // 32768 bytes. This clear could overrun the first tableSize elements, but |
| 296 | // it won't overrun the allocated stack size. |
| 297 | ADD $128, RSP, R17 |
| 298 | MOVD R17, R4 |
| 299 | |
| 300 | // !!! R6 = &src[tableSize] |
| 301 | ADD R6<<1, R17, R6 |
| 302 | |
| 303 | memclr: |
| 304 | STP.P (ZR, ZR), 64(R4) |
| 305 | STP (ZR, ZR), -48(R4) |
| 306 | STP (ZR, ZR), -32(R4) |
| 307 | STP (ZR, ZR), -16(R4) |
| 308 | CMP R4, R6 |
| 309 | BHI memclr |
| 310 | |
| 311 | // !!! R6 = &src[0] |
| 312 | MOVD R7, R6 |
| 313 | |
| 314 | // sLimit := len(src) - inputMargin |
| 315 | MOVD R14, R9 |
| 316 | SUB $15, R9, R9 |
| 317 | |
| 318 | // !!! Pre-emptively spill R5, R6 and R9 to the stack. Their values don't |
| 319 | // change for the rest of the function. |
| 320 | MOVD R5, 64(RSP) |
| 321 | MOVD R6, 72(RSP) |
| 322 | MOVD R9, 96(RSP) |
| 323 | |
| 324 | // nextEmit := 0 |
| 325 | MOVD R6, R10 |
| 326 | |
| 327 | // s := 1 |
| 328 | ADD $1, R7, R7 |
| 329 | |
| 330 | // nextHash := hash(load32(src, s), shift) |
| 331 | MOVW 0(R7), R11 |
| 332 | MULW R16, R11, R11 |
| 333 | LSRW R5, R11, R11 |
| 334 | |
| 335 | outer: |
| 336 | // for { etc } |
| 337 | |
| 338 | // skip := 32 |
| 339 | MOVD $32, R12 |
| 340 | |
| 341 | // nextS := s |
| 342 | MOVD R7, R13 |
| 343 | |
| 344 | // candidate := 0 |
| 345 | MOVD $0, R15 |
| 346 | |
| 347 | inner0: |
| 348 | // for { etc } |
| 349 | |
| 350 | // s := nextS |
| 351 | MOVD R13, R7 |
| 352 | |
| 353 | // bytesBetweenHashLookups := skip >> 5 |
| 354 | MOVD R12, R14 |
| 355 | LSR $5, R14, R14 |
| 356 | |
| 357 | // nextS = s + bytesBetweenHashLookups |
| 358 | ADD R14, R13, R13 |
| 359 | |
| 360 | // skip += bytesBetweenHashLookups |
| 361 | ADD R14, R12, R12 |
| 362 | |
| 363 | // if nextS > sLimit { goto emitRemainder } |
| 364 | MOVD R13, R3 |
| 365 | SUB R6, R3, R3 |
| 366 | CMP R9, R3 |
| 367 | BHI emitRemainder |
| 368 | |
| 369 | // candidate = int(table[nextHash]) |
| 370 | MOVHU 0(R17)(R11<<1), R15 |
| 371 | |
| 372 | // table[nextHash] = uint16(s) |
| 373 | MOVD R7, R3 |
| 374 | SUB R6, R3, R3 |
| 375 | |
| 376 | MOVH R3, 0(R17)(R11<<1) |
| 377 | |
| 378 | // nextHash = hash(load32(src, nextS), shift) |
| 379 | MOVW 0(R13), R11 |
| 380 | MULW R16, R11 |
| 381 | LSRW R5, R11, R11 |
| 382 | |
| 383 | // if load32(src, s) != load32(src, candidate) { continue } break |
| 384 | MOVW 0(R7), R3 |
| 385 | MOVW (R6)(R15*1), R4 |
| 386 | CMPW R4, R3 |
| 387 | BNE inner0 |
| 388 | |
| 389 | fourByteMatch: |
| 390 | // As per the encode_other.go code: |
| 391 | // |
| 392 | // A 4-byte match has been found. We'll later see etc. |
| 393 | |
| 394 | // !!! Jump to a fast path for short (<= 16 byte) literals. See the comment |
| 395 | // on inputMargin in encode.go. |
| 396 | MOVD R7, R3 |
| 397 | SUB R10, R3, R3 |
| 398 | CMP $16, R3 |
| 399 | BLE emitLiteralFastPath |
| 400 | |
| 401 | // ---------------------------------------- |
| 402 | // Begin inline of the emitLiteral call. |
| 403 | // |
| 404 | // d += emitLiteral(dst[d:], src[nextEmit:s]) |
| 405 | |
| 406 | MOVW R3, R4 |
| 407 | SUBW $1, R4, R4 |
| 408 | |
| 409 | MOVW $60, R2 |
| 410 | CMPW R2, R4 |
| 411 | BLT inlineEmitLiteralOneByte |
| 412 | MOVW $256, R2 |
| 413 | CMPW R2, R4 |
| 414 | BLT inlineEmitLiteralTwoBytes |
| 415 | |
| 416 | inlineEmitLiteralThreeBytes: |
| 417 | MOVD $0xf4, R1 |
| 418 | MOVB R1, 0(R8) |
| 419 | MOVW R4, 1(R8) |
| 420 | ADD $3, R8, R8 |
| 421 | B inlineEmitLiteralMemmove |
| 422 | |
| 423 | inlineEmitLiteralTwoBytes: |
| 424 | MOVD $0xf0, R1 |
| 425 | MOVB R1, 0(R8) |
| 426 | MOVB R4, 1(R8) |
| 427 | ADD $2, R8, R8 |
| 428 | B inlineEmitLiteralMemmove |
| 429 | |
| 430 | inlineEmitLiteralOneByte: |
| 431 | LSLW $2, R4, R4 |
| 432 | MOVB R4, 0(R8) |
| 433 | ADD $1, R8, R8 |
| 434 | |
| 435 | inlineEmitLiteralMemmove: |
| 436 | // Spill local variables (registers) onto the stack; call; unspill. |
| 437 | // |
| 438 | // copy(dst[i:], lit) |
| 439 | // |
| 440 | // This means calling runtime·memmove(&dst[i], &lit[0], len(lit)), so we push |
| 441 | // R8, R10 and R3 as arguments. |
| 442 | MOVD R8, 8(RSP) |
| 443 | MOVD R10, 16(RSP) |
| 444 | MOVD R3, 24(RSP) |
| 445 | |
| 446 | // Finish the "d +=" part of "d += emitLiteral(etc)". |
| 447 | ADD R3, R8, R8 |
| 448 | MOVD R7, 80(RSP) |
| 449 | MOVD R8, 88(RSP) |
| 450 | MOVD R15, 120(RSP) |
| 451 | CALL runtime·memmove(SB) |
| 452 | MOVD 64(RSP), R5 |
| 453 | MOVD 72(RSP), R6 |
| 454 | MOVD 80(RSP), R7 |
| 455 | MOVD 88(RSP), R8 |
| 456 | MOVD 96(RSP), R9 |
| 457 | MOVD 120(RSP), R15 |
| 458 | ADD $128, RSP, R17 |
| 459 | MOVW $0xa7bd, R16 |
| 460 | MOVKW $(0x1e35<<16), R16 |
| 461 | B inner1 |
| 462 | |
| 463 | inlineEmitLiteralEnd: |
| 464 | // End inline of the emitLiteral call. |
| 465 | // ---------------------------------------- |
| 466 | |
| 467 | emitLiteralFastPath: |
| 468 | // !!! Emit the 1-byte encoding "uint8(len(lit)-1)<<2". |
| 469 | MOVB R3, R4 |
| 470 | SUBW $1, R4, R4 |
| 471 | AND $0xff, R4, R4 |
| 472 | LSLW $2, R4, R4 |
| 473 | MOVB R4, (R8) |
| 474 | ADD $1, R8, R8 |
| 475 | |
| 476 | // !!! Implement the copy from lit to dst as a 16-byte load and store. |
| 477 | // (Encode's documentation says that dst and src must not overlap.) |
| 478 | // |
| 479 | // This always copies 16 bytes, instead of only len(lit) bytes, but that's |
| 480 | // OK. Subsequent iterations will fix up the overrun. |
| 481 | // |
| 482 | // Note that on arm64, it is legal and cheap to issue unaligned 8-byte or |
| 483 | // 16-byte loads and stores. This technique probably wouldn't be as |
| 484 | // effective on architectures that are fussier about alignment. |
| 485 | LDP 0(R10), (R0, R1) |
| 486 | STP (R0, R1), 0(R8) |
| 487 | ADD R3, R8, R8 |
| 488 | |
| 489 | inner1: |
| 490 | // for { etc } |
| 491 | |
| 492 | // base := s |
| 493 | MOVD R7, R12 |
| 494 | |
| 495 | // !!! offset := base - candidate |
| 496 | MOVD R12, R11 |
| 497 | SUB R15, R11, R11 |
| 498 | SUB R6, R11, R11 |
| 499 | |
| 500 | // ---------------------------------------- |
| 501 | // Begin inline of the extendMatch call. |
| 502 | // |
| 503 | // s = extendMatch(src, candidate+4, s+4) |
| 504 | |
| 505 | // !!! R14 = &src[len(src)] |
| 506 | MOVD src_len+32(FP), R14 |
| 507 | ADD R6, R14, R14 |
| 508 | |
| 509 | // !!! R13 = &src[len(src) - 8] |
| 510 | MOVD R14, R13 |
| 511 | SUB $8, R13, R13 |
| 512 | |
| 513 | // !!! R15 = &src[candidate + 4] |
| 514 | ADD $4, R15, R15 |
| 515 | ADD R6, R15, R15 |
| 516 | |
| 517 | // !!! s += 4 |
| 518 | ADD $4, R7, R7 |
| 519 | |
| 520 | inlineExtendMatchCmp8: |
| 521 | // As long as we are 8 or more bytes before the end of src, we can load and |
| 522 | // compare 8 bytes at a time. If those 8 bytes are equal, repeat. |
| 523 | CMP R13, R7 |
| 524 | BHI inlineExtendMatchCmp1 |
| 525 | MOVD (R15), R3 |
| 526 | MOVD (R7), R4 |
| 527 | CMP R4, R3 |
| 528 | BNE inlineExtendMatchBSF |
| 529 | ADD $8, R15, R15 |
| 530 | ADD $8, R7, R7 |
| 531 | B inlineExtendMatchCmp8 |
| 532 | |
| 533 | inlineExtendMatchBSF: |
| 534 | // If those 8 bytes were not equal, XOR the two 8 byte values, and return |
| 535 | // the index of the first byte that differs. |
| 536 | // RBIT reverses the bit order, then CLZ counts the leading zeros, the |
| 537 | // combination of which finds the least significant bit which is set. |
| 538 | // The arm64 architecture is little-endian, and the shift by 3 converts |
| 539 | // a bit index to a byte index. |
| 540 | EOR R3, R4, R4 |
| 541 | RBIT R4, R4 |
| 542 | CLZ R4, R4 |
| 543 | ADD R4>>3, R7, R7 |
| 544 | B inlineExtendMatchEnd |
| 545 | |
| 546 | inlineExtendMatchCmp1: |
| 547 | // In src's tail, compare 1 byte at a time. |
| 548 | CMP R7, R14 |
| 549 | BLS inlineExtendMatchEnd |
| 550 | MOVB (R15), R3 |
| 551 | MOVB (R7), R4 |
| 552 | CMP R4, R3 |
| 553 | BNE inlineExtendMatchEnd |
| 554 | ADD $1, R15, R15 |
| 555 | ADD $1, R7, R7 |
| 556 | B inlineExtendMatchCmp1 |
| 557 | |
| 558 | inlineExtendMatchEnd: |
| 559 | // End inline of the extendMatch call. |
| 560 | // ---------------------------------------- |
| 561 | |
| 562 | // ---------------------------------------- |
| 563 | // Begin inline of the emitCopy call. |
| 564 | // |
| 565 | // d += emitCopy(dst[d:], base-candidate, s-base) |
| 566 | |
| 567 | // !!! length := s - base |
| 568 | MOVD R7, R3 |
| 569 | SUB R12, R3, R3 |
| 570 | |
| 571 | inlineEmitCopyLoop0: |
| 572 | // for length >= 68 { etc } |
| 573 | MOVW $68, R2 |
| 574 | CMPW R2, R3 |
| 575 | BLT inlineEmitCopyStep1 |
| 576 | |
| 577 | // Emit a length 64 copy, encoded as 3 bytes. |
| 578 | MOVD $0xfe, R1 |
| 579 | MOVB R1, 0(R8) |
| 580 | MOVW R11, 1(R8) |
| 581 | ADD $3, R8, R8 |
| 582 | SUBW $64, R3, R3 |
| 583 | B inlineEmitCopyLoop0 |
| 584 | |
| 585 | inlineEmitCopyStep1: |
| 586 | // if length > 64 { etc } |
| 587 | MOVW $64, R2 |
| 588 | CMPW R2, R3 |
| 589 | BLE inlineEmitCopyStep2 |
| 590 | |
| 591 | // Emit a length 60 copy, encoded as 3 bytes. |
| 592 | MOVD $0xee, R1 |
| 593 | MOVB R1, 0(R8) |
| 594 | MOVW R11, 1(R8) |
| 595 | ADD $3, R8, R8 |
| 596 | SUBW $60, R3, R3 |
| 597 | |
| 598 | inlineEmitCopyStep2: |
| 599 | // if length >= 12 || offset >= 2048 { goto inlineEmitCopyStep3 } |
| 600 | MOVW $12, R2 |
| 601 | CMPW R2, R3 |
| 602 | BGE inlineEmitCopyStep3 |
| 603 | MOVW $2048, R2 |
| 604 | CMPW R2, R11 |
| 605 | BGE inlineEmitCopyStep3 |
| 606 | |
| 607 | // Emit the remaining copy, encoded as 2 bytes. |
| 608 | MOVB R11, 1(R8) |
| 609 | LSRW $8, R11, R11 |
| 610 | LSLW $5, R11, R11 |
| 611 | SUBW $4, R3, R3 |
| 612 | AND $0xff, R3, R3 |
| 613 | LSLW $2, R3, R3 |
| 614 | ORRW R3, R11, R11 |
| 615 | ORRW $1, R11, R11 |
| 616 | MOVB R11, 0(R8) |
| 617 | ADD $2, R8, R8 |
| 618 | B inlineEmitCopyEnd |
| 619 | |
| 620 | inlineEmitCopyStep3: |
| 621 | // Emit the remaining copy, encoded as 3 bytes. |
| 622 | SUBW $1, R3, R3 |
| 623 | LSLW $2, R3, R3 |
| 624 | ORRW $2, R3, R3 |
| 625 | MOVB R3, 0(R8) |
| 626 | MOVW R11, 1(R8) |
| 627 | ADD $3, R8, R8 |
| 628 | |
| 629 | inlineEmitCopyEnd: |
| 630 | // End inline of the emitCopy call. |
| 631 | // ---------------------------------------- |
| 632 | |
| 633 | // nextEmit = s |
| 634 | MOVD R7, R10 |
| 635 | |
| 636 | // if s >= sLimit { goto emitRemainder } |
| 637 | MOVD R7, R3 |
| 638 | SUB R6, R3, R3 |
| 639 | CMP R3, R9 |
| 640 | BLS emitRemainder |
| 641 | |
| 642 | // As per the encode_other.go code: |
| 643 | // |
| 644 | // We could immediately etc. |
| 645 | |
| 646 | // x := load64(src, s-1) |
| 647 | MOVD -1(R7), R14 |
| 648 | |
| 649 | // prevHash := hash(uint32(x>>0), shift) |
| 650 | MOVW R14, R11 |
| 651 | MULW R16, R11, R11 |
| 652 | LSRW R5, R11, R11 |
| 653 | |
| 654 | // table[prevHash] = uint16(s-1) |
| 655 | MOVD R7, R3 |
| 656 | SUB R6, R3, R3 |
| 657 | SUB $1, R3, R3 |
| 658 | |
| 659 | MOVHU R3, 0(R17)(R11<<1) |
| 660 | |
| 661 | // currHash := hash(uint32(x>>8), shift) |
| 662 | LSR $8, R14, R14 |
| 663 | MOVW R14, R11 |
| 664 | MULW R16, R11, R11 |
| 665 | LSRW R5, R11, R11 |
| 666 | |
| 667 | // candidate = int(table[currHash]) |
| 668 | MOVHU 0(R17)(R11<<1), R15 |
| 669 | |
| 670 | // table[currHash] = uint16(s) |
| 671 | ADD $1, R3, R3 |
| 672 | MOVHU R3, 0(R17)(R11<<1) |
| 673 | |
| 674 | // if uint32(x>>8) == load32(src, candidate) { continue } |
| 675 | MOVW (R6)(R15*1), R4 |
| 676 | CMPW R4, R14 |
| 677 | BEQ inner1 |
| 678 | |
| 679 | // nextHash = hash(uint32(x>>16), shift) |
| 680 | LSR $8, R14, R14 |
| 681 | MOVW R14, R11 |
| 682 | MULW R16, R11, R11 |
| 683 | LSRW R5, R11, R11 |
| 684 | |
| 685 | // s++ |
| 686 | ADD $1, R7, R7 |
| 687 | |
| 688 | // break out of the inner1 for loop, i.e. continue the outer loop. |
| 689 | B outer |
| 690 | |
| 691 | emitRemainder: |
| 692 | // if nextEmit < len(src) { etc } |
| 693 | MOVD src_len+32(FP), R3 |
| 694 | ADD R6, R3, R3 |
| 695 | CMP R3, R10 |
| 696 | BEQ encodeBlockEnd |
| 697 | |
| 698 | // d += emitLiteral(dst[d:], src[nextEmit:]) |
| 699 | // |
| 700 | // Push args. |
| 701 | MOVD R8, 8(RSP) |
| 702 | MOVD $0, 16(RSP) // Unnecessary, as the callee ignores it, but conservative. |
| 703 | MOVD $0, 24(RSP) // Unnecessary, as the callee ignores it, but conservative. |
| 704 | MOVD R10, 32(RSP) |
| 705 | SUB R10, R3, R3 |
| 706 | MOVD R3, 40(RSP) |
| 707 | MOVD R3, 48(RSP) // Unnecessary, as the callee ignores it, but conservative. |
| 708 | |
| 709 | // Spill local variables (registers) onto the stack; call; unspill. |
| 710 | MOVD R8, 88(RSP) |
| 711 | CALL ·emitLiteral(SB) |
| 712 | MOVD 88(RSP), R8 |
| 713 | |
| 714 | // Finish the "d +=" part of "d += emitLiteral(etc)". |
| 715 | MOVD 56(RSP), R1 |
| 716 | ADD R1, R8, R8 |
| 717 | |
| 718 | encodeBlockEnd: |
| 719 | MOVD dst_base+0(FP), R3 |
| 720 | SUB R3, R8, R8 |
| 721 | MOVD R8, d+48(FP) |
| 722 | RET |