William Kurkian | ea86948 | 2019-04-09 15:16:11 -0400 | [diff] [blame] | 1 | package iradix |
| 2 | |
| 3 | import ( |
| 4 | "bytes" |
| 5 | "strings" |
| 6 | |
| 7 | "github.com/hashicorp/golang-lru/simplelru" |
| 8 | ) |
| 9 | |
| 10 | const ( |
| 11 | // defaultModifiedCache is the default size of the modified node |
| 12 | // cache used per transaction. This is used to cache the updates |
| 13 | // to the nodes near the root, while the leaves do not need to be |
| 14 | // cached. This is important for very large transactions to prevent |
| 15 | // the modified cache from growing to be enormous. This is also used |
| 16 | // to set the max size of the mutation notify maps since those should |
| 17 | // also be bounded in a similar way. |
| 18 | defaultModifiedCache = 8192 |
| 19 | ) |
| 20 | |
| 21 | // Tree implements an immutable radix tree. This can be treated as a |
| 22 | // Dictionary abstract data type. The main advantage over a standard |
| 23 | // hash map is prefix-based lookups and ordered iteration. The immutability |
| 24 | // means that it is safe to concurrently read from a Tree without any |
| 25 | // coordination. |
| 26 | type Tree struct { |
| 27 | root *Node |
| 28 | size int |
| 29 | } |
| 30 | |
| 31 | // New returns an empty Tree |
| 32 | func New() *Tree { |
| 33 | t := &Tree{ |
| 34 | root: &Node{ |
| 35 | mutateCh: make(chan struct{}), |
| 36 | }, |
| 37 | } |
| 38 | return t |
| 39 | } |
| 40 | |
| 41 | // Len is used to return the number of elements in the tree |
| 42 | func (t *Tree) Len() int { |
| 43 | return t.size |
| 44 | } |
| 45 | |
| 46 | // Txn is a transaction on the tree. This transaction is applied |
| 47 | // atomically and returns a new tree when committed. A transaction |
| 48 | // is not thread safe, and should only be used by a single goroutine. |
| 49 | type Txn struct { |
| 50 | // root is the modified root for the transaction. |
| 51 | root *Node |
| 52 | |
| 53 | // snap is a snapshot of the root node for use if we have to run the |
| 54 | // slow notify algorithm. |
| 55 | snap *Node |
| 56 | |
| 57 | // size tracks the size of the tree as it is modified during the |
| 58 | // transaction. |
| 59 | size int |
| 60 | |
| 61 | // writable is a cache of writable nodes that have been created during |
| 62 | // the course of the transaction. This allows us to re-use the same |
| 63 | // nodes for further writes and avoid unnecessary copies of nodes that |
| 64 | // have never been exposed outside the transaction. This will only hold |
| 65 | // up to defaultModifiedCache number of entries. |
| 66 | writable *simplelru.LRU |
| 67 | |
| 68 | // trackChannels is used to hold channels that need to be notified to |
| 69 | // signal mutation of the tree. This will only hold up to |
| 70 | // defaultModifiedCache number of entries, after which we will set the |
| 71 | // trackOverflow flag, which will cause us to use a more expensive |
| 72 | // algorithm to perform the notifications. Mutation tracking is only |
| 73 | // performed if trackMutate is true. |
| 74 | trackChannels map[chan struct{}]struct{} |
| 75 | trackOverflow bool |
| 76 | trackMutate bool |
| 77 | } |
| 78 | |
| 79 | // Txn starts a new transaction that can be used to mutate the tree |
| 80 | func (t *Tree) Txn() *Txn { |
| 81 | txn := &Txn{ |
| 82 | root: t.root, |
| 83 | snap: t.root, |
| 84 | size: t.size, |
| 85 | } |
| 86 | return txn |
| 87 | } |
| 88 | |
| 89 | // TrackMutate can be used to toggle if mutations are tracked. If this is enabled |
| 90 | // then notifications will be issued for affected internal nodes and leaves when |
| 91 | // the transaction is committed. |
| 92 | func (t *Txn) TrackMutate(track bool) { |
| 93 | t.trackMutate = track |
| 94 | } |
| 95 | |
| 96 | // trackChannel safely attempts to track the given mutation channel, setting the |
| 97 | // overflow flag if we can no longer track any more. This limits the amount of |
| 98 | // state that will accumulate during a transaction and we have a slower algorithm |
| 99 | // to switch to if we overflow. |
| 100 | func (t *Txn) trackChannel(ch chan struct{}) { |
| 101 | // In overflow, make sure we don't store any more objects. |
| 102 | if t.trackOverflow { |
| 103 | return |
| 104 | } |
| 105 | |
| 106 | // If this would overflow the state we reject it and set the flag (since |
| 107 | // we aren't tracking everything that's required any longer). |
| 108 | if len(t.trackChannels) >= defaultModifiedCache { |
| 109 | // Mark that we are in the overflow state |
| 110 | t.trackOverflow = true |
| 111 | |
| 112 | // Clear the map so that the channels can be garbage collected. It is |
| 113 | // safe to do this since we have already overflowed and will be using |
| 114 | // the slow notify algorithm. |
| 115 | t.trackChannels = nil |
| 116 | return |
| 117 | } |
| 118 | |
| 119 | // Create the map on the fly when we need it. |
| 120 | if t.trackChannels == nil { |
| 121 | t.trackChannels = make(map[chan struct{}]struct{}) |
| 122 | } |
| 123 | |
| 124 | // Otherwise we are good to track it. |
| 125 | t.trackChannels[ch] = struct{}{} |
| 126 | } |
| 127 | |
| 128 | // writeNode returns a node to be modified, if the current node has already been |
| 129 | // modified during the course of the transaction, it is used in-place. Set |
| 130 | // forLeafUpdate to true if you are getting a write node to update the leaf, |
| 131 | // which will set leaf mutation tracking appropriately as well. |
| 132 | func (t *Txn) writeNode(n *Node, forLeafUpdate bool) *Node { |
| 133 | // Ensure the writable set exists. |
| 134 | if t.writable == nil { |
| 135 | lru, err := simplelru.NewLRU(defaultModifiedCache, nil) |
| 136 | if err != nil { |
| 137 | panic(err) |
| 138 | } |
| 139 | t.writable = lru |
| 140 | } |
| 141 | |
| 142 | // If this node has already been modified, we can continue to use it |
| 143 | // during this transaction. We know that we don't need to track it for |
| 144 | // a node update since the node is writable, but if this is for a leaf |
| 145 | // update we track it, in case the initial write to this node didn't |
| 146 | // update the leaf. |
| 147 | if _, ok := t.writable.Get(n); ok { |
| 148 | if t.trackMutate && forLeafUpdate && n.leaf != nil { |
| 149 | t.trackChannel(n.leaf.mutateCh) |
| 150 | } |
| 151 | return n |
| 152 | } |
| 153 | |
| 154 | // Mark this node as being mutated. |
| 155 | if t.trackMutate { |
| 156 | t.trackChannel(n.mutateCh) |
| 157 | } |
| 158 | |
| 159 | // Mark its leaf as being mutated, if appropriate. |
| 160 | if t.trackMutate && forLeafUpdate && n.leaf != nil { |
| 161 | t.trackChannel(n.leaf.mutateCh) |
| 162 | } |
| 163 | |
| 164 | // Copy the existing node. If you have set forLeafUpdate it will be |
| 165 | // safe to replace this leaf with another after you get your node for |
| 166 | // writing. You MUST replace it, because the channel associated with |
| 167 | // this leaf will be closed when this transaction is committed. |
| 168 | nc := &Node{ |
| 169 | mutateCh: make(chan struct{}), |
| 170 | leaf: n.leaf, |
| 171 | } |
| 172 | if n.prefix != nil { |
| 173 | nc.prefix = make([]byte, len(n.prefix)) |
| 174 | copy(nc.prefix, n.prefix) |
| 175 | } |
| 176 | if len(n.edges) != 0 { |
| 177 | nc.edges = make([]edge, len(n.edges)) |
| 178 | copy(nc.edges, n.edges) |
| 179 | } |
| 180 | |
| 181 | // Mark this node as writable. |
| 182 | t.writable.Add(nc, nil) |
| 183 | return nc |
| 184 | } |
| 185 | |
| 186 | // Visit all the nodes in the tree under n, and add their mutateChannels to the transaction |
| 187 | // Returns the size of the subtree visited |
| 188 | func (t *Txn) trackChannelsAndCount(n *Node) int { |
| 189 | // Count only leaf nodes |
| 190 | leaves := 0 |
| 191 | if n.leaf != nil { |
| 192 | leaves = 1 |
| 193 | } |
| 194 | // Mark this node as being mutated. |
| 195 | if t.trackMutate { |
| 196 | t.trackChannel(n.mutateCh) |
| 197 | } |
| 198 | |
| 199 | // Mark its leaf as being mutated, if appropriate. |
| 200 | if t.trackMutate && n.leaf != nil { |
| 201 | t.trackChannel(n.leaf.mutateCh) |
| 202 | } |
| 203 | |
| 204 | // Recurse on the children |
| 205 | for _, e := range n.edges { |
| 206 | leaves += t.trackChannelsAndCount(e.node) |
| 207 | } |
| 208 | return leaves |
| 209 | } |
| 210 | |
| 211 | // mergeChild is called to collapse the given node with its child. This is only |
| 212 | // called when the given node is not a leaf and has a single edge. |
| 213 | func (t *Txn) mergeChild(n *Node) { |
| 214 | // Mark the child node as being mutated since we are about to abandon |
| 215 | // it. We don't need to mark the leaf since we are retaining it if it |
| 216 | // is there. |
| 217 | e := n.edges[0] |
| 218 | child := e.node |
| 219 | if t.trackMutate { |
| 220 | t.trackChannel(child.mutateCh) |
| 221 | } |
| 222 | |
| 223 | // Merge the nodes. |
| 224 | n.prefix = concat(n.prefix, child.prefix) |
| 225 | n.leaf = child.leaf |
| 226 | if len(child.edges) != 0 { |
| 227 | n.edges = make([]edge, len(child.edges)) |
| 228 | copy(n.edges, child.edges) |
| 229 | } else { |
| 230 | n.edges = nil |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | // insert does a recursive insertion |
| 235 | func (t *Txn) insert(n *Node, k, search []byte, v interface{}) (*Node, interface{}, bool) { |
| 236 | // Handle key exhaustion |
| 237 | if len(search) == 0 { |
| 238 | var oldVal interface{} |
| 239 | didUpdate := false |
| 240 | if n.isLeaf() { |
| 241 | oldVal = n.leaf.val |
| 242 | didUpdate = true |
| 243 | } |
| 244 | |
| 245 | nc := t.writeNode(n, true) |
| 246 | nc.leaf = &leafNode{ |
| 247 | mutateCh: make(chan struct{}), |
| 248 | key: k, |
| 249 | val: v, |
| 250 | } |
| 251 | return nc, oldVal, didUpdate |
| 252 | } |
| 253 | |
| 254 | // Look for the edge |
| 255 | idx, child := n.getEdge(search[0]) |
| 256 | |
| 257 | // No edge, create one |
| 258 | if child == nil { |
| 259 | e := edge{ |
| 260 | label: search[0], |
| 261 | node: &Node{ |
| 262 | mutateCh: make(chan struct{}), |
| 263 | leaf: &leafNode{ |
| 264 | mutateCh: make(chan struct{}), |
| 265 | key: k, |
| 266 | val: v, |
| 267 | }, |
| 268 | prefix: search, |
| 269 | }, |
| 270 | } |
| 271 | nc := t.writeNode(n, false) |
| 272 | nc.addEdge(e) |
| 273 | return nc, nil, false |
| 274 | } |
| 275 | |
| 276 | // Determine longest prefix of the search key on match |
| 277 | commonPrefix := longestPrefix(search, child.prefix) |
| 278 | if commonPrefix == len(child.prefix) { |
| 279 | search = search[commonPrefix:] |
| 280 | newChild, oldVal, didUpdate := t.insert(child, k, search, v) |
| 281 | if newChild != nil { |
| 282 | nc := t.writeNode(n, false) |
| 283 | nc.edges[idx].node = newChild |
| 284 | return nc, oldVal, didUpdate |
| 285 | } |
| 286 | return nil, oldVal, didUpdate |
| 287 | } |
| 288 | |
| 289 | // Split the node |
| 290 | nc := t.writeNode(n, false) |
| 291 | splitNode := &Node{ |
| 292 | mutateCh: make(chan struct{}), |
| 293 | prefix: search[:commonPrefix], |
| 294 | } |
| 295 | nc.replaceEdge(edge{ |
| 296 | label: search[0], |
| 297 | node: splitNode, |
| 298 | }) |
| 299 | |
| 300 | // Restore the existing child node |
| 301 | modChild := t.writeNode(child, false) |
| 302 | splitNode.addEdge(edge{ |
| 303 | label: modChild.prefix[commonPrefix], |
| 304 | node: modChild, |
| 305 | }) |
| 306 | modChild.prefix = modChild.prefix[commonPrefix:] |
| 307 | |
| 308 | // Create a new leaf node |
| 309 | leaf := &leafNode{ |
| 310 | mutateCh: make(chan struct{}), |
| 311 | key: k, |
| 312 | val: v, |
| 313 | } |
| 314 | |
| 315 | // If the new key is a subset, add to to this node |
| 316 | search = search[commonPrefix:] |
| 317 | if len(search) == 0 { |
| 318 | splitNode.leaf = leaf |
| 319 | return nc, nil, false |
| 320 | } |
| 321 | |
| 322 | // Create a new edge for the node |
| 323 | splitNode.addEdge(edge{ |
| 324 | label: search[0], |
| 325 | node: &Node{ |
| 326 | mutateCh: make(chan struct{}), |
| 327 | leaf: leaf, |
| 328 | prefix: search, |
| 329 | }, |
| 330 | }) |
| 331 | return nc, nil, false |
| 332 | } |
| 333 | |
| 334 | // delete does a recursive deletion |
| 335 | func (t *Txn) delete(parent, n *Node, search []byte) (*Node, *leafNode) { |
| 336 | // Check for key exhaustion |
| 337 | if len(search) == 0 { |
| 338 | if !n.isLeaf() { |
| 339 | return nil, nil |
| 340 | } |
| 341 | // Copy the pointer in case we are in a transaction that already |
| 342 | // modified this node since the node will be reused. Any changes |
| 343 | // made to the node will not affect returning the original leaf |
| 344 | // value. |
| 345 | oldLeaf := n.leaf |
| 346 | |
| 347 | // Remove the leaf node |
| 348 | nc := t.writeNode(n, true) |
| 349 | nc.leaf = nil |
| 350 | |
| 351 | // Check if this node should be merged |
| 352 | if n != t.root && len(nc.edges) == 1 { |
| 353 | t.mergeChild(nc) |
| 354 | } |
| 355 | return nc, oldLeaf |
| 356 | } |
| 357 | |
| 358 | // Look for an edge |
| 359 | label := search[0] |
| 360 | idx, child := n.getEdge(label) |
| 361 | if child == nil || !bytes.HasPrefix(search, child.prefix) { |
| 362 | return nil, nil |
| 363 | } |
| 364 | |
| 365 | // Consume the search prefix |
| 366 | search = search[len(child.prefix):] |
| 367 | newChild, leaf := t.delete(n, child, search) |
| 368 | if newChild == nil { |
| 369 | return nil, nil |
| 370 | } |
| 371 | |
| 372 | // Copy this node. WATCH OUT - it's safe to pass "false" here because we |
| 373 | // will only ADD a leaf via nc.mergeChild() if there isn't one due to |
| 374 | // the !nc.isLeaf() check in the logic just below. This is pretty subtle, |
| 375 | // so be careful if you change any of the logic here. |
| 376 | nc := t.writeNode(n, false) |
| 377 | |
| 378 | // Delete the edge if the node has no edges |
| 379 | if newChild.leaf == nil && len(newChild.edges) == 0 { |
| 380 | nc.delEdge(label) |
| 381 | if n != t.root && len(nc.edges) == 1 && !nc.isLeaf() { |
| 382 | t.mergeChild(nc) |
| 383 | } |
| 384 | } else { |
| 385 | nc.edges[idx].node = newChild |
| 386 | } |
| 387 | return nc, leaf |
| 388 | } |
| 389 | |
| 390 | // delete does a recursive deletion |
| 391 | func (t *Txn) deletePrefix(parent, n *Node, search []byte) (*Node, int) { |
| 392 | // Check for key exhaustion |
| 393 | if len(search) == 0 { |
| 394 | nc := t.writeNode(n, true) |
| 395 | if n.isLeaf() { |
| 396 | nc.leaf = nil |
| 397 | } |
| 398 | nc.edges = nil |
| 399 | return nc, t.trackChannelsAndCount(n) |
| 400 | } |
| 401 | |
| 402 | // Look for an edge |
| 403 | label := search[0] |
| 404 | idx, child := n.getEdge(label) |
| 405 | // We make sure that either the child node's prefix starts with the search term, or the search term starts with the child node's prefix |
| 406 | // Need to do both so that we can delete prefixes that don't correspond to any node in the tree |
| 407 | if child == nil || (!bytes.HasPrefix(child.prefix, search) && !bytes.HasPrefix(search, child.prefix)) { |
| 408 | return nil, 0 |
| 409 | } |
| 410 | |
| 411 | // Consume the search prefix |
| 412 | if len(child.prefix) > len(search) { |
| 413 | search = []byte("") |
| 414 | } else { |
| 415 | search = search[len(child.prefix):] |
| 416 | } |
| 417 | newChild, numDeletions := t.deletePrefix(n, child, search) |
| 418 | if newChild == nil { |
| 419 | return nil, 0 |
| 420 | } |
| 421 | // Copy this node. WATCH OUT - it's safe to pass "false" here because we |
| 422 | // will only ADD a leaf via nc.mergeChild() if there isn't one due to |
| 423 | // the !nc.isLeaf() check in the logic just below. This is pretty subtle, |
| 424 | // so be careful if you change any of the logic here. |
| 425 | |
| 426 | nc := t.writeNode(n, false) |
| 427 | |
| 428 | // Delete the edge if the node has no edges |
| 429 | if newChild.leaf == nil && len(newChild.edges) == 0 { |
| 430 | nc.delEdge(label) |
| 431 | if n != t.root && len(nc.edges) == 1 && !nc.isLeaf() { |
| 432 | t.mergeChild(nc) |
| 433 | } |
| 434 | } else { |
| 435 | nc.edges[idx].node = newChild |
| 436 | } |
| 437 | return nc, numDeletions |
| 438 | } |
| 439 | |
| 440 | // Insert is used to add or update a given key. The return provides |
| 441 | // the previous value and a bool indicating if any was set. |
| 442 | func (t *Txn) Insert(k []byte, v interface{}) (interface{}, bool) { |
| 443 | newRoot, oldVal, didUpdate := t.insert(t.root, k, k, v) |
| 444 | if newRoot != nil { |
| 445 | t.root = newRoot |
| 446 | } |
| 447 | if !didUpdate { |
| 448 | t.size++ |
| 449 | } |
| 450 | return oldVal, didUpdate |
| 451 | } |
| 452 | |
| 453 | // Delete is used to delete a given key. Returns the old value if any, |
| 454 | // and a bool indicating if the key was set. |
| 455 | func (t *Txn) Delete(k []byte) (interface{}, bool) { |
| 456 | newRoot, leaf := t.delete(nil, t.root, k) |
| 457 | if newRoot != nil { |
| 458 | t.root = newRoot |
| 459 | } |
| 460 | if leaf != nil { |
| 461 | t.size-- |
| 462 | return leaf.val, true |
| 463 | } |
| 464 | return nil, false |
| 465 | } |
| 466 | |
| 467 | // DeletePrefix is used to delete an entire subtree that matches the prefix |
| 468 | // This will delete all nodes under that prefix |
| 469 | func (t *Txn) DeletePrefix(prefix []byte) bool { |
| 470 | newRoot, numDeletions := t.deletePrefix(nil, t.root, prefix) |
| 471 | if newRoot != nil { |
| 472 | t.root = newRoot |
| 473 | t.size = t.size - numDeletions |
| 474 | return true |
| 475 | } |
| 476 | return false |
| 477 | |
| 478 | } |
| 479 | |
| 480 | // Root returns the current root of the radix tree within this |
| 481 | // transaction. The root is not safe across insert and delete operations, |
| 482 | // but can be used to read the current state during a transaction. |
| 483 | func (t *Txn) Root() *Node { |
| 484 | return t.root |
| 485 | } |
| 486 | |
| 487 | // Get is used to lookup a specific key, returning |
| 488 | // the value and if it was found |
| 489 | func (t *Txn) Get(k []byte) (interface{}, bool) { |
| 490 | return t.root.Get(k) |
| 491 | } |
| 492 | |
| 493 | // GetWatch is used to lookup a specific key, returning |
| 494 | // the watch channel, value and if it was found |
| 495 | func (t *Txn) GetWatch(k []byte) (<-chan struct{}, interface{}, bool) { |
| 496 | return t.root.GetWatch(k) |
| 497 | } |
| 498 | |
| 499 | // Commit is used to finalize the transaction and return a new tree. If mutation |
| 500 | // tracking is turned on then notifications will also be issued. |
| 501 | func (t *Txn) Commit() *Tree { |
| 502 | nt := t.CommitOnly() |
| 503 | if t.trackMutate { |
| 504 | t.Notify() |
| 505 | } |
| 506 | return nt |
| 507 | } |
| 508 | |
| 509 | // CommitOnly is used to finalize the transaction and return a new tree, but |
| 510 | // does not issue any notifications until Notify is called. |
| 511 | func (t *Txn) CommitOnly() *Tree { |
| 512 | nt := &Tree{t.root, t.size} |
| 513 | t.writable = nil |
| 514 | return nt |
| 515 | } |
| 516 | |
| 517 | // slowNotify does a complete comparison of the before and after trees in order |
| 518 | // to trigger notifications. This doesn't require any additional state but it |
| 519 | // is very expensive to compute. |
| 520 | func (t *Txn) slowNotify() { |
| 521 | snapIter := t.snap.rawIterator() |
| 522 | rootIter := t.root.rawIterator() |
| 523 | for snapIter.Front() != nil || rootIter.Front() != nil { |
| 524 | // If we've exhausted the nodes in the old snapshot, we know |
| 525 | // there's nothing remaining to notify. |
| 526 | if snapIter.Front() == nil { |
| 527 | return |
| 528 | } |
| 529 | snapElem := snapIter.Front() |
| 530 | |
| 531 | // If we've exhausted the nodes in the new root, we know we need |
| 532 | // to invalidate everything that remains in the old snapshot. We |
| 533 | // know from the loop condition there's something in the old |
| 534 | // snapshot. |
| 535 | if rootIter.Front() == nil { |
| 536 | close(snapElem.mutateCh) |
| 537 | if snapElem.isLeaf() { |
| 538 | close(snapElem.leaf.mutateCh) |
| 539 | } |
| 540 | snapIter.Next() |
| 541 | continue |
| 542 | } |
| 543 | |
| 544 | // Do one string compare so we can check the various conditions |
| 545 | // below without repeating the compare. |
| 546 | cmp := strings.Compare(snapIter.Path(), rootIter.Path()) |
| 547 | |
| 548 | // If the snapshot is behind the root, then we must have deleted |
| 549 | // this node during the transaction. |
| 550 | if cmp < 0 { |
| 551 | close(snapElem.mutateCh) |
| 552 | if snapElem.isLeaf() { |
| 553 | close(snapElem.leaf.mutateCh) |
| 554 | } |
| 555 | snapIter.Next() |
| 556 | continue |
| 557 | } |
| 558 | |
| 559 | // If the snapshot is ahead of the root, then we must have added |
| 560 | // this node during the transaction. |
| 561 | if cmp > 0 { |
| 562 | rootIter.Next() |
| 563 | continue |
| 564 | } |
| 565 | |
| 566 | // If we have the same path, then we need to see if we mutated a |
| 567 | // node and possibly the leaf. |
| 568 | rootElem := rootIter.Front() |
| 569 | if snapElem != rootElem { |
| 570 | close(snapElem.mutateCh) |
| 571 | if snapElem.leaf != nil && (snapElem.leaf != rootElem.leaf) { |
| 572 | close(snapElem.leaf.mutateCh) |
| 573 | } |
| 574 | } |
| 575 | snapIter.Next() |
| 576 | rootIter.Next() |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | // Notify is used along with TrackMutate to trigger notifications. This must |
| 581 | // only be done once a transaction is committed via CommitOnly, and it is called |
| 582 | // automatically by Commit. |
| 583 | func (t *Txn) Notify() { |
| 584 | if !t.trackMutate { |
| 585 | return |
| 586 | } |
| 587 | |
| 588 | // If we've overflowed the tracking state we can't use it in any way and |
| 589 | // need to do a full tree compare. |
| 590 | if t.trackOverflow { |
| 591 | t.slowNotify() |
| 592 | } else { |
| 593 | for ch := range t.trackChannels { |
| 594 | close(ch) |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | // Clean up the tracking state so that a re-notify is safe (will trigger |
| 599 | // the else clause above which will be a no-op). |
| 600 | t.trackChannels = nil |
| 601 | t.trackOverflow = false |
| 602 | } |
| 603 | |
| 604 | // Insert is used to add or update a given key. The return provides |
| 605 | // the new tree, previous value and a bool indicating if any was set. |
| 606 | func (t *Tree) Insert(k []byte, v interface{}) (*Tree, interface{}, bool) { |
| 607 | txn := t.Txn() |
| 608 | old, ok := txn.Insert(k, v) |
| 609 | return txn.Commit(), old, ok |
| 610 | } |
| 611 | |
| 612 | // Delete is used to delete a given key. Returns the new tree, |
| 613 | // old value if any, and a bool indicating if the key was set. |
| 614 | func (t *Tree) Delete(k []byte) (*Tree, interface{}, bool) { |
| 615 | txn := t.Txn() |
| 616 | old, ok := txn.Delete(k) |
| 617 | return txn.Commit(), old, ok |
| 618 | } |
| 619 | |
| 620 | // DeletePrefix is used to delete all nodes starting with a given prefix. Returns the new tree, |
| 621 | // and a bool indicating if the prefix matched any nodes |
| 622 | func (t *Tree) DeletePrefix(k []byte) (*Tree, bool) { |
| 623 | txn := t.Txn() |
| 624 | ok := txn.DeletePrefix(k) |
| 625 | return txn.Commit(), ok |
| 626 | } |
| 627 | |
| 628 | // Root returns the root node of the tree which can be used for richer |
| 629 | // query operations. |
| 630 | func (t *Tree) Root() *Node { |
| 631 | return t.root |
| 632 | } |
| 633 | |
| 634 | // Get is used to lookup a specific key, returning |
| 635 | // the value and if it was found |
| 636 | func (t *Tree) Get(k []byte) (interface{}, bool) { |
| 637 | return t.root.Get(k) |
| 638 | } |
| 639 | |
| 640 | // longestPrefix finds the length of the shared prefix |
| 641 | // of two strings |
| 642 | func longestPrefix(k1, k2 []byte) int { |
| 643 | max := len(k1) |
| 644 | if l := len(k2); l < max { |
| 645 | max = l |
| 646 | } |
| 647 | var i int |
| 648 | for i = 0; i < max; i++ { |
| 649 | if k1[i] != k2[i] { |
| 650 | break |
| 651 | } |
| 652 | } |
| 653 | return i |
| 654 | } |
| 655 | |
| 656 | // concat two byte slices, returning a third new copy |
| 657 | func concat(a, b []byte) []byte { |
| 658 | c := make([]byte, len(a)+len(b)) |
| 659 | copy(c, a) |
| 660 | copy(c[len(a):], b) |
| 661 | return c |
| 662 | } |