William Kurkian | ea86948 | 2019-04-09 15:16:11 -0400 | [diff] [blame] | 1 | package iradix |
| 2 | |
Abhilash S.L | 3b49463 | 2019-07-16 15:51:09 +0530 | [diff] [blame] | 3 | import ( |
| 4 | "bytes" |
| 5 | ) |
William Kurkian | ea86948 | 2019-04-09 15:16:11 -0400 | [diff] [blame] | 6 | |
| 7 | // Iterator is used to iterate over a set of nodes |
| 8 | // in pre-order |
| 9 | type Iterator struct { |
| 10 | node *Node |
| 11 | stack []edges |
| 12 | } |
| 13 | |
| 14 | // SeekPrefixWatch is used to seek the iterator to a given prefix |
| 15 | // and returns the watch channel of the finest granularity |
| 16 | func (i *Iterator) SeekPrefixWatch(prefix []byte) (watch <-chan struct{}) { |
| 17 | // Wipe the stack |
| 18 | i.stack = nil |
| 19 | n := i.node |
| 20 | watch = n.mutateCh |
| 21 | search := prefix |
| 22 | for { |
| 23 | // Check for key exhaution |
| 24 | if len(search) == 0 { |
| 25 | i.node = n |
| 26 | return |
| 27 | } |
| 28 | |
| 29 | // Look for an edge |
| 30 | _, n = n.getEdge(search[0]) |
| 31 | if n == nil { |
| 32 | i.node = nil |
| 33 | return |
| 34 | } |
| 35 | |
| 36 | // Update to the finest granularity as the search makes progress |
| 37 | watch = n.mutateCh |
| 38 | |
| 39 | // Consume the search prefix |
| 40 | if bytes.HasPrefix(search, n.prefix) { |
| 41 | search = search[len(n.prefix):] |
| 42 | |
| 43 | } else if bytes.HasPrefix(n.prefix, search) { |
| 44 | i.node = n |
| 45 | return |
| 46 | } else { |
| 47 | i.node = nil |
| 48 | return |
| 49 | } |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | // SeekPrefix is used to seek the iterator to a given prefix |
| 54 | func (i *Iterator) SeekPrefix(prefix []byte) { |
| 55 | i.SeekPrefixWatch(prefix) |
| 56 | } |
| 57 | |
Abhilash S.L | 3b49463 | 2019-07-16 15:51:09 +0530 | [diff] [blame] | 58 | func (i *Iterator) recurseMin(n *Node) *Node { |
| 59 | // Traverse to the minimum child |
| 60 | if n.leaf != nil { |
| 61 | return n |
| 62 | } |
| 63 | if len(n.edges) > 0 { |
| 64 | // Add all the other edges to the stack (the min node will be added as |
| 65 | // we recurse) |
| 66 | i.stack = append(i.stack, n.edges[1:]) |
| 67 | return i.recurseMin(n.edges[0].node) |
| 68 | } |
| 69 | // Shouldn't be possible |
| 70 | return nil |
| 71 | } |
| 72 | |
| 73 | // SeekLowerBound is used to seek the iterator to the smallest key that is |
| 74 | // greater or equal to the given key. There is no watch variant as it's hard to |
| 75 | // predict based on the radix structure which node(s) changes might affect the |
| 76 | // result. |
| 77 | func (i *Iterator) SeekLowerBound(key []byte) { |
| 78 | // Wipe the stack. Unlike Prefix iteration, we need to build the stack as we |
| 79 | // go because we need only a subset of edges of many nodes in the path to the |
| 80 | // leaf with the lower bound. |
| 81 | i.stack = []edges{} |
| 82 | n := i.node |
| 83 | search := key |
| 84 | |
| 85 | found := func(n *Node) { |
| 86 | i.node = n |
| 87 | i.stack = append(i.stack, edges{edge{node: n}}) |
| 88 | } |
| 89 | |
| 90 | for { |
| 91 | // Compare current prefix with the search key's same-length prefix. |
| 92 | var prefixCmp int |
| 93 | if len(n.prefix) < len(search) { |
| 94 | prefixCmp = bytes.Compare(n.prefix, search[0:len(n.prefix)]) |
| 95 | } else { |
| 96 | prefixCmp = bytes.Compare(n.prefix, search) |
| 97 | } |
| 98 | |
| 99 | if prefixCmp > 0 { |
| 100 | // Prefix is larger, that means the lower bound is greater than the search |
| 101 | // and from now on we need to follow the minimum path to the smallest |
| 102 | // leaf under this subtree. |
| 103 | n = i.recurseMin(n) |
| 104 | if n != nil { |
| 105 | found(n) |
| 106 | } |
| 107 | return |
| 108 | } |
| 109 | |
| 110 | if prefixCmp < 0 { |
| 111 | // Prefix is smaller than search prefix, that means there is no lower |
| 112 | // bound |
| 113 | i.node = nil |
| 114 | return |
| 115 | } |
| 116 | |
| 117 | // Prefix is equal, we are still heading for an exact match. If this is a |
| 118 | // leaf we're done. |
| 119 | if n.leaf != nil { |
| 120 | if bytes.Compare(n.leaf.key, key) < 0 { |
| 121 | i.node = nil |
| 122 | return |
| 123 | } |
| 124 | found(n) |
| 125 | return |
| 126 | } |
| 127 | |
| 128 | // Consume the search prefix |
| 129 | if len(n.prefix) > len(search) { |
| 130 | search = []byte{} |
| 131 | } else { |
| 132 | search = search[len(n.prefix):] |
| 133 | } |
| 134 | |
| 135 | // Otherwise, take the lower bound next edge. |
| 136 | idx, lbNode := n.getLowerBoundEdge(search[0]) |
| 137 | if lbNode == nil { |
| 138 | i.node = nil |
| 139 | return |
| 140 | } |
| 141 | |
| 142 | // Create stack edges for the all strictly higher edges in this node. |
| 143 | if idx+1 < len(n.edges) { |
| 144 | i.stack = append(i.stack, n.edges[idx+1:]) |
| 145 | } |
| 146 | |
| 147 | i.node = lbNode |
| 148 | // Recurse |
| 149 | n = lbNode |
| 150 | } |
| 151 | } |
| 152 | |
William Kurkian | ea86948 | 2019-04-09 15:16:11 -0400 | [diff] [blame] | 153 | // Next returns the next node in order |
| 154 | func (i *Iterator) Next() ([]byte, interface{}, bool) { |
| 155 | // Initialize our stack if needed |
| 156 | if i.stack == nil && i.node != nil { |
| 157 | i.stack = []edges{ |
| 158 | edges{ |
| 159 | edge{node: i.node}, |
| 160 | }, |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | for len(i.stack) > 0 { |
| 165 | // Inspect the last element of the stack |
| 166 | n := len(i.stack) |
| 167 | last := i.stack[n-1] |
| 168 | elem := last[0].node |
| 169 | |
| 170 | // Update the stack |
| 171 | if len(last) > 1 { |
| 172 | i.stack[n-1] = last[1:] |
| 173 | } else { |
| 174 | i.stack = i.stack[:n-1] |
| 175 | } |
| 176 | |
| 177 | // Push the edges onto the frontier |
| 178 | if len(elem.edges) > 0 { |
| 179 | i.stack = append(i.stack, elem.edges) |
| 180 | } |
| 181 | |
| 182 | // Return the leaf values if any |
| 183 | if elem.leaf != nil { |
| 184 | return elem.leaf.key, elem.leaf.val, true |
| 185 | } |
| 186 | } |
| 187 | return nil, nil, false |
| 188 | } |