blob: b83acdbc6d3abaaad03b30cd38454b41a5a5edd3 [file] [log] [blame]
khenaidoo59ce9dd2019-11-11 13:05:32 -05001// Copyright 2014 Google Inc.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// Package btree implements in-memory B-Trees of arbitrary degree.
16//
17// btree implements an in-memory B-Tree for use as an ordered data structure.
18// It is not meant for persistent storage solutions.
19//
20// It has a flatter structure than an equivalent red-black or other binary tree,
21// which in some cases yields better memory usage and/or performance.
22// See some discussion on the matter here:
23// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
24// Note, though, that this project is in no way related to the C++ B-Tree
25// implementation written about there.
26//
27// Within this tree, each node contains a slice of items and a (possibly nil)
28// slice of children. For basic numeric values or raw structs, this can cause
29// efficiency differences when compared to equivalent C++ template code that
30// stores values in arrays within the node:
31// * Due to the overhead of storing values as interfaces (each
32// value needs to be stored as the value itself, then 2 words for the
33// interface pointing to that value and its type), resulting in higher
34// memory use.
35// * Since interfaces can point to values anywhere in memory, values are
36// most likely not stored in contiguous blocks, resulting in a higher
37// number of cache misses.
38// These issues don't tend to matter, though, when working with strings or other
39// heap-allocated structures, since C++-equivalent structures also must store
40// pointers and also distribute their values across the heap.
41//
42// This implementation is designed to be a drop-in replacement to gollrb.LLRB
43// trees, (http://github.com/petar/gollrb), an excellent and probably the most
44// widely used ordered tree implementation in the Go ecosystem currently.
45// Its functions, therefore, exactly mirror those of
46// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
47// support storing multiple equivalent values.
48package btree
49
50import (
51 "fmt"
52 "io"
53 "sort"
54 "strings"
55 "sync"
56)
57
58// Item represents a single object in the tree.
59type Item interface {
60 // Less tests whether the current item is less than the given argument.
61 //
62 // This must provide a strict weak ordering.
63 // If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
64 // hold one of either a or b in the tree).
65 Less(than Item) bool
66}
67
68const (
69 DefaultFreeListSize = 32
70)
71
72var (
73 nilItems = make(items, 16)
74 nilChildren = make(children, 16)
75)
76
77// FreeList represents a free list of btree nodes. By default each
78// BTree has its own FreeList, but multiple BTrees can share the same
79// FreeList.
80// Two Btrees using the same freelist are safe for concurrent write access.
81type FreeList struct {
82 mu sync.Mutex
83 freelist []*node
84}
85
86// NewFreeList creates a new free list.
87// size is the maximum size of the returned free list.
88func NewFreeList(size int) *FreeList {
89 return &FreeList{freelist: make([]*node, 0, size)}
90}
91
92func (f *FreeList) newNode() (n *node) {
93 f.mu.Lock()
94 index := len(f.freelist) - 1
95 if index < 0 {
96 f.mu.Unlock()
97 return new(node)
98 }
99 n = f.freelist[index]
100 f.freelist[index] = nil
101 f.freelist = f.freelist[:index]
102 f.mu.Unlock()
103 return
104}
105
106// freeNode adds the given node to the list, returning true if it was added
107// and false if it was discarded.
108func (f *FreeList) freeNode(n *node) (out bool) {
109 f.mu.Lock()
110 if len(f.freelist) < cap(f.freelist) {
111 f.freelist = append(f.freelist, n)
112 out = true
113 }
114 f.mu.Unlock()
115 return
116}
117
118// ItemIterator allows callers of Ascend* to iterate in-order over portions of
119// the tree. When this function returns false, iteration will stop and the
120// associated Ascend* function will immediately return.
121type ItemIterator func(i Item) bool
122
123// New creates a new B-Tree with the given degree.
124//
125// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
126// and 2-4 children).
127func New(degree int) *BTree {
128 return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
129}
130
131// NewWithFreeList creates a new B-Tree that uses the given node free list.
132func NewWithFreeList(degree int, f *FreeList) *BTree {
133 if degree <= 1 {
134 panic("bad degree")
135 }
136 return &BTree{
137 degree: degree,
138 cow: &copyOnWriteContext{freelist: f},
139 }
140}
141
142// items stores items in a node.
143type items []Item
144
145// insertAt inserts a value into the given index, pushing all subsequent values
146// forward.
147func (s *items) insertAt(index int, item Item) {
148 *s = append(*s, nil)
149 if index < len(*s) {
150 copy((*s)[index+1:], (*s)[index:])
151 }
152 (*s)[index] = item
153}
154
155// removeAt removes a value at a given index, pulling all subsequent values
156// back.
157func (s *items) removeAt(index int) Item {
158 item := (*s)[index]
159 copy((*s)[index:], (*s)[index+1:])
160 (*s)[len(*s)-1] = nil
161 *s = (*s)[:len(*s)-1]
162 return item
163}
164
165// pop removes and returns the last element in the list.
166func (s *items) pop() (out Item) {
167 index := len(*s) - 1
168 out = (*s)[index]
169 (*s)[index] = nil
170 *s = (*s)[:index]
171 return
172}
173
174// truncate truncates this instance at index so that it contains only the
175// first index items. index must be less than or equal to length.
176func (s *items) truncate(index int) {
177 var toClear items
178 *s, toClear = (*s)[:index], (*s)[index:]
179 for len(toClear) > 0 {
180 toClear = toClear[copy(toClear, nilItems):]
181 }
182}
183
184// find returns the index where the given item should be inserted into this
185// list. 'found' is true if the item already exists in the list at the given
186// index.
187func (s items) find(item Item) (index int, found bool) {
188 i := sort.Search(len(s), func(i int) bool {
189 return item.Less(s[i])
190 })
191 if i > 0 && !s[i-1].Less(item) {
192 return i - 1, true
193 }
194 return i, false
195}
196
197// children stores child nodes in a node.
198type children []*node
199
200// insertAt inserts a value into the given index, pushing all subsequent values
201// forward.
202func (s *children) insertAt(index int, n *node) {
203 *s = append(*s, nil)
204 if index < len(*s) {
205 copy((*s)[index+1:], (*s)[index:])
206 }
207 (*s)[index] = n
208}
209
210// removeAt removes a value at a given index, pulling all subsequent values
211// back.
212func (s *children) removeAt(index int) *node {
213 n := (*s)[index]
214 copy((*s)[index:], (*s)[index+1:])
215 (*s)[len(*s)-1] = nil
216 *s = (*s)[:len(*s)-1]
217 return n
218}
219
220// pop removes and returns the last element in the list.
221func (s *children) pop() (out *node) {
222 index := len(*s) - 1
223 out = (*s)[index]
224 (*s)[index] = nil
225 *s = (*s)[:index]
226 return
227}
228
229// truncate truncates this instance at index so that it contains only the
230// first index children. index must be less than or equal to length.
231func (s *children) truncate(index int) {
232 var toClear children
233 *s, toClear = (*s)[:index], (*s)[index:]
234 for len(toClear) > 0 {
235 toClear = toClear[copy(toClear, nilChildren):]
236 }
237}
238
239// node is an internal node in a tree.
240//
241// It must at all times maintain the invariant that either
242// * len(children) == 0, len(items) unconstrained
243// * len(children) == len(items) + 1
244type node struct {
245 items items
246 children children
247 cow *copyOnWriteContext
248}
249
250func (n *node) mutableFor(cow *copyOnWriteContext) *node {
251 if n.cow == cow {
252 return n
253 }
254 out := cow.newNode()
255 if cap(out.items) >= len(n.items) {
256 out.items = out.items[:len(n.items)]
257 } else {
258 out.items = make(items, len(n.items), cap(n.items))
259 }
260 copy(out.items, n.items)
261 // Copy children
262 if cap(out.children) >= len(n.children) {
263 out.children = out.children[:len(n.children)]
264 } else {
265 out.children = make(children, len(n.children), cap(n.children))
266 }
267 copy(out.children, n.children)
268 return out
269}
270
271func (n *node) mutableChild(i int) *node {
272 c := n.children[i].mutableFor(n.cow)
273 n.children[i] = c
274 return c
275}
276
277// split splits the given node at the given index. The current node shrinks,
278// and this function returns the item that existed at that index and a new node
279// containing all items/children after it.
280func (n *node) split(i int) (Item, *node) {
281 item := n.items[i]
282 next := n.cow.newNode()
283 next.items = append(next.items, n.items[i+1:]...)
284 n.items.truncate(i)
285 if len(n.children) > 0 {
286 next.children = append(next.children, n.children[i+1:]...)
287 n.children.truncate(i + 1)
288 }
289 return item, next
290}
291
292// maybeSplitChild checks if a child should be split, and if so splits it.
293// Returns whether or not a split occurred.
294func (n *node) maybeSplitChild(i, maxItems int) bool {
295 if len(n.children[i].items) < maxItems {
296 return false
297 }
298 first := n.mutableChild(i)
299 item, second := first.split(maxItems / 2)
300 n.items.insertAt(i, item)
301 n.children.insertAt(i+1, second)
302 return true
303}
304
305// insert inserts an item into the subtree rooted at this node, making sure
306// no nodes in the subtree exceed maxItems items. Should an equivalent item be
307// be found/replaced by insert, it will be returned.
308func (n *node) insert(item Item, maxItems int) Item {
309 i, found := n.items.find(item)
310 if found {
311 out := n.items[i]
312 n.items[i] = item
313 return out
314 }
315 if len(n.children) == 0 {
316 n.items.insertAt(i, item)
317 return nil
318 }
319 if n.maybeSplitChild(i, maxItems) {
320 inTree := n.items[i]
321 switch {
322 case item.Less(inTree):
323 // no change, we want first split node
324 case inTree.Less(item):
325 i++ // we want second split node
326 default:
327 out := n.items[i]
328 n.items[i] = item
329 return out
330 }
331 }
332 return n.mutableChild(i).insert(item, maxItems)
333}
334
335// get finds the given key in the subtree and returns it.
336func (n *node) get(key Item) Item {
337 i, found := n.items.find(key)
338 if found {
339 return n.items[i]
340 } else if len(n.children) > 0 {
341 return n.children[i].get(key)
342 }
343 return nil
344}
345
346// min returns the first item in the subtree.
347func min(n *node) Item {
348 if n == nil {
349 return nil
350 }
351 for len(n.children) > 0 {
352 n = n.children[0]
353 }
354 if len(n.items) == 0 {
355 return nil
356 }
357 return n.items[0]
358}
359
360// max returns the last item in the subtree.
361func max(n *node) Item {
362 if n == nil {
363 return nil
364 }
365 for len(n.children) > 0 {
366 n = n.children[len(n.children)-1]
367 }
368 if len(n.items) == 0 {
369 return nil
370 }
371 return n.items[len(n.items)-1]
372}
373
374// toRemove details what item to remove in a node.remove call.
375type toRemove int
376
377const (
378 removeItem toRemove = iota // removes the given item
379 removeMin // removes smallest item in the subtree
380 removeMax // removes largest item in the subtree
381)
382
383// remove removes an item from the subtree rooted at this node.
384func (n *node) remove(item Item, minItems int, typ toRemove) Item {
385 var i int
386 var found bool
387 switch typ {
388 case removeMax:
389 if len(n.children) == 0 {
390 return n.items.pop()
391 }
392 i = len(n.items)
393 case removeMin:
394 if len(n.children) == 0 {
395 return n.items.removeAt(0)
396 }
397 i = 0
398 case removeItem:
399 i, found = n.items.find(item)
400 if len(n.children) == 0 {
401 if found {
402 return n.items.removeAt(i)
403 }
404 return nil
405 }
406 default:
407 panic("invalid type")
408 }
409 // If we get to here, we have children.
410 if len(n.children[i].items) <= minItems {
411 return n.growChildAndRemove(i, item, minItems, typ)
412 }
413 child := n.mutableChild(i)
414 // Either we had enough items to begin with, or we've done some
415 // merging/stealing, because we've got enough now and we're ready to return
416 // stuff.
417 if found {
418 // The item exists at index 'i', and the child we've selected can give us a
419 // predecessor, since if we've gotten here it's got > minItems items in it.
420 out := n.items[i]
421 // We use our special-case 'remove' call with typ=maxItem to pull the
422 // predecessor of item i (the rightmost leaf of our immediate left child)
423 // and set it into where we pulled the item from.
424 n.items[i] = child.remove(nil, minItems, removeMax)
425 return out
426 }
427 // Final recursive call. Once we're here, we know that the item isn't in this
428 // node and that the child is big enough to remove from.
429 return child.remove(item, minItems, typ)
430}
431
432// growChildAndRemove grows child 'i' to make sure it's possible to remove an
433// item from it while keeping it at minItems, then calls remove to actually
434// remove it.
435//
436// Most documentation says we have to do two sets of special casing:
437// 1) item is in this node
438// 2) item is in child
439// In both cases, we need to handle the two subcases:
440// A) node has enough values that it can spare one
441// B) node doesn't have enough values
442// For the latter, we have to check:
443// a) left sibling has node to spare
444// b) right sibling has node to spare
445// c) we must merge
446// To simplify our code here, we handle cases #1 and #2 the same:
447// If a node doesn't have enough items, we make sure it does (using a,b,c).
448// We then simply redo our remove call, and the second time (regardless of
449// whether we're in case 1 or 2), we'll have enough items and can guarantee
450// that we hit case A.
451func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
452 if i > 0 && len(n.children[i-1].items) > minItems {
453 // Steal from left child
454 child := n.mutableChild(i)
455 stealFrom := n.mutableChild(i - 1)
456 stolenItem := stealFrom.items.pop()
457 child.items.insertAt(0, n.items[i-1])
458 n.items[i-1] = stolenItem
459 if len(stealFrom.children) > 0 {
460 child.children.insertAt(0, stealFrom.children.pop())
461 }
462 } else if i < len(n.items) && len(n.children[i+1].items) > minItems {
463 // steal from right child
464 child := n.mutableChild(i)
465 stealFrom := n.mutableChild(i + 1)
466 stolenItem := stealFrom.items.removeAt(0)
467 child.items = append(child.items, n.items[i])
468 n.items[i] = stolenItem
469 if len(stealFrom.children) > 0 {
470 child.children = append(child.children, stealFrom.children.removeAt(0))
471 }
472 } else {
473 if i >= len(n.items) {
474 i--
475 }
476 child := n.mutableChild(i)
477 // merge with right child
478 mergeItem := n.items.removeAt(i)
479 mergeChild := n.children.removeAt(i + 1)
480 child.items = append(child.items, mergeItem)
481 child.items = append(child.items, mergeChild.items...)
482 child.children = append(child.children, mergeChild.children...)
483 n.cow.freeNode(mergeChild)
484 }
485 return n.remove(item, minItems, typ)
486}
487
488type direction int
489
490const (
491 descend = direction(-1)
492 ascend = direction(+1)
493)
494
495// iterate provides a simple method for iterating over elements in the tree.
496//
497// When ascending, the 'start' should be less than 'stop' and when descending,
498// the 'start' should be greater than 'stop'. Setting 'includeStart' to true
499// will force the iterator to include the first item when it equals 'start',
500// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
501// "greaterThan" or "lessThan" queries.
502func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
503 var ok, found bool
504 var index int
505 switch dir {
506 case ascend:
507 if start != nil {
508 index, _ = n.items.find(start)
509 }
510 for i := index; i < len(n.items); i++ {
511 if len(n.children) > 0 {
512 if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
513 return hit, false
514 }
515 }
516 if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
517 hit = true
518 continue
519 }
520 hit = true
521 if stop != nil && !n.items[i].Less(stop) {
522 return hit, false
523 }
524 if !iter(n.items[i]) {
525 return hit, false
526 }
527 }
528 if len(n.children) > 0 {
529 if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
530 return hit, false
531 }
532 }
533 case descend:
534 if start != nil {
535 index, found = n.items.find(start)
536 if !found {
537 index = index - 1
538 }
539 } else {
540 index = len(n.items) - 1
541 }
542 for i := index; i >= 0; i-- {
543 if start != nil && !n.items[i].Less(start) {
544 if !includeStart || hit || start.Less(n.items[i]) {
545 continue
546 }
547 }
548 if len(n.children) > 0 {
549 if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
550 return hit, false
551 }
552 }
553 if stop != nil && !stop.Less(n.items[i]) {
554 return hit, false // continue
555 }
556 hit = true
557 if !iter(n.items[i]) {
558 return hit, false
559 }
560 }
561 if len(n.children) > 0 {
562 if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
563 return hit, false
564 }
565 }
566 }
567 return hit, true
568}
569
570// Used for testing/debugging purposes.
571func (n *node) print(w io.Writer, level int) {
572 fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
573 for _, c := range n.children {
574 c.print(w, level+1)
575 }
576}
577
578// BTree is an implementation of a B-Tree.
579//
580// BTree stores Item instances in an ordered structure, allowing easy insertion,
581// removal, and iteration.
582//
583// Write operations are not safe for concurrent mutation by multiple
584// goroutines, but Read operations are.
585type BTree struct {
586 degree int
587 length int
588 root *node
589 cow *copyOnWriteContext
590}
591
592// copyOnWriteContext pointers determine node ownership... a tree with a write
593// context equivalent to a node's write context is allowed to modify that node.
594// A tree whose write context does not match a node's is not allowed to modify
595// it, and must create a new, writable copy (IE: it's a Clone).
596//
597// When doing any write operation, we maintain the invariant that the current
598// node's context is equal to the context of the tree that requested the write.
599// We do this by, before we descend into any node, creating a copy with the
600// correct context if the contexts don't match.
601//
602// Since the node we're currently visiting on any write has the requesting
603// tree's context, that node is modifiable in place. Children of that node may
604// not share context, but before we descend into them, we'll make a mutable
605// copy.
606type copyOnWriteContext struct {
607 freelist *FreeList
608}
609
610// Clone clones the btree, lazily. Clone should not be called concurrently,
611// but the original tree (t) and the new tree (t2) can be used concurrently
612// once the Clone call completes.
613//
614// The internal tree structure of b is marked read-only and shared between t and
615// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
616// whenever one of b's original nodes would have been modified. Read operations
617// should have no performance degredation. Write operations for both t and t2
618// will initially experience minor slow-downs caused by additional allocs and
619// copies due to the aforementioned copy-on-write logic, but should converge to
620// the original performance characteristics of the original tree.
621func (t *BTree) Clone() (t2 *BTree) {
622 // Create two entirely new copy-on-write contexts.
623 // This operation effectively creates three trees:
624 // the original, shared nodes (old b.cow)
625 // the new b.cow nodes
626 // the new out.cow nodes
627 cow1, cow2 := *t.cow, *t.cow
628 out := *t
629 t.cow = &cow1
630 out.cow = &cow2
631 return &out
632}
633
634// maxItems returns the max number of items to allow per node.
635func (t *BTree) maxItems() int {
636 return t.degree*2 - 1
637}
638
639// minItems returns the min number of items to allow per node (ignored for the
640// root node).
641func (t *BTree) minItems() int {
642 return t.degree - 1
643}
644
645func (c *copyOnWriteContext) newNode() (n *node) {
646 n = c.freelist.newNode()
647 n.cow = c
648 return
649}
650
651type freeType int
652
653const (
654 ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
655 ftStored // node was stored in the freelist for later use
656 ftNotOwned // node was ignored by COW, since it's owned by another one
657)
658
659// freeNode frees a node within a given COW context, if it's owned by that
660// context. It returns what happened to the node (see freeType const
661// documentation).
662func (c *copyOnWriteContext) freeNode(n *node) freeType {
663 if n.cow == c {
664 // clear to allow GC
665 n.items.truncate(0)
666 n.children.truncate(0)
667 n.cow = nil
668 if c.freelist.freeNode(n) {
669 return ftStored
670 } else {
671 return ftFreelistFull
672 }
673 } else {
674 return ftNotOwned
675 }
676}
677
678// ReplaceOrInsert adds the given item to the tree. If an item in the tree
679// already equals the given one, it is removed from the tree and returned.
680// Otherwise, nil is returned.
681//
682// nil cannot be added to the tree (will panic).
683func (t *BTree) ReplaceOrInsert(item Item) Item {
684 if item == nil {
685 panic("nil item being added to BTree")
686 }
687 if t.root == nil {
688 t.root = t.cow.newNode()
689 t.root.items = append(t.root.items, item)
690 t.length++
691 return nil
692 } else {
693 t.root = t.root.mutableFor(t.cow)
694 if len(t.root.items) >= t.maxItems() {
695 item2, second := t.root.split(t.maxItems() / 2)
696 oldroot := t.root
697 t.root = t.cow.newNode()
698 t.root.items = append(t.root.items, item2)
699 t.root.children = append(t.root.children, oldroot, second)
700 }
701 }
702 out := t.root.insert(item, t.maxItems())
703 if out == nil {
704 t.length++
705 }
706 return out
707}
708
709// Delete removes an item equal to the passed in item from the tree, returning
710// it. If no such item exists, returns nil.
711func (t *BTree) Delete(item Item) Item {
712 return t.deleteItem(item, removeItem)
713}
714
715// DeleteMin removes the smallest item in the tree and returns it.
716// If no such item exists, returns nil.
717func (t *BTree) DeleteMin() Item {
718 return t.deleteItem(nil, removeMin)
719}
720
721// DeleteMax removes the largest item in the tree and returns it.
722// If no such item exists, returns nil.
723func (t *BTree) DeleteMax() Item {
724 return t.deleteItem(nil, removeMax)
725}
726
727func (t *BTree) deleteItem(item Item, typ toRemove) Item {
728 if t.root == nil || len(t.root.items) == 0 {
729 return nil
730 }
731 t.root = t.root.mutableFor(t.cow)
732 out := t.root.remove(item, t.minItems(), typ)
733 if len(t.root.items) == 0 && len(t.root.children) > 0 {
734 oldroot := t.root
735 t.root = t.root.children[0]
736 t.cow.freeNode(oldroot)
737 }
738 if out != nil {
739 t.length--
740 }
741 return out
742}
743
744// AscendRange calls the iterator for every value in the tree within the range
745// [greaterOrEqual, lessThan), until iterator returns false.
746func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
747 if t.root == nil {
748 return
749 }
750 t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
751}
752
753// AscendLessThan calls the iterator for every value in the tree within the range
754// [first, pivot), until iterator returns false.
755func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
756 if t.root == nil {
757 return
758 }
759 t.root.iterate(ascend, nil, pivot, false, false, iterator)
760}
761
762// AscendGreaterOrEqual calls the iterator for every value in the tree within
763// the range [pivot, last], until iterator returns false.
764func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
765 if t.root == nil {
766 return
767 }
768 t.root.iterate(ascend, pivot, nil, true, false, iterator)
769}
770
771// Ascend calls the iterator for every value in the tree within the range
772// [first, last], until iterator returns false.
773func (t *BTree) Ascend(iterator ItemIterator) {
774 if t.root == nil {
775 return
776 }
777 t.root.iterate(ascend, nil, nil, false, false, iterator)
778}
779
780// DescendRange calls the iterator for every value in the tree within the range
781// [lessOrEqual, greaterThan), until iterator returns false.
782func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
783 if t.root == nil {
784 return
785 }
786 t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
787}
788
789// DescendLessOrEqual calls the iterator for every value in the tree within the range
790// [pivot, first], until iterator returns false.
791func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
792 if t.root == nil {
793 return
794 }
795 t.root.iterate(descend, pivot, nil, true, false, iterator)
796}
797
798// DescendGreaterThan calls the iterator for every value in the tree within
khenaidoo26721882021-08-11 17:42:52 -0400799// the range [last, pivot), until iterator returns false.
khenaidoo59ce9dd2019-11-11 13:05:32 -0500800func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
801 if t.root == nil {
802 return
803 }
804 t.root.iterate(descend, nil, pivot, false, false, iterator)
805}
806
807// Descend calls the iterator for every value in the tree within the range
808// [last, first], until iterator returns false.
809func (t *BTree) Descend(iterator ItemIterator) {
810 if t.root == nil {
811 return
812 }
813 t.root.iterate(descend, nil, nil, false, false, iterator)
814}
815
816// Get looks for the key item in the tree, returning it. It returns nil if
817// unable to find that item.
818func (t *BTree) Get(key Item) Item {
819 if t.root == nil {
820 return nil
821 }
822 return t.root.get(key)
823}
824
825// Min returns the smallest item in the tree, or nil if the tree is empty.
826func (t *BTree) Min() Item {
827 return min(t.root)
828}
829
830// Max returns the largest item in the tree, or nil if the tree is empty.
831func (t *BTree) Max() Item {
832 return max(t.root)
833}
834
835// Has returns true if the given key is in the tree.
836func (t *BTree) Has(key Item) bool {
837 return t.Get(key) != nil
838}
839
840// Len returns the number of items currently in the tree.
841func (t *BTree) Len() int {
842 return t.length
843}
844
845// Clear removes all items from the btree. If addNodesToFreelist is true,
846// t's nodes are added to its freelist as part of this call, until the freelist
847// is full. Otherwise, the root node is simply dereferenced and the subtree
848// left to Go's normal GC processes.
849//
850// This can be much faster
851// than calling Delete on all elements, because that requires finding/removing
852// each element in the tree and updating the tree accordingly. It also is
853// somewhat faster than creating a new tree to replace the old one, because
854// nodes from the old tree are reclaimed into the freelist for use by the new
855// one, instead of being lost to the garbage collector.
856//
857// This call takes:
858// O(1): when addNodesToFreelist is false, this is a single operation.
859// O(1): when the freelist is already full, it breaks out immediately
860// O(freelist size): when the freelist is empty and the nodes are all owned
861// by this tree, nodes are added to the freelist until full.
862// O(tree size): when all nodes are owned by another tree, all nodes are
863// iterated over looking for nodes to add to the freelist, and due to
864// ownership, none are.
865func (t *BTree) Clear(addNodesToFreelist bool) {
866 if t.root != nil && addNodesToFreelist {
867 t.root.reset(t.cow)
868 }
869 t.root, t.length = nil, 0
870}
871
872// reset returns a subtree to the freelist. It breaks out immediately if the
873// freelist is full, since the only benefit of iterating is to fill that
874// freelist up. Returns true if parent reset call should continue.
875func (n *node) reset(c *copyOnWriteContext) bool {
876 for _, child := range n.children {
877 if !child.reset(c) {
878 return false
879 }
880 }
881 return c.freeNode(n) != ftFreelistFull
882}
883
884// Int implements the Item interface for integers.
885type Int int
886
887// Less returns true if int(a) < int(b).
888func (a Int) Less(b Item) bool {
889 return a < b.(Int)
890}