| package metrics |
| |
| import ( |
| "bytes" |
| "fmt" |
| "io" |
| "os" |
| "os/signal" |
| "strings" |
| "sync" |
| "syscall" |
| ) |
| |
| // InmemSignal is used to listen for a given signal, and when received, |
| // to dump the current metrics from the InmemSink to an io.Writer |
| type InmemSignal struct { |
| signal syscall.Signal |
| inm *InmemSink |
| w io.Writer |
| sigCh chan os.Signal |
| |
| stop bool |
| stopCh chan struct{} |
| stopLock sync.Mutex |
| } |
| |
| // NewInmemSignal creates a new InmemSignal which listens for a given signal, |
| // and dumps the current metrics out to a writer |
| func NewInmemSignal(inmem *InmemSink, sig syscall.Signal, w io.Writer) *InmemSignal { |
| i := &InmemSignal{ |
| signal: sig, |
| inm: inmem, |
| w: w, |
| sigCh: make(chan os.Signal, 1), |
| stopCh: make(chan struct{}), |
| } |
| signal.Notify(i.sigCh, sig) |
| go i.run() |
| return i |
| } |
| |
| // DefaultInmemSignal returns a new InmemSignal that responds to SIGUSR1 |
| // and writes output to stderr. Windows uses SIGBREAK |
| func DefaultInmemSignal(inmem *InmemSink) *InmemSignal { |
| return NewInmemSignal(inmem, DefaultSignal, os.Stderr) |
| } |
| |
| // Stop is used to stop the InmemSignal from listening |
| func (i *InmemSignal) Stop() { |
| i.stopLock.Lock() |
| defer i.stopLock.Unlock() |
| |
| if i.stop { |
| return |
| } |
| i.stop = true |
| close(i.stopCh) |
| signal.Stop(i.sigCh) |
| } |
| |
| // run is a long running routine that handles signals |
| func (i *InmemSignal) run() { |
| for { |
| select { |
| case <-i.sigCh: |
| i.dumpStats() |
| case <-i.stopCh: |
| return |
| } |
| } |
| } |
| |
| // dumpStats is used to dump the data to output writer |
| func (i *InmemSignal) dumpStats() { |
| buf := bytes.NewBuffer(nil) |
| |
| data := i.inm.Data() |
| // Skip the last period which is still being aggregated |
| for j := 0; j < len(data)-1; j++ { |
| intv := data[j] |
| intv.RLock() |
| for _, val := range intv.Gauges { |
| name := i.flattenLabels(val.Name, val.Labels) |
| fmt.Fprintf(buf, "[%v][G] '%s': %0.3f\n", intv.Interval, name, val.Value) |
| } |
| for name, vals := range intv.Points { |
| for _, val := range vals { |
| fmt.Fprintf(buf, "[%v][P] '%s': %0.3f\n", intv.Interval, name, val) |
| } |
| } |
| for _, agg := range intv.Counters { |
| name := i.flattenLabels(agg.Name, agg.Labels) |
| fmt.Fprintf(buf, "[%v][C] '%s': %s\n", intv.Interval, name, agg.AggregateSample) |
| } |
| for _, agg := range intv.Samples { |
| name := i.flattenLabels(agg.Name, agg.Labels) |
| fmt.Fprintf(buf, "[%v][S] '%s': %s\n", intv.Interval, name, agg.AggregateSample) |
| } |
| intv.RUnlock() |
| } |
| |
| // Write out the bytes |
| i.w.Write(buf.Bytes()) |
| } |
| |
| // Flattens the key for formatting along with its labels, removes spaces |
| func (i *InmemSignal) flattenLabels(name string, labels []Label) string { |
| buf := bytes.NewBufferString(name) |
| replacer := strings.NewReplacer(" ", "_", ":", "_") |
| |
| for _, label := range labels { |
| replacer.WriteString(buf, ".") |
| replacer.WriteString(buf, label.Value) |
| } |
| |
| return buf.String() |
| } |