| // Copyright 2015 The etcd Authors |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| package raft |
| |
| import ( |
| "context" |
| "errors" |
| |
| pb "go.etcd.io/etcd/raft/raftpb" |
| ) |
| |
| type SnapshotStatus int |
| |
| const ( |
| SnapshotFinish SnapshotStatus = 1 |
| SnapshotFailure SnapshotStatus = 2 |
| ) |
| |
| var ( |
| emptyState = pb.HardState{} |
| |
| // ErrStopped is returned by methods on Nodes that have been stopped. |
| ErrStopped = errors.New("raft: stopped") |
| ) |
| |
| // SoftState provides state that is useful for logging and debugging. |
| // The state is volatile and does not need to be persisted to the WAL. |
| type SoftState struct { |
| Lead uint64 // must use atomic operations to access; keep 64-bit aligned. |
| RaftState StateType |
| } |
| |
| func (a *SoftState) equal(b *SoftState) bool { |
| return a.Lead == b.Lead && a.RaftState == b.RaftState |
| } |
| |
| // Ready encapsulates the entries and messages that are ready to read, |
| // be saved to stable storage, committed or sent to other peers. |
| // All fields in Ready are read-only. |
| type Ready struct { |
| // The current volatile state of a Node. |
| // SoftState will be nil if there is no update. |
| // It is not required to consume or store SoftState. |
| *SoftState |
| |
| // The current state of a Node to be saved to stable storage BEFORE |
| // Messages are sent. |
| // HardState will be equal to empty state if there is no update. |
| pb.HardState |
| |
| // ReadStates can be used for node to serve linearizable read requests locally |
| // when its applied index is greater than the index in ReadState. |
| // Note that the readState will be returned when raft receives msgReadIndex. |
| // The returned is only valid for the request that requested to read. |
| ReadStates []ReadState |
| |
| // Entries specifies entries to be saved to stable storage BEFORE |
| // Messages are sent. |
| Entries []pb.Entry |
| |
| // Snapshot specifies the snapshot to be saved to stable storage. |
| Snapshot pb.Snapshot |
| |
| // CommittedEntries specifies entries to be committed to a |
| // store/state-machine. These have previously been committed to stable |
| // store. |
| CommittedEntries []pb.Entry |
| |
| // Messages specifies outbound messages to be sent AFTER Entries are |
| // committed to stable storage. |
| // If it contains a MsgSnap message, the application MUST report back to raft |
| // when the snapshot has been received or has failed by calling ReportSnapshot. |
| Messages []pb.Message |
| |
| // MustSync indicates whether the HardState and Entries must be synchronously |
| // written to disk or if an asynchronous write is permissible. |
| MustSync bool |
| } |
| |
| func isHardStateEqual(a, b pb.HardState) bool { |
| return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit |
| } |
| |
| // IsEmptyHardState returns true if the given HardState is empty. |
| func IsEmptyHardState(st pb.HardState) bool { |
| return isHardStateEqual(st, emptyState) |
| } |
| |
| // IsEmptySnap returns true if the given Snapshot is empty. |
| func IsEmptySnap(sp pb.Snapshot) bool { |
| return sp.Metadata.Index == 0 |
| } |
| |
| func (rd Ready) containsUpdates() bool { |
| return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) || |
| !IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 || |
| len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0 |
| } |
| |
| // appliedCursor extracts from the Ready the highest index the client has |
| // applied (once the Ready is confirmed via Advance). If no information is |
| // contained in the Ready, returns zero. |
| func (rd Ready) appliedCursor() uint64 { |
| if n := len(rd.CommittedEntries); n > 0 { |
| return rd.CommittedEntries[n-1].Index |
| } |
| if index := rd.Snapshot.Metadata.Index; index > 0 { |
| return index |
| } |
| return 0 |
| } |
| |
| // Node represents a node in a raft cluster. |
| type Node interface { |
| // Tick increments the internal logical clock for the Node by a single tick. Election |
| // timeouts and heartbeat timeouts are in units of ticks. |
| Tick() |
| // Campaign causes the Node to transition to candidate state and start campaigning to become leader. |
| Campaign(ctx context.Context) error |
| // Propose proposes that data be appended to the log. Note that proposals can be lost without |
| // notice, therefore it is user's job to ensure proposal retries. |
| Propose(ctx context.Context, data []byte) error |
| // ProposeConfChange proposes config change. |
| // At most one ConfChange can be in the process of going through consensus. |
| // Application needs to call ApplyConfChange when applying EntryConfChange type entry. |
| ProposeConfChange(ctx context.Context, cc pb.ConfChange) error |
| // Step advances the state machine using the given message. ctx.Err() will be returned, if any. |
| Step(ctx context.Context, msg pb.Message) error |
| |
| // Ready returns a channel that returns the current point-in-time state. |
| // Users of the Node must call Advance after retrieving the state returned by Ready. |
| // |
| // NOTE: No committed entries from the next Ready may be applied until all committed entries |
| // and snapshots from the previous one have finished. |
| Ready() <-chan Ready |
| |
| // Advance notifies the Node that the application has saved progress up to the last Ready. |
| // It prepares the node to return the next available Ready. |
| // |
| // The application should generally call Advance after it applies the entries in last Ready. |
| // |
| // However, as an optimization, the application may call Advance while it is applying the |
| // commands. For example. when the last Ready contains a snapshot, the application might take |
| // a long time to apply the snapshot data. To continue receiving Ready without blocking raft |
| // progress, it can call Advance before finishing applying the last ready. |
| Advance() |
| // ApplyConfChange applies config change to the local node. |
| // Returns an opaque ConfState protobuf which must be recorded |
| // in snapshots. Will never return nil; it returns a pointer only |
| // to match MemoryStorage.Compact. |
| ApplyConfChange(cc pb.ConfChange) *pb.ConfState |
| |
| // TransferLeadership attempts to transfer leadership to the given transferee. |
| TransferLeadership(ctx context.Context, lead, transferee uint64) |
| |
| // ReadIndex request a read state. The read state will be set in the ready. |
| // Read state has a read index. Once the application advances further than the read |
| // index, any linearizable read requests issued before the read request can be |
| // processed safely. The read state will have the same rctx attached. |
| ReadIndex(ctx context.Context, rctx []byte) error |
| |
| // Status returns the current status of the raft state machine. |
| Status() Status |
| // ReportUnreachable reports the given node is not reachable for the last send. |
| ReportUnreachable(id uint64) |
| // ReportSnapshot reports the status of the sent snapshot. The id is the raft ID of the follower |
| // who is meant to receive the snapshot, and the status is SnapshotFinish or SnapshotFailure. |
| // Calling ReportSnapshot with SnapshotFinish is a no-op. But, any failure in applying a |
| // snapshot (for e.g., while streaming it from leader to follower), should be reported to the |
| // leader with SnapshotFailure. When leader sends a snapshot to a follower, it pauses any raft |
| // log probes until the follower can apply the snapshot and advance its state. If the follower |
| // can't do that, for e.g., due to a crash, it could end up in a limbo, never getting any |
| // updates from the leader. Therefore, it is crucial that the application ensures that any |
| // failure in snapshot sending is caught and reported back to the leader; so it can resume raft |
| // log probing in the follower. |
| ReportSnapshot(id uint64, status SnapshotStatus) |
| // Stop performs any necessary termination of the Node. |
| Stop() |
| } |
| |
| type Peer struct { |
| ID uint64 |
| Context []byte |
| } |
| |
| // StartNode returns a new Node given configuration and a list of raft peers. |
| // It appends a ConfChangeAddNode entry for each given peer to the initial log. |
| func StartNode(c *Config, peers []Peer) Node { |
| r := newRaft(c) |
| // become the follower at term 1 and apply initial configuration |
| // entries of term 1 |
| r.becomeFollower(1, None) |
| for _, peer := range peers { |
| cc := pb.ConfChange{Type: pb.ConfChangeAddNode, NodeID: peer.ID, Context: peer.Context} |
| d, err := cc.Marshal() |
| if err != nil { |
| panic("unexpected marshal error") |
| } |
| e := pb.Entry{Type: pb.EntryConfChange, Term: 1, Index: r.raftLog.lastIndex() + 1, Data: d} |
| r.raftLog.append(e) |
| } |
| // Mark these initial entries as committed. |
| // TODO(bdarnell): These entries are still unstable; do we need to preserve |
| // the invariant that committed < unstable? |
| r.raftLog.committed = r.raftLog.lastIndex() |
| // Now apply them, mainly so that the application can call Campaign |
| // immediately after StartNode in tests. Note that these nodes will |
| // be added to raft twice: here and when the application's Ready |
| // loop calls ApplyConfChange. The calls to addNode must come after |
| // all calls to raftLog.append so progress.next is set after these |
| // bootstrapping entries (it is an error if we try to append these |
| // entries since they have already been committed). |
| // We do not set raftLog.applied so the application will be able |
| // to observe all conf changes via Ready.CommittedEntries. |
| for _, peer := range peers { |
| r.addNode(peer.ID) |
| } |
| |
| n := newNode() |
| n.logger = c.Logger |
| go n.run(r) |
| return &n |
| } |
| |
| // RestartNode is similar to StartNode but does not take a list of peers. |
| // The current membership of the cluster will be restored from the Storage. |
| // If the caller has an existing state machine, pass in the last log index that |
| // has been applied to it; otherwise use zero. |
| func RestartNode(c *Config) Node { |
| r := newRaft(c) |
| |
| n := newNode() |
| n.logger = c.Logger |
| go n.run(r) |
| return &n |
| } |
| |
| type msgWithResult struct { |
| m pb.Message |
| result chan error |
| } |
| |
| // node is the canonical implementation of the Node interface |
| type node struct { |
| propc chan msgWithResult |
| recvc chan pb.Message |
| confc chan pb.ConfChange |
| confstatec chan pb.ConfState |
| readyc chan Ready |
| advancec chan struct{} |
| tickc chan struct{} |
| done chan struct{} |
| stop chan struct{} |
| status chan chan Status |
| |
| logger Logger |
| } |
| |
| func newNode() node { |
| return node{ |
| propc: make(chan msgWithResult), |
| recvc: make(chan pb.Message), |
| confc: make(chan pb.ConfChange), |
| confstatec: make(chan pb.ConfState), |
| readyc: make(chan Ready), |
| advancec: make(chan struct{}), |
| // make tickc a buffered chan, so raft node can buffer some ticks when the node |
| // is busy processing raft messages. Raft node will resume process buffered |
| // ticks when it becomes idle. |
| tickc: make(chan struct{}, 128), |
| done: make(chan struct{}), |
| stop: make(chan struct{}), |
| status: make(chan chan Status), |
| } |
| } |
| |
| func (n *node) Stop() { |
| select { |
| case n.stop <- struct{}{}: |
| // Not already stopped, so trigger it |
| case <-n.done: |
| // Node has already been stopped - no need to do anything |
| return |
| } |
| // Block until the stop has been acknowledged by run() |
| <-n.done |
| } |
| |
| func (n *node) run(r *raft) { |
| var propc chan msgWithResult |
| var readyc chan Ready |
| var advancec chan struct{} |
| var prevLastUnstablei, prevLastUnstablet uint64 |
| var havePrevLastUnstablei bool |
| var prevSnapi uint64 |
| var applyingToI uint64 |
| var rd Ready |
| |
| lead := None |
| prevSoftSt := r.softState() |
| prevHardSt := emptyState |
| |
| for { |
| if advancec != nil { |
| readyc = nil |
| } else { |
| rd = newReady(r, prevSoftSt, prevHardSt) |
| if rd.containsUpdates() { |
| readyc = n.readyc |
| } else { |
| readyc = nil |
| } |
| } |
| |
| if lead != r.lead { |
| if r.hasLeader() { |
| if lead == None { |
| r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term) |
| } else { |
| r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term) |
| } |
| propc = n.propc |
| } else { |
| r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term) |
| propc = nil |
| } |
| lead = r.lead |
| } |
| |
| select { |
| // TODO: maybe buffer the config propose if there exists one (the way |
| // described in raft dissertation) |
| // Currently it is dropped in Step silently. |
| case pm := <-propc: |
| m := pm.m |
| m.From = r.id |
| err := r.Step(m) |
| if pm.result != nil { |
| pm.result <- err |
| close(pm.result) |
| } |
| case m := <-n.recvc: |
| // filter out response message from unknown From. |
| if pr := r.getProgress(m.From); pr != nil || !IsResponseMsg(m.Type) { |
| r.Step(m) |
| } |
| case cc := <-n.confc: |
| if cc.NodeID == None { |
| select { |
| case n.confstatec <- pb.ConfState{ |
| Nodes: r.nodes(), |
| Learners: r.learnerNodes()}: |
| case <-n.done: |
| } |
| break |
| } |
| switch cc.Type { |
| case pb.ConfChangeAddNode: |
| r.addNode(cc.NodeID) |
| case pb.ConfChangeAddLearnerNode: |
| r.addLearner(cc.NodeID) |
| case pb.ConfChangeRemoveNode: |
| // block incoming proposal when local node is |
| // removed |
| if cc.NodeID == r.id { |
| propc = nil |
| } |
| r.removeNode(cc.NodeID) |
| case pb.ConfChangeUpdateNode: |
| default: |
| panic("unexpected conf type") |
| } |
| select { |
| case n.confstatec <- pb.ConfState{ |
| Nodes: r.nodes(), |
| Learners: r.learnerNodes()}: |
| case <-n.done: |
| } |
| case <-n.tickc: |
| r.tick() |
| case readyc <- rd: |
| if rd.SoftState != nil { |
| prevSoftSt = rd.SoftState |
| } |
| if len(rd.Entries) > 0 { |
| prevLastUnstablei = rd.Entries[len(rd.Entries)-1].Index |
| prevLastUnstablet = rd.Entries[len(rd.Entries)-1].Term |
| havePrevLastUnstablei = true |
| } |
| if !IsEmptyHardState(rd.HardState) { |
| prevHardSt = rd.HardState |
| } |
| if !IsEmptySnap(rd.Snapshot) { |
| prevSnapi = rd.Snapshot.Metadata.Index |
| } |
| if index := rd.appliedCursor(); index != 0 { |
| applyingToI = index |
| } |
| |
| r.msgs = nil |
| r.readStates = nil |
| r.reduceUncommittedSize(rd.CommittedEntries) |
| advancec = n.advancec |
| case <-advancec: |
| if applyingToI != 0 { |
| r.raftLog.appliedTo(applyingToI) |
| applyingToI = 0 |
| } |
| if havePrevLastUnstablei { |
| r.raftLog.stableTo(prevLastUnstablei, prevLastUnstablet) |
| havePrevLastUnstablei = false |
| } |
| r.raftLog.stableSnapTo(prevSnapi) |
| advancec = nil |
| case c := <-n.status: |
| c <- getStatus(r) |
| case <-n.stop: |
| close(n.done) |
| return |
| } |
| } |
| } |
| |
| // Tick increments the internal logical clock for this Node. Election timeouts |
| // and heartbeat timeouts are in units of ticks. |
| func (n *node) Tick() { |
| select { |
| case n.tickc <- struct{}{}: |
| case <-n.done: |
| default: |
| n.logger.Warningf("A tick missed to fire. Node blocks too long!") |
| } |
| } |
| |
| func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) } |
| |
| func (n *node) Propose(ctx context.Context, data []byte) error { |
| return n.stepWait(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}}) |
| } |
| |
| func (n *node) Step(ctx context.Context, m pb.Message) error { |
| // ignore unexpected local messages receiving over network |
| if IsLocalMsg(m.Type) { |
| // TODO: return an error? |
| return nil |
| } |
| return n.step(ctx, m) |
| } |
| |
| func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChange) error { |
| data, err := cc.Marshal() |
| if err != nil { |
| return err |
| } |
| return n.Step(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: pb.EntryConfChange, Data: data}}}) |
| } |
| |
| func (n *node) step(ctx context.Context, m pb.Message) error { |
| return n.stepWithWaitOption(ctx, m, false) |
| } |
| |
| func (n *node) stepWait(ctx context.Context, m pb.Message) error { |
| return n.stepWithWaitOption(ctx, m, true) |
| } |
| |
| // Step advances the state machine using msgs. The ctx.Err() will be returned, |
| // if any. |
| func (n *node) stepWithWaitOption(ctx context.Context, m pb.Message, wait bool) error { |
| if m.Type != pb.MsgProp { |
| select { |
| case n.recvc <- m: |
| return nil |
| case <-ctx.Done(): |
| return ctx.Err() |
| case <-n.done: |
| return ErrStopped |
| } |
| } |
| ch := n.propc |
| pm := msgWithResult{m: m} |
| if wait { |
| pm.result = make(chan error, 1) |
| } |
| select { |
| case ch <- pm: |
| if !wait { |
| return nil |
| } |
| case <-ctx.Done(): |
| return ctx.Err() |
| case <-n.done: |
| return ErrStopped |
| } |
| select { |
| case err := <-pm.result: |
| if err != nil { |
| return err |
| } |
| case <-ctx.Done(): |
| return ctx.Err() |
| case <-n.done: |
| return ErrStopped |
| } |
| return nil |
| } |
| |
| func (n *node) Ready() <-chan Ready { return n.readyc } |
| |
| func (n *node) Advance() { |
| select { |
| case n.advancec <- struct{}{}: |
| case <-n.done: |
| } |
| } |
| |
| func (n *node) ApplyConfChange(cc pb.ConfChange) *pb.ConfState { |
| var cs pb.ConfState |
| select { |
| case n.confc <- cc: |
| case <-n.done: |
| } |
| select { |
| case cs = <-n.confstatec: |
| case <-n.done: |
| } |
| return &cs |
| } |
| |
| func (n *node) Status() Status { |
| c := make(chan Status) |
| select { |
| case n.status <- c: |
| return <-c |
| case <-n.done: |
| return Status{} |
| } |
| } |
| |
| func (n *node) ReportUnreachable(id uint64) { |
| select { |
| case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}: |
| case <-n.done: |
| } |
| } |
| |
| func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) { |
| rej := status == SnapshotFailure |
| |
| select { |
| case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}: |
| case <-n.done: |
| } |
| } |
| |
| func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) { |
| select { |
| // manually set 'from' and 'to', so that leader can voluntarily transfers its leadership |
| case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}: |
| case <-n.done: |
| case <-ctx.Done(): |
| } |
| } |
| |
| func (n *node) ReadIndex(ctx context.Context, rctx []byte) error { |
| return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}}) |
| } |
| |
| func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready { |
| rd := Ready{ |
| Entries: r.raftLog.unstableEntries(), |
| CommittedEntries: r.raftLog.nextEnts(), |
| Messages: r.msgs, |
| } |
| if softSt := r.softState(); !softSt.equal(prevSoftSt) { |
| rd.SoftState = softSt |
| } |
| if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) { |
| rd.HardState = hardSt |
| } |
| if r.raftLog.unstable.snapshot != nil { |
| rd.Snapshot = *r.raftLog.unstable.snapshot |
| } |
| if len(r.readStates) != 0 { |
| rd.ReadStates = r.readStates |
| } |
| rd.MustSync = MustSync(r.hardState(), prevHardSt, len(rd.Entries)) |
| return rd |
| } |
| |
| // MustSync returns true if the hard state and count of Raft entries indicate |
| // that a synchronous write to persistent storage is required. |
| func MustSync(st, prevst pb.HardState, entsnum int) bool { |
| // Persistent state on all servers: |
| // (Updated on stable storage before responding to RPCs) |
| // currentTerm |
| // votedFor |
| // log entries[] |
| return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term |
| } |